
Learning Classifier  Systems: A Br ief Introduction 

Larry Bull 

Faculty of Computing, Engineering & Mathematical Sciences  
University of the West of England  

Bristol BS16 1QY, U.K. 
Larry.Bull@uwe.ac.uk 

[Learning]  Classifier systems are a kind of rule-based system with general 
mechanisms for processing rules in parallel, for adaptive generation of new 
rules, and for testing the effectiveness of existing rules. These mechanisms make 
possible performance and learning without the “ brittleness”  characteristic of 
most expert systems in AI.     
                     
     Holland et al., Induction, 1986 

1. Introduction 

Machine learning is synonymous with advanced computing and a growing body of 
work exists on the use of such techniques to solve real-world problems [e.g., 
Tsoukalas & Uhrig, 1997]. The complex and/or ill-understood nature of many 
problem domains, such as data mining or process control, has led to the need for 
technologies which can adapt to the task they face. Learning Classifier Systems (LCS) 
[Holland, 1976] are a machine learning technique which combines reinforcement 
learning, evolutionary computing and other heuristics to produce adaptive systems. 
The subject of this book is the use of LCS for real-world applications.  

Evolutionary computing techniques are search algorithms based on the 
mechanisms of natural selection and genetics. That is, they apply Darwin’s principle 
of the survival of the fittest among computational structures with the stochastic 
processes of gene mutation, recombination, etc. Central to all evolutionary computing 
techniques is the idea of searching a problem space by evolving an initially random 
population of solutions such that better – or fitter – solutions are generated over time; 
the population of candidate solutions is seen to adapt to the problem. These 
techniques have been applied to a wide variety of domains such as optimization, 
design, classification, control and many others. A review of evolutionary computation 
is beyond the scope of this chapter, but a recent introduction can be found in [Eiben & 
Smith, 2003]. In LCS, the evolutionary computing technique usually works in 
conjunction with a reinforcement learning technique. 

Reinforcement learning is learning through trial and error via the reception of a 
numerical reward. The learner attempts to map state and action combinations to their 
utility, with the aim of being able to maximize future reward. Reward is usually 
received after a number of actions have been taken by the learner; reward is typically 



delayed. The approach is loosely analogous to what are known as secondary 
reinforcers in animal learning theory. These are stimuli which have become 
associated with something such as food or pain. Reinforcement learning has been 
applied to a wide variety of domains such as game playing, control, scheduling and 
many others. Again, a review of reinforcement learning is beyond the scope of this 
chapter and the reader is referred to [Sutton & Barto, 1998].  

Learning Classifier Systems are rule-based systems, where the rules are usually in 
the traditional production system form of “ IF state THEN action” . Evolutionary 
computing techniques and heuristics are used to search the space of possible rules, 
whilst reinforcement learning techniques are used to assign utility to existing rules, 
thereby guiding the search for better rules. The LCS formalism was introduced by 
John Holland [1976] and based around his more well-known invention – the Genetic 
Algorithm (GA)[Holland, 1975]. A few years later, in collaboration with Judith 
Reitman, he presented the first implementation of an LCS [Holland & Reitman, 
1978]. Holland then revised the framework to define what would become the standard 
system [Holland, 1980; 1986]. However, Holland’s full system was somewhat 
complex and practical experience found it difficult to realize the envisaged 
behaviour/performance [e.g., Wilson & Goldberg, 1989]. As a consequence, Wilson 
presented the “zeroth-level”  classifier system, ZCS [Wilson, 1994] which “keeps 
much of Holland’s original framework but simplifies it to increase understandability 
and performance”  [ibid.]. Wilson then introduced a form of LCS which altered the 
way in which rule fitness is calculated – XCS [Wilson, 1995]. In the following 
sections, each of these LCS is described in more detail as they form the basis of the 
contributions to this volume. A brief overview of the rest of the volume then follows. 

2. Holland’s LCS 

Holland's Learning Classifier System receives a binary encoded input from its 
environment, placed on an internal working memory space - the blackboard-like 
message list (Figure 1). The system determines an appropriate response based on this 
input and performs the indicated action, usually altering the state of the environment. 
Desired behaviour is rewarded by providing a scalar reinforcement. Internally the 
system cycles through a sequence of performance, reinforcement and discovery on 
each discrete time-step.   

The rule-base consists of a population of N condition-action rules or "classifiers". 
The rule condition and action are strings of characters from the ternary alphabet 
{ 0,1,#} . The # acts as a wildcard allowing generalisation such that the rule condition 
1#1 matches both the input 111 and the input 101. The symbol also allows feature 
pass-through in the action such that, in responding to the input 101, the rule IF 1#1 
THEN 0#0 would produce the action 000. Both components are initialised randomly. 
Also associated with each classifier is a fitness scalar to indicate the "usefulness" of a 
rule in receiving external reward. This differs from Holland's original implementation 
[Holland & Reitman, 1978], where rule fitness was essentially based on the accuracy 
of its ability to predict external reward (after [Samuel, 1959]).  



On receipt of an input message, the rule-base is scanned and any rule whose 
condition matches the external message or any others on the message list, at each 
position becomes a member of the current "match set" [M]. A rule is selected from 
those rules comprising [M], through a bidding mechanism, to become the system's 
external action. The message list is cleared and the action string is posted to it ready 
for the next cycle. A number of other rules can then be selected through bidding to fill 
any remaining spaces on the internal message list. This selection is performed by a 
simple stochastic roulette wheel scheme. Rules' bids consist of two components, their 
fitness and their specificity, that is the proportion of non-# bits they contain. Further, a 
constant (here termed β) of "considerably" less than one is factored in, i.e., for a rule 
C in [M] at time t: 
 

Bid( C,t ) =  β . specificity(C) . fitness( C,t ) 
 
Reinforcement consists of redistributing bids made between subsequently chosen 
rules. The bid of each winner at each time-step is placed in a "bucket". A record is 
kept of the previous winners and they each receive an equal share of the contents of 
the current bucket; fitness is shared amongst activated rules. If a reward is received 
from the environment then this is paid to the winning rule which produced the last 
output. Holland draws an economic analogy for his "bucket-brigade" algorithm, 
suggesting each rule is much like the middleman in a commercial chain; fitness is 
seen as capital.  

The LCS employs a steady state GA operating over the whole rule-set at each 
instance. After some number of time-steps the GA uses roulette wheel selection to 
determine parent rules based on fitness. Offspring are produced via mutation and 
crossover in the usual way and replace existing rules, often chosen using roulette 
wheel selection based on the reciprocal of fitness. 
 

 
Fig. 1: Schematic of Holland’s Learning Classifier System. 
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It is important to note that the role of the GA in LCS is to create a cooperative set 

of rules which together solve the task. That is, unlike a traditional optimisation 
scenario, the search is not for a single fittest rule but a number of different types of 
rule which together give appropriate behaviour. The rule-base of an LCS has been 
described as an evolving ecology of rules - “each individual rule evolves in the 
context of the external environment and the other rules in the classifier system.”  
[Forrest & Miller, 1991].  

A number of other mechanisms were proposed by Holland but for the sake of 
clarity they are not described here (see [Holland et al., 1986] for an overview). 

Goldberg [1983] was the first to apply Holland’s LCS to a real-world problem – 
gas pipeline control. Here the system received hourly readings from various sensors 
around a network, such as flow rates and pressures, and was required to deduce 
whether a leak was occurring and to set appropriate control of the pipeline inflow. 
Using a relatively small rule-base of 60 rules and a message list of size 5, Goldberg 
was able to train the LCS to become an effective controller after around 1000 days of 
simulated use. Other early applications of Holland’s system include space vessel 
power management [Goodloe & Graves, 1988], sequence prediction [Riolo & 
Robertson, 1988], letter recognition [Frey & Slate, 1991] and modelling economic 
markets [Marimon et al., 1990]. The contribution to this volume by Tim Kovacs 
identifies many other applications of Holland’s system. 

3. Wilson’s ZCS 

As noted above, Wilson introduced the simple ZCS to increase understandability 
and performance. In particular, Wilson removed the message list and rule bidding 
(Figure 2). He introduced the use of action sets rather than individual rules, such that 
rules with the same action are treated together for both action selection and 
reinforcement. That is, once [M] has been formed a rule is picked as the output based 
purely on its fitness. All members of [M] that propose the same action as the selected 
rule then form an action set [A]. No wildcards are allowed in actions. An "implicit" 
bucket brigade [Goldberg, 1989] then redistributes payoff between subsequent action 
sets.  

A fixed fraction - equivalent to Holland's bid constant - of the fitness of each 
member of [A] at each time-step is placed in a bucket. A record is kept of the 
previous action set [A]-1 and if this is not empty then the members of this action set 
each receive an equal share of the contents of the current bucket, once this has been 
reduced by a pre-determined discount factor γ. If a reward is received from the 
environment then a fixed fraction of this value is distributed evenly amongst the 
members of [A] divided by their number. Finally, a tax is imposed on the members of 
[M] that do not belong to [A] on each time-step in order to encourage exploitation of 
the fitter classifiers. That is, all matching rules not in [A] have their fitnesses reduced 
by factor τ thereby reducing their chance of being selected on future cycles. Wilson 
notes that this is a change to Holland's formalism since specificity is not considered 
explicitly through bidding and the pay-back is discounted by 1-γ on each step (a 



mechanism used in temporal difference learning to encourage solution brevity [e.g., 
Sutton & Barto 1998]). The effective update of action sets is thus: 

 
fitness ( [A] )   <-   fitness ([A])  + β [ Reward + γ fitness( [A]+1 ) – fitness( [A] ) ] 

 
ZCS employs two discovery mechanisms, a steady state GA and a covering 

operator. On each time-step there is a probability p of GA invocation. When called, 
the GA uses roulette wheel selection to determine two parent rules based on fitness. 
Two offspring are produced via mutation and crossover (single point). The parents 
then donate half of their fitnesses to their offspring who replace existing members of 
the population. The deleted rules are chosen using roulette wheel selection based on 
the reciprocal of fitness. The cover heuristic is used to produce a new rule with an 
appropriate condition to the current state and a random action when a match-set 
appears to contain less than averagely good rules, or when no rules match an input. 

When ZCS was first presented, results from its use indicated it was capable of 
good, but not optimal, performance [Wilson, 1994][Cliff & Ross, 1995]. More 
recently, it has been shown that ZCS is capable of optimal performance, at least in a 
number of well-known test problems, but appears to be particularly sensitive to some 
of its parameters [Bull & Hurst, 2002]. Early applications of ZCS and its closely 
related forerunners BOOLE [Wilson, 1987] and NEWBOOLE [Bonelli et al., 1990] 
include medical data mining [Bonelli & Parodi, 1991] and modelling economic 
markets [e.g., Bull, 1999]. However, ZCS has been somewhat superseded by XCS. 
 

 

 
Fig. 2: Schematic of ZCS. 
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4. Wilson’s XCS 

The most significant difference between XCS (Figure 3) and most other classifier 
systems (e.g., ZCS) is that rule fitness for the GA is not based on payoff received (P) 
by rules but on the accuracy of predictions (p) in payoff. The intention is to form a 
complete and accurate mapping of the problem space (rather than simply focusing on 
the higher payoff niches in the environment) through efficient generalizations. In this 
way, XCS makes the connection between LCS and reinforcement learning clear and 
represents a way of using traditional reinforcement learning on complex problems 
where the number of possible state-action combinations is very large (other 
approaches have been suggested, such a neural networks – see [Sutton & Barto, 1998] 
for an overview). 

 
 

 
 

Fig. 3: Schematic of XCS. 
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each action in [M] according to a fitness-weighted average of the predictions of rules 
in each [A]. The system action is then selected either deterministically or randomly 
(usually 0.5 probability per trial). If [M] is empty covering is used. 

Fitness reinforcement in XCS consists of updating three parameters, ε, p and F for 
each appropriate rule; the fitness is updated according to the relative accuracy of the 
rule within the set in five steps: 
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i) Each rule’s error is updated: εj = εj + β( | P - pj | - εj)  
ii) Rule’s predictions are then updated: pj = pj + β(P-pj) 
iii) Each rule’s accuracy κj is determined: κ = α(ε0/ε)ν or κ=1 where ε < ε0

  
iv) A relative accuracy κj’  is determined for each rule by dividing its 

accuracy by the total of the accuracies in the set. 
v) The relative accuracy is then used to adjust the classifier’s fitness Fj using 

the moyenne adaptive modifee (MAM) procedure: If the fitness has been 
adjusted 1/β times, Fj = Fj + β(κj’  - Fj). Otherwise Fj is set to the average 
of the current and previous values of κj’ . 

  
The maximum P(ai) of the system’s prediction array is discounted by a factor γ and 

used to update rules from the previous time step. Thus XCS exploits a form of Q-
learning [Watkins, 1989] in its reinforcement procedure, whereas Holland’s system 
and ZCS both use a form of TD(0) (as noted in [Sutton & Barto, 1998]). 

The GA acts in action sets [A], i.e., niches. Two rules are selected based on fitness 
from within the chosen [A]. Rule replacement is global and based on the estimated 
size of each action set a rule participates in with the aim of balancing resources across 
niches. The GA is triggered within a given action set based on the average time since 
the members of the niche last participated in a GA. 

XCS is more complex than ZCS but results from its use in a number of areas have 
been impressive (e.g., see [Lanzi et al., 2000] for an overview). Indeed, the majority 
of contributions to this volume use XCS. For investigations of exactly how XCS 
works the reader is referred to [Butz et al., 2001]; a review of the known effects of its 
various mechanisms and current understanding of XCS is beyond the scope of this 
chapter. An algorithmic description of XCS can be found in [Butz & Wilson, 2001]. 
The first application of XCS to a real-world problem is described in the contribution 
to this volume led by Alwyn Barry. Others not included here include Ross et al. 
[2002] who have used it to solve constrained optimization problems and Danek and 
Smith [2002] who designed the layout of field programmable gate arrays. 

5. Applications of Learning Classifier  Systems: An Overview 

This book, in keeping with the areas emerging from the field as amenable to LCS 
application, is divided into three main sections: data mining, modelling and 
optimization, and control. Each contribution describes the task to be solved, the form 
of LCS used and its (relative) performance. 

 
5.1 Data M ining 

 
Barry et al. – Data Mining using Learning Classifier Systems. LCS, and XCS in 
particular, show great promise in the area of data mining not least because they 
produce easily readable solutions in the form of unordered conjunctive logic rule sets. 
The authors show just how well LCS can do on a number of datasets. 
 



Armano – NXCS Experts for Financial Time Series Forecasting. For some time now 
interest has been growing in the use of soft computing techniques to predict the stock 
exchange. This contribution presents results from using multiple XCS in conjunction 
with neural networks for predicting two financial markets.  
 
Dixon et al. – Encouraging Compact Rulesets from XCS for Enhanced Data Mining. 
The use of machine learning techniques to explain aspects of the vast amounts of data 
now being gathered is rapidly increasing. This contribution describes findings from 
attempts to produce the readable solutions in their most compact form without 
sacrificing performance. 
 

5.2 Modelling and Optimization 
 

Smith – The Fighter Aircraft LCS. The agent paradigm [e.g., Kozierok & Maes, 1993] 
has opened new ways of using computer simulations to examine complex real-world 
systems. Machine learning is increasingly being used within the agents of such 
systems [e.g., Weiss & Sen, 1996]. In this contribution the use of LCS in the 
simulated testing of concept fighter aircraft is described, with known and new 
maneuvers being seen to emerge.  
 
Hercog – Traffic Balance using Classifier Systems in an Agent-based Simulation.  
Here XCS is used within a multi-agent framework to model how best to re-arrange 
the capacity of different modes of transport typically found within a city. Further, the 
ability of the model to respond to changes to capacity is presented.  
 
Bagnall – A Multi-Agent Model of the UK Market in Electricity Generation. In a 
similar vein to the previous contribution, this work describes the use of a multi-agent 
model to gain insights into the roles of aspects of, and the underlying dynamics of, the 
UK electricity supply market. A hierarchical inductive structure is used within each 
agent that includes two LCS. 
 
Takadama – Exploring Organizational-Learning Orientated Classifier System in 
Real-World Problems. A novel form of LCS is described in this contribution which 
draws on ideas from management science to solve a scheduling task and another well-
known constrained optimization task. The system, termed OCS, shows good 
performance and robustness to its parameters. 
 

5.3 Control 
 

Carse et al. - Distributed Routing in Communication Networks using the Temporal 
Fuzzy Classifier System – a Study on Evolutionary Multi-Agent Control. Fuzzy logic 
has long been used within the LCS framework due to its rule-based structure [e.g., 
Valenzuela-Rendon, 1989]. This contribution describes the use of a fuzzy-based LCS 
to control the routing nodes of a packet-switch network where each node is controlled 
by a separate LCS. The fuzzy system is hybridized with a well-known heuristic to 
give improved performance. 
 



Browne – The Development of an Industrial Learning Classifier System for Data-
Mining in a Steel Hot Strip Mill. Many industrial control problems are very noisy and 
dynamic making the effective use of traditional control methods difficult. This 
contribution describes how an LCS can be used to control such plants and how the 
logic produced can enable the engineers to learn more about the system. 
 
Vargas et al. – Application of Learning Classifier Systems to the On-Line 
Reconfiguration of Electric Power Distribution Networks. Loss reduction in power 
distribution systems can be achieved by changing the status of distribution switches in 
order to uncover better paths of power flows. Larger gains can be achieved if on-line 
switching is allowed in order to consider varying location and time-dependent factors 
of distribution loads. This contribution explores the use of an LCS for the problem. 
 
Bull et al. – Towards Distributed Adaptive Control for Road Traffic Junction Signals 
using Learning Classifier Systems. The effective control of large, complex distributed 
systems has to some extent eluded conventional techniques. This contribution details 
experiments with LCS to control road traffic junctions and compares performance 
with currently used algorithms.  

6. Summary 

Twenty five years after Holland and Reitman presented the first implementation of a 
Learning Classifier System, the ability of LCS to solve complex real-world problems 
is becoming clear, primarily due to the innovations introduced by Wilson. This article 
has given a brief introduction to LCS and the currently used versions of Holland’s 
general formalism. The rest of the book brings together work by a number of 
individuals who have contributed to the understanding of how they can be used 
effectively. The final contribution by Tim Kovacs is a bibliography of such 
endeavours during the last twenty five years. Future work must apply LCS to a wide 
range of problems and identify characteristics which make the task suitable to 
solution with Learning Classifier Systems. Which form of LCS is most appropriate 
for which type of problem also needs to be established, along with continued 
refinement of the architectures and improved theoretical understanding. 
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