
Evolution of Neural Networks
Using Genetic Algorithms

Wesley Kerr, Suranga Hettarachchi
University of Wyoming

Laramie, WY 82071
wkerr@cs.uwyo.edu

1 The Task

RoboCup has come a long way since it’s creation in ’97 [1] and is a respected place for machine learning
researchers to try out new algorithms in a competitive fashion. RoboCup is now an international competition that
draws many teams and respected researchers looking for a chance to create the best team. Originally we set out
to create a team to compete in RoboCup. This was an ambitious project, and we had hopes to finish within the
next year. For this semester, we chose to scale down the RoboCup team towards a smaller research area to try our
learning algorithm on. The scaled down version of the RoboCup soccer environment is known as the ”Keepaway
Testbed” and was started by Peter Stone, University of Texas [2]. Here the task is simple, you have two teams on
the field each with the same number of players. Instead of trying to score a goal on the opponent the teams are
given tasks, and one team is labeled the keepers and the other is labeled the takers. It is the task of the keepers to
maintain possesion of the ball and it is the task of the takers to take the ball. The longer the keepers are able to
maintain possesion of the ball the better the team.

There are several advantages to this environment. First, it provides some of the essential characteristics of a real
soccer game. Typically it is believed that if a team is able to maintain possesion of the ball for long periods of time
they will win the match. Secondly, it provides realistic behavior much the same as the original RoboCup server.
This is accomplished by introducing noise into the system similar to the original RoboCup, and similar to what
would be received by real robots. Finally, when you want to go through the learning process this environment is
capable of stopping play once the takers have touched the ball, and the environment is capable of starting a new
trial based on that occurrence.

Although the RoboCup Keepaway Machine Learning testbed provided an excellent environment to train our
agents, we still needed to scale down the problem in order to do a feasibility study. Based on the Keepaway
testbed, we created a simulation world with one simple task. One agent is placed into the world and has to locate
the position of the goal. This can be thought of as an agent in a soccer environment needing to locate either the ball
or another teammate. It was in this environment where we tested our methods for learning autonomous agents.

2 Description of Simulated World

We created a simulated world for our agent to learn the task of location of a goal. A visualization of the
simulated world can be seen in figure 1. The world is defined by:

1. Walls defined by two points ��� and ���
���	�
� - ��� x-coordinate

Figure 1. An idealized view of the simulator.

���	�� - ��� y-coordinate
���	�� - ��� x-coordinate
���	��� - ��� y-coordiante

2. Agent

���� - x-coordinate of the agent
��� � - y-coordinate of the agent
��� - angle the agent is facing relative to x-axis

3. Goal

���
� - x-coordinate of the goal
���
� - y-coordinate of the goal

4. View Frustum

�������������!

The agent’s effectors are:

1. turn(�) - turns the agent � degrees

2. move(") - moves the agent along current angle with velocity "

The agent’s sensors are:

1. position - returns the agents current position �

2. angle - returns the agents current angle �

2

3. goal location - returns the goal location if within the view frustum, otherwise returns �#�%$&�(' and �
��$&�('

4. wall locations - returns the locations of all of the walls

The realized version of the simulator can be seen in figure 2. This is what is viewable by the user to monitor the
performance of the agent. The agent uses its sensors and effectors to navigate the simulated world until it locates
the goal location. The simulated world is a real valued world, therefore the agents positions will always be real
valued. Now that we have created a simulated world to experiment in we need to determine a method of learning
how to navigate the world successfully.

Figure 2. A view of the actual simulator.

3 Methods

Peter Stone has used neural networks successfully in the RoboCup environment to learn low level behaviors,
and then used a decision tree algorithm to determine what behavior to execute given the current situation of the
game[3]. We sought to extend this research and have a fully encompassing neural network capable of making the
decisions on what actions to take as well as deciding the parameters for that action.

We created a feed-forward neural network of several layers in order to accompmlish the given task. The tradi-
tional technique for learning the weights in a neural network has been back-propogation. We decided that since
genetic algorithms have been used successfully to solve optimization problems, and one could view the weights
connecting neural networks as something that needs to be optimized, we would use genetic algorithms in order to
solve the task of learning the weights for the neural network. We originally planned to use the genetic algorithm
for determining the optimal topology of the neural network as well, but that was never implemented. Learning
the topology was the primary reason for choosing genetic algorithms on both levels. Also, we hoped that since
the genetic algorithm feels its way around the search space it might be capable of finding a solution faster than
back-propogation.

3

Figure 3. A view neural network design.

4 Neural Network Design

The original intention of the project was to use a genetic algorithm to learn the topology of the neural network,
and therefore remove the creation of the topology for the neural network from the designers. In order to test
the internal genetic algorithm used to learn the weights of the neural network, an arbitrary neural network was
designed. Figure 3 shows the topology chosen for the original neural network. We designed a neural network with
one input layer, two hidden layers, and one output layer. The inputs to the neural network consist of most of the
information attainable from the simulated world.

Inputs:

1. �� - x location in simulator

2. � � - y location in simulator

3. �
� - x location of goal in simulator

4. � � - y location of goal in simulator

5. � - current heading

There are four outputs from the neural network. Let)�* represent the output value for ',+.-0/1� , and let 2
be the maximum velocity that the agent can move with. We chose to cap the maximum velocity because in both
real robots and the RoboCup simulation environment agents have a maximum speed. The first two outputs are
used to determine what action to perform, turn or move. If) �(3) � the agent would move forward with velocity
" $)54%6,2 . Since we are using the sigmoind function for determining activation levels, " will always be a value
between 0 and 2 . Otherwise, the agent would turn with angle ��$)8796�:!;
< . Again since we are using the
sigmoid function � will always range between 0 and :!;
< . Now all that is left is how we plan to teach this neural
network to navigate the simulated world by altering the weights between connections in the neural network.

4

5 Genetic Algorithm Design

In order to design a genetic algorithm to learn the weights for the given neural network, we have to answer
several questions. How are we going to represent the data? How are we going to measure the fitness of the
individual in the population? How are we going to select individuals for the next population? How are we going
to change the population?

We decided to represent each individual in the population as a string of real numbers. The length of the string is
equal to the number of connections in the neural network. Figure 3 shows the network weights and their indexes
which correspond to their index into the individual’s string. So, our individual is a string �>=
?@� � ?BABABAC?@�	D where E
is the number of connections in the neural network. The fitness of a given individual was determined by running it
through the simulation a given number of times. This is a number that can be varied since we randomly place the
agent and goal each time in the simulation, but typically we ran through the simulator 50 times before determining
the fitness of the individual. The agent was allowed to move until it found the goal or a maximum number of
iterations was surpassed, typically 1000 moves. In order to make the solution a maximization problem, we kept
track of how many iterations it took to find the goal, F . We also could calculate the minimum number of steps it
would take to find the goal, G . Let H be the number of trial runs through the simulator. We found the average
fitness over the runs to be the fitness for the individual as shown below:

IKJMLN
H

Because of our definition of the fitness of the individual, the better the agent got at find the goal the closer the
fitness was to one, and less fit individuals were closer to zero.

Individuals were selected for the next population by stochastic universal sampling. The idea behind this being
the most fit individuals were probabilistically more likely to have children than those less fit individuals. We also
used an elitist scheme which maintains the best individual found so far as the first individual of the population.
We chose to use the elitist scheme in order to make sure that the best individual was always capable of influ-
encing the other individuals when it came time for the new population. Finally, we modify the next generation
by combining both recombination and mutation in order to introduce variety into the population. Individuals are
selected randomly for recombination and we perform 1-point crossover by selecting a random point between 1
and E . Everything past the crossover point is swapped between the two selected individuals.

The neural network is read in and the genetic algorithm is initialized to a population of 200 individuals. For the
given neural network each individual has a length E $&O ; . Each index in the individual is initialized to a random
number between -6.0 and 6.0. The recombination rate for the genetic algorithm is set at 0.6 and the mutation rate
is 0.01. Now that we have a complete design we can design the experiment and see how well it performs.

6 Experimental Results

The gentic algorithm was allowed to run for 1500 iterations and the learning curve can be found in figure 4. The
running time of the algorithms for 1500 iterations was roughly three days. Therefore we only ran one experiment
in order to generate the average fitness curve. Since the genetic algorithm is a stochastic algorithm, more runs
would be needed to determine an average fitness over an average of the runs, but lack of time and since the project
has been halted, this was not explored. The best individual in the population was able to find the goal in 6.25
times the minimum number of steps and had a fitness of 0.16. One thing to note about this learning curve is that
the genetic algorithm was capable of learning the weights for the neural netowrk, and the average fitness typically
peaked fairly early in the life-cycle. This was not the only run of the genetic algorithm though.

The original run of the algorithm found a fitness of 0.32. Unfortunately, the parameter settings have since
been lost and we have been unable to duplicate those results. Other combinations besides those listed above

5

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0 200 400 600 800 1000 1200 1400 1600

Av
er

ag
e

Fi
tn

es
s

Iteration

Learning Curve

Figure 4. Learning curve for the genetic algorithm.

were tried in order to achieve a higher fitness. Instead of 1-point recombination, another form of recombination
known as uniform recombination was used with limited success. Uniform recombination evaluates every index
in the individual and essentially evaluates a coin flip to determine if it will swap that index between individuals.
Modifications were made to the mutation rate were made. Above we have listed that the mutation rate was 0.01,
but in other runs the mutation rate was reduced and increased. All of this was trying to determine what settings
yield the best results for our problem, but all of these changes were unable to duplicate the initial results. The most
suprising fact of all is that even though 0.16 and 0.32 seem such small fitnesses, actual intelligence is visible when
watching the agent in the system. In fact, both solutions appear to have the same solution strategy even though they
have differing weights. It’s quite facinating to watch. The agent has a plan for solving the problem and follows
that plan until completion unless it runs into a wall. This led to the thought that we could use wall positions as
inputs into the neural network, although this was never implemented. Overall, the agent can successfully navigate
to the goal every time without the presence of walls and appears to be intelligent about how it gets there.

7 Conclusions

When we started the project we set out to create a team to compete in RoboCup. We believed our approach to be
a novel one in this arena, and very capable of competing with the current champions. Unfortunately, the discovery
of a paper by Peter Stone[3], showed that this approach had already been documented, with greater enhancements
than those we would be providing. At this point the research was halted and other topics were chosen to explore.
Eventually we would like to revisit this problem, possibly reperforming the layered-learning technique described
by Stone.

References

[1] I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer server: A tool for research on multi-agent systems.
Applied Artificial Intelligence, 12:233–250, 1998.

6

[2] P. Stone and R. Sutton. Keepaway soccer: a machine learning testbed. In RoboCup-2001: Robot Soccer World
Cup V. Springer-Verlag, 2001.

[3] S. Whitestone and P. Stone. Concurrent layered learning. In Second International Joint Conference on Au-
tonomous Agents and Multiagent Systems, July 2003.

7

