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Abstract 

In this review paper, it is intended to 
summarize and compare the methods of automatic 
detection of microcalcifications in digitized 
mammograms used in various stages of the Computer 
Aided Detection systems (CAD). In particular, the pre 
processing and enhancement, bilateral subtraction 
techniques, segmentation algorithms, feature extraction, 
selection and classification, classifiers, Receiver 
Operating Characteristic (ROC); Free-response 
Receiver Operating Characteristic (FROC) analysis and 
their performances are studied and compared. 
 
Keywords: Mammography, Microcalcification, Image 
Enhancement, Segmentation, Feature extraction. 
 
1. Introduction 

Breast cancer is one of the major causes for the 
increase in mortality among women, especially in 
developed and under developed countries. The World 
Health Organization’s International agency for Research 
on Cancer in Lyon, France, estimates that more than 
150 000 women worldwide die of breast cancer each 
year.  The breast cancer is one among the top three 
cancers in American women. In United States, the 
American Cancer Society estimates that, 215 990 new 
cases of breast carcinoma has been diagnosed, in 2004. 
It is the leading cause of death due to cancer in women 
under the age of 65 [121].  In India, breast cancer 
accounts for 23% of all the female cancers followed by 
cervical cancers (17.5%) in metropolitan cities such as 
Mumbai, Calcutta, and Bangalore. However, cervical 
cancer is still number one in rural India. Although the 
incidence is lower in India than in the developed 
countries, the burden of breast cancer in India is 
alarming. Organ chlorines are considered a possible 

cause for hormone-dependent cancers [119]. Detection 
of early and subtle signs of breast cancer requires high-
quality images and skilled mammographic 
interpretation. In order to detect early onset of cancers 
in breast screening, it is essential to have high-quality 
images. Radiologists reading mammograms should be 
trained in the recognition of the signs of early onset of, 
which may be subtle and may not show typical 
malignant features. Mammography screening programs 
have shown to be effective in decreasing breast cancer 
mortality through the detection and treatment of early 
onset of breast cancers.  

Emotional disturbances are known to occur in 
patient’s suffering from malignant diseases even after 
treatment. This is mainly because of a fear of death, 
which modifies Quality Of Life (QOL) [105]. Desai et 
al., [34] reported an immunohistochemical analysis of 
steroid receptor status in 798 cases of breast tumors 
encountered in Indian patients, suggests that breast 
cancer seen in the Indian population may be biologically 
different from that encountered in western practice. 
Most imaging studies and biopsies of the breast are 
conducted using mammography or ultrasound, in some 
cases, magnetic resonance (MR) imaging [66]. 
Although by now some progress has been achieved, 
there are still remaining challenges and directions for 
future research such as [20] developing better 
enhancement and segmentation algorithms.  
1.1 Commercial CAD System 

It is generally believed that CAD can provide a 
valuable second look and improve the accuracy of 
breast cancer detection at an earlier stage [121]. The 
typical CAD system consists of two freestanding units: 
a processing unit that digitizes and analyzes the film 
images, and a display unit consisting of a dedicated 
mammography viewer equipped with monitors that 
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display low spatial resolution digital images of the 
examination. The digital images are linked by a barcode 
to the panels where the films are mounted and are 
displayed by pressing a button on the auto-viewer 
control panel. Each digital image may contain zero to 
several marks indicating areas where the detection 
algorithm recognize a pattern that warrants evaluating 
by the radiologist. Two different types of marks 
typically used – asterisks [∗] indicating masses or 
architectural distortions or triangles [∆] indicating 
microcalcifications (these marks will be different for the 
various computer-aided detection system). 
 CAD has been used as a research tool since 
1999. Initial retrospective work performed by 
evaluating prior screening mammograms of patients 
whom had a cancer detected at a subsequent screening 
mammogram. These mammograms were digitized and 
analyzed with CAD. It is found that although the 
mammograms are double read, there was room for 
improvement in cancer detection by implementing 
CAD. 

A.Lauria et al., [74] described the CAD 
systems are: the Second Look (CADx Medical Systems, 
Canada) commercial system and the Computer Assisted 
Library in Mammography (CALMA) research CAD 
system. Two different CAD systems were considered: a 
commercial system and a research one. The former is 
the Second Look (CADx, Medical Systems) produced in 
Canada. It is a three-step system. First, it digitizes 
mammograms (at 45µm sampling aperture, 12 bit/pixel) 
and then a neural network analyses the image data to 
produce, as a last step, a printed output (the 
Mammography), where potential lesions are pointed out 
by markers. An oval mark indicates a massive lesion, 
while a rectangular mark points to a cluster of 
microcalcifications. The system indicates at most three 
markers for microcalcification cluster in each image. 
The time necessary to obtain four printed reports for 
each subject is about 6 min. It is not possible to modify, 
to visualize or to store the images obtained. The 
radiologist uses the printed images as an alternative 
support, while making the diagnosis uses the original 
mammograms.  

The latter CAD system used was CALMA. 
This research system has been developed as a part of the 
research project funded by Istituto Nazionale di Fisica 
Nucleare (INFN) and carried out in collaboration with 
several Italian universities and hospitals. The hardware 
consists of a personal computer and of a linear Charge 
Coupled Device (CCD) film scanner. The original 
software developed runs under the UNIX operating 
system. CALMA first digitizes the mammogram (85 
µm, 12 bit/pixel) and then saves the (10 Mbytes) 
corresponding file in a special format.  
 
 

1.2 Digital Equipment 
Antony Jalink et al., [4] presented a novel 

technique for large-field digital mammography. This 
instrument uses a mosaic of electronic digital imaging 
CCD arrays, novel area scanning, and a radiation 
exposure and scatter reducing mechanism. The imaging 
arrays are mounted on a carrier platform in a 
checkerboard pattern mosaic. To fill in the gaps 
between array active areas the platform is repositioned 
three times and four X-ray exposures are made. The 
multiple image areas are then recombined by a digital 
computer to produce a composite image of the entire 
region. To reduce X-ray scatter and exposure, a lead 
aperture plate is interposed between X-ray source and 
patient. The aperture plate has a mosaic of squares holes 
in alignment with the imaging array pattern and the 
plate is repositioned in synchronism with the carrier 
platform. They discussed proof-of-concept testing 
demonstrating technical feasibility of their approach. 
The instrument should be suitable for incorporation into 
standard mammography units. Unique features of the 
new techniques are: large field coverage (18 × 24 cm); 
high spatial resolution (14-17 lp/mm); scatter rejection; 
and excellent contrast characteristics and lesion 
delectability under clinical conditions. 

The CAD mammography systems for 
microcalcification detection have gone from crude tools 
in the research laboratory to commercial systems. 
Several commercial companies such as R2 Technology 
Inc., Hewlett Packard Co., Sterling Diagnostic Imaging, 
Siemens, GE, Med Detect/Lockheed Martin, were 
developing or designing mammography systems for 
clinical applications. R2 Technology Inc. has produced 
a system ImageCheckerJ for microcalcifications and 
mass detection. (www.r2tech.com)
2. Database (Image Acquisition) 

To access the real medical images for carrying 
out the tests is a very difficult due to privacy issues and 
heavy technical hurdles. X-ray film mammogram is 
converted into digital mammograms. Laser scanners are 
used to digitize conventional film mammograms by 
measuring the Optical Density (OD) of small windowed 
regions of film and converting them to pixels with a 
grey level intensity. The size of the window determined 
the spatial resolution of the digitized image. The 
resolution is typically expressed in units of microns per 
pixel, indicating the size of the square region of film 
that each pixel in the digitized image represents. Each 
pixel location on the file is illuminated with a beam of 
known intensity (photon flux density). The exact pixel 
value depends on the range of optical densities that the 
scanner is capable of measuring and the number of bits 
used to store the grey level of each pixel. The accuracy 
of computer detection schemes on digital mammograms 
will depend partially on the spatial resolution and range 
of grey levels at which the images are digitized. For 
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example, clinically important microcalcifications can be 
as small as 0.1mm (100 microns) or smaller. In order for 
calcifications this small to appear in a digitized image, a 
resolution would be needed for these small 
calcifications to occupy more than a single pixel in the 
image. This in turn would make them easier to detect 
and easier to distinguish from noise. 
2.1 MIAS 

The Mammography Image Analysis Society 
(MIAS), which is an organization of UK research 
groups interested in the understanding of mammograms, 
has produced a digital mammography database 
(ftp://peipa.essex.ac.uk). The data used in these 
experiments was taken from the MIAS. The X-ray films 
in the database have been carefully selected from the 
United Kingdom National Breast Screening Programme 
and digitized with a Joyce-Lobel scanning 
microdensitometer to a resolution of 50 µm × 50 µm, 8 
bits represent each pixel. The database contains left and 
right breast images for 161 patients, is used. Its quantity 
consists of 322 images, which belong to three types 
such as Normal, benign and malignant. There are 208 
normal, 63 benign and 51 malignant (abnormal) images.  
3. Bilateral Subtraction 

The mammogram images may be time 
sequences of the same breast from two different 
screening examinations, or they may be bilateral images 
of the left and right breasts obtained during the same 
examination. Advances in the area of computerized 
image analysis applied to mammography may have very 
important practical applications in automatically 
detecting asymmetries (masses, architectural distortions, 
etc.) between the two breasts. This section discusses 
various techniques for extracting suspicious regions 
from background tissue. 
3.1 Border Detection and Nipple Identification 

Mendez et al., [87] developed a fully automatic 
technique to detect the breast border and the nipple, this 
being a prerequisite for further image analysis. To 
detect the breast border, an algorithm that computes the 
gradient of gray levels was applied. First, a smoothed 
version of the entire mammogram was computed. This 
low-frequency image was generated by replacement of 
the pixel value with a mean pixel value computed over a 
square area of 11 x 11 pixels centered at the pixel 
location. In a profile of a line across the mammogram is 
plotted, without any transformation, the result is an 
irregular line, where several local maxima appear. The 
result of using a smoothed version of the original image 
produces a plot with regular shape. The presence of the 
local maxima disappears. Next, five points, (x1,y1), 
(x2,y2), (x3,y3), (x4,y4), (x5,y5), were automatically 
selected as reference points to divide the breast into 
three regions (I, II and III). Finally, a tracking algorithm 
was applied to the mammogram to detect the border. A 
point (x,y) would belong to the border if the gray level 

value (f(xi,yi)) of the nine previous pixels verifies the 
condition: 

f(x1,y1) < f(x2,y2) < . . . < (x7,y7)≤ f(x8,y8) ≤(x9,y9) ≤(x,y) 
This is called the tracking algorithm. There is a 
relationship between the regions and the tracking 
process: in region I the algorithm searches the breast 
border from left to right; in region II the algorithm 
searches the border from top to bottom; and finally in III 
the algorithm searches the border from right to left. 

To detect the nipple, three algorithms were 
compared (maximum height of the breast border, 
maximum gradient, and maximum second derivative of 
the gray levels across the median-top section of the 
breast). This will be useful in the development of CAD 
schemes in digital mammography to automatically 
distinguish between normal and abnormal cases, and in 
turn, aid the radiologist in the mammographic 
screening. 
3.2. Active Contours (Snake algorithm) 

Michael Wirth [91] has explored the 
application of active contours to the problem of 
extracting the breast region in mammograms. Method 
for mammogram segmentation: (i) the breast-air 
interface itself is a very low gradient and may be 
obscured by noise; (ii) the uncompressed fat near the 
breast-air interface is a gradient, growing as the fat 
nears the center of the breast. The method will have to 
include some sort of noise removal to allow the snake to 
distinguish between the breast contour and the noise in 
the mammogram. Snakes are designed to fill in gaps 
which occur in contours, so are well suited to dealing 
with contour detail which is lost during the process of 
noise removal. From observation (ii), two points can be 
inferred. First, right-to-left edge detection will pick up 
the gradient of the breast as an edge when the breast is 
approaching from the left. In contrast, left-to-right edge 
detection will not pick up the breast contour but will 
pick up noise and other artifacts. Secondly, a dual 
threshold would produce a difference in terms of the 
breast area detected. By taking this difference, one 
should be able to obtain an approximate location of the 
breast contour.  

Ruey-Feng Chang et al., [113] developed a 
method to use the three-dimensional (3-D) snake 
technique to obtain the tumor contour for the pre- and 
the post-operative malignant breast excision by the 
vacuum assisted biopsy instrument Mammotome. This 
technique of assessing the margin of two can help the 
physician to evaluate the effect of the surgery. By using 
the isotropic diffusion filter, the noise and speckles can 
be reduced. Then the stick detection is adopted for 
enhancing the edge. Finally, the gradient vector flow 
(GVF) snake is used to obtain the tumor contour. These 
techniques are extended to the 3-D techniques to 
increase the accuracy and robust of segmentation 
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results. This study can help physicians to improve the 
minimal invasive operation for a breast tumor.  

 

Figure 3.1 an example of breast region segmentation performed on an 
MIAS mammogram: (a) Original Mammogram; (b) Enhanced Image; 

(c) Extracted Breast Region; (d) Contour overlain on a LOG-
attenuated version of (a). 

3.3. Extraction of Suspicious Region using Spatial 
Filtering Technique 

An input mammogram is processed with two 
spatial filters to obtain a signal-enhanced image and a 
signal-suppressed image. By subtracting the suppressed 
image from the enhanced image, a difference-image is 
obtained. As the structure of normal breast tissue is the 
same in the enhanced and suppressed images, this 
component will be reduced in the difference-image. The 
enhancement filter is a spatial filter that has been 
developed to approximately match the size and contrast 
variations of typical microcalcifications. However, for 
two reasons the filter is not a conventional matched 
filter: First, the frequency content of the normal 
background tissue (high frequency noise) was not taken 
into account in the design process. Second, due to the 
varying size and shape of microcalcifications, a 
simplified model, i.e. a square filter kernel was used. 
Based on an analysis of the two-dimensional profiles of 
some typical microcalcifications, the contrast variation 
of microcalcifications was approximated with different 
weighting factors for the filter. The enhancement filter 
provides an output measure of the correlation between 
the filter response function and the spatial variation of 
the image. Consequently, at the locations of 
microcalcifications, the peak values of pixels in the 
filtered image are increased relative to the pixel values 
of normal (background) tissue (Gulsrud, 2000). 
3.4. Directional Filtering with Gabor Wavelets 

Ferrari et al., [42] developed a procedure for 
the analysis of left–right (bilateral) asymmetry in 
mammograms. The procedure is based upon the 
detection of linear directional components by using a 

multiresolution representation based upon Gabor 
wavelets. A particular wavelet scheme with two-
dimensional Gabor filters as elementary functions with 
varying tuning frequency and orientation, specifically 
designed in order to reduce the redundancy in the 
wavelet-based representation, is applied to the given 
image. A 2-D Gabor function is a Gaussian modulated 
by a complex sinusoid. It can be specified by the 
frequency of the sinusoid and the standard deviations 
and of the Gaussian envelope as 

ψ(x,y)  =  ( 1 / ( 2π σu σv ) ) exp {- ½ [(x2/σu
2) 

+ (y2/σv
2)] + 2πjWx}      …….(1) 

By means of “Gabor wavelet representation”, a 
bank of Gabor filters normalized to have dc responses 
equal to zero and designed in order to have low 
redundancy in the representation. The Gabor wavelets 
are obtained by dilation and rotation of ψ(x,y) as in (1) 
by using the generating function 
ψm,n (x,y) = a-m  ψ(x’,y’), a  > 1,  m, n = integers 
x’ = a-m [ (x-x0) cos θ + (y-y0) sin θ ]; 
y’ = a-m [ -(x-x0) sin θ + (y-y0) cos θ ]  …..(2) 
where, (x0, y0) center of the filter in the spatial domain;θ 
= nπ / K;K  total number of orientations desired; m and 
n scale and orientation, respectively. The scale a-m factor 
in (2) is meant to ensure that the energy is independent 
of m. Equation (1) can be written in the frequency 
domain as 
     ψ(u,v)  =  ( 1  /  ( 2π σu σv)) exp 

                   {- ½ [((u-W) 2 / σu
2) + (v2 / σv

2)]}   ...(3) 
where, σu = 1 / {2πσx} and σv= 1 / {2πσy}. The design 
strategy used is to project the filters to ensure that the 
half-peak magnitude supports of the filter responses in 
the frequency spectrum touch one another. By doing 
this, it can ensured that the filters will capture the 
maximum information with minimum redundancy. 

The filter responses for different scales and 
orientation are analyzed by using the Karhunen–Loeve 
(KL) transform and Otsu’s method of thresholding. The 
KL transform is applied to select the principal 
components of the filter responses, preserving only the 
most relevant directional elements appearing at all 
scales. The selected principal components, thresholded 
by using Otsu’s method, are used to obtain the 
magnitude and phase of the directional components of 
the image. Rose diagrams computed from the phase 
images and statistical measures computed thereof are 
used for quantitative and qualitative analysis of the 
oriented patterns. 



Table 1. Overview of Bilateral Subtraction

4. Enhancement  
The enhancement aspects are surveyed and 

analyzed in this section. 
4.1. Preprocessing  

Mudigonda et al. [94] described a method for 
the detection of masses in mammographic images that 
employs recursive Gaussian low pass filtering and sub 
sampling operations in a multiresolution-based 
pyramidal architecture as preprocessing steps to achieve 
the required level of smoothing of the image. The image 
is smoothed with a separable Gaussian kernel of width 
15 pixels (1 pixel 200 m) and reduced to a maximum of 
64 gray levels. A method is used to generate Gaussian 
kernels. Here, the width specified for a Gaussian kernel 
refers to the total width of its support and not the width 
at its half-maximum height. A map of iso-intensity 
contours is generated by thresholding the image using a 
threshold close to zero. From the map of iso-intensity 
contours, a set of closed contours is identified by 
employing chain code principles.  

The next step in the algorithm is to threshold 
the image at varying levels of intensity to generate a 
map of iso-intensity contours. The purpose is to extract 
concentric groups of closed contours to represent the 
isolated regions in the image. The low-resolution image 
is initially reduced to 64 gray levels in intensity and 
thresholded at 30 different levels starting from the 
maximum intensity level 64, with a step-size decrement 
of 0.01. The above parameters are chosen based on the 
observation of histograms of several low-resolution 
images. The histogram of the low-resolution image 
obtained by way of preprocessing the image, the 
intensity level at which the masses and other dense 
tissues appear to merge with the surrounding breast 
parenchyma is observed to be the minimum threshold 
level of 44. 

 

4.2 Conventional Enhancement Techniques 
A complete survey on conventional 

enhancement technique is highlighted below. 
4.2.1. Contrast Stretching  
  The simplest method of increasing the contrast 
in a mammogram is to adjust the mammogram 
histogram so that there is a greater separation between 
foreground and background gray-level distributions. 
Denoting the input image gray level by x, and the output 
grayscale values by y, the rescaling transformation is y 
= f(x), where the f(.) can be any designing function. The 
following function shows a typical contrast stretching 
transformation of the gray-level distribution in the 
mammogram 

αx,     0 ≤ x < a 
y =         β (x-a)  a ≤ x < b  (1) 

γ(x-b) b ≤ x < L 
where, the slope α, β and γ are chosen greater than unity 
in the region of stretch, the parameters a and b can be 
obtained by examining the histogram of the original 
mammogram, and L is the maximum gray level of the 
original mammogram. 
4.2.2. Histogram Equalization 

Histogram modeling techniques modify an 
image so that its histogram has a desired shape. This is 
useful in stretching the low contrast levels of 
mammograms with narrow histograms. A typical 
technique in histogram modeling is histogram 
equalization. Let us consider the mammogram 
histogram as a probability distribution. Based on the 
information theory, the uniform distribution achieves 
the maximum entropy, which contains the most 
information. Therefore, redistribute the gray levels to 
obtain a histogram as uniform as possible, the 
mammogram information should be maximized. 

 



4.2.3. Gradient Operators 
Convolution masking is commonly used for 

mammography enhancement. The unsharp masking [16] 
and Sobel gradient operators are two examples. Dhawan 
et al. [35] used an optimal adaptive enhancement 
method to reduce the influence. One of the requirements 
of the contrast enhancement function is to provide 40°–
50° slopes in the low input range (0–0.1) to reduce noise 
enhancement. The processed image is sharper because 
low-frequency information in the mammogram is 
reduced in intensity while high frequency details are 
amplified. 
4.2.4. Fixed-Neighborhood Statistical Enhancement  

The enhancement techniques stated above are 
global-based approaches. For some mammograms that 
contain inhomogeneous background, local-based 
enhancement techniques can have better performance. 
Local enhancement techniques use statistical properties 
in the neighborhood of a pixel to estimate the 
background, suppress it, and increase local contrast.  
4.2.5. Adaptive Neighborhood Technique  

The above techniques can all be classified as 
either fixed-neighborhood or global techniques. They 
may adapt to local features within a neighborhood, but 
do not adept the size of the neighborhood to local 
properties. Many medical images, including 
mammograms, possess clinically defined image features 
within a region of interest. These features can be vary 
widely in size and shape, and often cannot be enhanced 
by fixed-neighborhood or global techniques. Thus, there 
is a need for adaptive-neighborhood techniques, which 
adaptively change the size of regions in a given image 
and enhance the regions with respect to their local 
background. Region-based method can enhance detail 
that is more anatomical without significantly 
introducing artifacts, and has demonstrated that it can 
identify calcifications more effectively in the image of 
dense breasts where the contrast between calcifications 
and breast tissue is quite low [92]. 
4.2.6. Enhancement by Background Removal 

To enhance the visibility and delectability of 
microcalcifications, background removal is considered a 
necessary procedure. Background removal is a direct 
method of reducing the slowly varying portions of an 
image, which in turn allows increased gray-level 
variation in image details. It is usually performed by 
subtracting a low pass filtered version of the image from 
itself. Morphological processing and partial wavelet 
reconstruction are two methods of estimating the image 
background that have been used successfully for this 
purpose.  

Mammograms are reconstructed from wavelet 
coefficients modified at one or more levels by local and 
global nonlinear operators [73]. An adaptive 
mammographic enhancement using first derivative and 
local statistics was studied [68]. A pattern-dependent 

enhancement algorithm based on the fractal-modeling 
scheme was studied [51,80]. Comparing with 
microcalcifications, the breast background tissues have 
high local self-similarity, which is the basic property of 
fractal objects. 
4.3. Non-Linear Filter 

Lai et al. [117] presents a method uses 
modified median filtering to enhance mammogram 
images. a modification of median filtering, with respect 
to their performance in enhancing mammogram images. 
Edge-preserving smoothing tries to search for a 
homogeneous neighborhood in different directions of a 
given pixel and averages in this neighborhood only. 
Half-neighborhood method operates as un-weighted 
averaging at pixels in the interior of a region. In the k-
nearest neighbor method, is based on the idea that pixels 
in the same region should have similar gray values.  
Directional smoothing is similar to the half-
neighborhood method in that for pixels in the interior of 
a region, averaging is done using all neighborhood 
pixels. One disadvantage of this method is the high 
computational cost. A coarse-fine template matching 
method was implemented, and the results show that the 
computational cost of the method can be reduced by 
such an approach. 

Qian et al. [136] designed a new class of 
nonlinear filters with characteristics for noise 
suppression and detail preservation is for processing 
digital mammographic images. First, the noise-
suppressing properties of the tree-structured filter were 
compared to single filters, namely the median and the 
central weighted median with conventional square and 
variable shape adaptive windows; simulated images 
were used for this purpose. Second, the edge detection 
properties of the tree-structured filter cascaded with the 
dispersion edge detector were compared to the 
performance of the dispersion edge detector alone, the 
Sobel operator, and the single median filter cascaded 
with the dispersion edge detector.  

A property of the weighted median filter is 
that, as more emphasis is placed on the central weights, 
its ability to suppress noise decreases and its ability to 
preserve image detail increases. The weighted median 
filter with only a single central weight is called Central 
Weighted Median Filter (CWMF). The output Y(i,j) of a 
CWMF with an odd size window is given by: 

Y (i,j) =median {X(i-s,j-t), 2K copies of X(i,j), (s,t)∈W } 
In the case of a single filter, the orientation of these 
windows can be adaptively changed pixel by pixel 
according to the different curve features in an image 
leading to an operator and image independent process. 
In a Tree-Structured Filter (TSF) with N stages, the first 
stage of the filter consists of a number of CWMFs equal 
to the number of n of different shape windows; the 
original unfiltered signal X(i,j) was uses as a single 
input to each sub filter. The second stage of the filter 



consists of fewer CWMFs; their number m depends on 
the particular architecture. Their inputs are 
combinations of an even number of CWMF outputs 
from the first stage and the original signal X(i,j). 
Several intermediate stages can be added by repeating 
the above procedure and decreasing the number of 
CWMFs every time.  
4.4. Adaptive Enhancement 

Kim et al. [68] described an adaptive image 
enhancement method for mammographic images, which 
is based on the first derivative and the local statistics. 
The adaptive enhancement method consists of three 
processing steps. (a) Remove the film artifacts that may 
be misread as microcalcifications. (b) Compute the 
gradient images by using the first derivative operators. 
(c) Enhance the important features of the 
mammographic image by adding the adaptively 
weighted gradient images. Local statistics of the image 
are utilized for adaptive realization of the enhancement, 
so that image details can be enhanced and image noises 
can be suppressed. 
4.5. Iris Filter  

Kobatake et al. [48] adopted the iris filter to 
detect tumor candidates. This iris filter can enhance 
rounded convex regions such as tumors. It is so 
sensitive to tumors that the majorities of them give 
outputs larger than or equal to the seventh largest output 
in each mammogram. By this filtering, any tumor is 
expected and enhanced even if its contrast to its 
background is very weak. 
 This filter uses the orientation map of gradient 
vectors, which is similar to the method presented in 
[48]. However, definition and function of the iris filter 
are quite different. The idea of the iris filter is explained 
in a two-dimensional (2-D) continuous space. It is not 
applied to the image itself, but rather to its gradient 
vector field. The gradient vector at (x,y) is denoted by 
g(x,y). It is obtained using the generation of gradients in 
two orthogonal directions. A Prewitt-type 3 × 3 operator 
is used for real digital mammograms. The region of 
support of the iris filter RP is defined around the pixel P 
of interest. This is a combination of N half lines with a 
length Rmax radiating from P. Qi is an arbitrary pixel on 
the half line Li. we define the convergence index of the 
gradient vector g at Qi toward P as follows:  

f (Qi) = cos θ if |g| ≠ 0; f (Qi) = 0 if |g| = 0 
where θ is the orientation of the gradient vector g at Qi 
with respect to the ith half line. The convergence degree 
of gradient vectors on the line PQi, Ci, can be defined as 
the average of convergence indexes over the length PQi 
as follows  

Ci =  (∫
Qi

 P
 f(Q) dQ ) /  (inverse of (PQi)) 

The maximum convergence degree on the ith half line is 
Cio  = max Ci; Qi ∈ [P, Ri], where Ri is the most distant 
pixel from on the ith half line. The output of the iris 

filter at the pixel of interest (x,y) is defined as average 
Cio

C(x,y) = 1/N ΣN-1
  Cio. 

           i=0  

The output value of the iris filter C(x,y) falls between -1 
and 1. The point Qi that maximizes the convergence 
degree is Qio in the following. Its location depends on 
the distribution pattern of gradient vectors. Therefore, 
the size and shape of the substantial region of support of 
the iris filter changes for each location of P. Qio can be 
considered a sample point of the boundary of the 
optimal 2-D region of support of the iris filter. The 
theoretical analysis of the iris filter shows that, if the 
gradient vector field is uniform, the iris filter shows a 
zero output. 
4.6. Normalization of Local Contrast 

The brightest pixels in a mammogram will 
often have a positive mean local value, because 
statistically these pixels have a high probability of being 
surrounded by darker pixels. This is especially true for 
pixels at small local peaks of the intensity distribution. 
In lower bins, the opposite effect occurs.  

Veldkamp and Karssemeijer [133] presented an 
accurate adaptive approach for noise equalization. Here, 
the adaptive approach is optimized by investigating a 
number of alternative approaches to estimate the image 
noise. The estimation of high-frequency noise as a 
function of the grayscale is improved by a new 
technique for dividing the grayscale in sample intervals 
and by using a model for additive high-frequency noise. 
The adaptive noise equalization gives substantially 
better detection results than does fixed noise 
equalization. It is shown that relatively small 
adjustments in the algorithm have strong influence on 
the detection performance. Noise as a function of the 
gray level can then be obtained, and from this 
information, local contrast features are normalized. 
4.7. Noise Equalization 

McLoughlin et al. [72] extended a well-
established film-screen noise equalization scheme for 
application to Full-Field Digital Mammogram (FFDM) 
images. A noise model is determined based on the 
assumption that quantum noise is dominant in direct 
digital X-ray imaging. Estimation of the noise as a 
function of the gray level is improved by calculating the 
noise statistics using a truncated distribution method. 
This square root model based approach, which FFDM 
allows, leads to a robust estimation of the high 
frequency image noise. 

The use of a theoretical model for the 
dependency of noise variance on intensity in FFDM 
allows a straightforward and accurate approach to noise 
equalization. A consequence of excluding pixels near 
the breast edge from the noise estimation is that the 
maximum mean squared error found for the FFDM 



images was slightly smaller than that found for the 
phantom images. The exclusions meant that the range of 
exposures for the FFDM images was less than for the 
phantom images; therefore, the range of exposures over 
which the error in the noise model fit was estimated was 
also less, making it easier to achieve a good fit. 
4.8. Fractal Modeling 

A fractal model has been used to describe the 
mammographic image, thus, allowing the use of a 
matched filtering stage to enhance microcalcifications 
against the background [8]. A region-growing 
algorithm, coupled with a neural classifier, detects 
existing lesions. Subsequently, a second fractal model is 
used to analyze their spatial arrangement so that the 
presence of microcalcification clusters can be detected 
and classified. In this model, the use of a FBM has 
permitted us to implement as optimized enhancement 
filter. Such a filter, along with ANN-based classifiers, 
exhibits good sensitivity and reasonable accuracy in 
detecting single microcalcifications, following a proper 
segmentation procedure. Microcalcification clustering 
has been modeled as fractal dust. In this way, it is able 
to extract effective descriptors of the spatial 
arrangements of microcalcifications. Fogel et al. [29] 
presented a linear discriminant models and artificial 
neural networks are trained to detect breast cancer in 
suspicious masses using radiographic features and 
patient age. The effectiveness of the classification 
procedures can be assessed using Receiver Operating 
Characteristic (ROC) analysis, where the probability of 
detecting a malignancy is traded off as a function of the 
likelihood of a false positive. 

Li et al. [51] described a pattern-dependent 
enhancement algorithm based on fractal image 
modeling to analyze and model breast background 
structures. The general mammographic parenchymal 
and ductal patterns can be well modeled by a set of 
parameters of affine transformations. Therefore, 
microcalcifications can be enhanced by taking the 

difference between the original image and the modeled 
image. Reported results indicated that fractal models 
provide an adequate framework for medical image 
processing; consequently, high correct classification 
rates are achieved. A fractal modeling approach was 
used to analyze and model breast tissue background. 
Then, microcalcifications can be enhanced by 
employing the difference between the original image 
and the modeled image.  

Microcalcifications can be enhanced by using 
the fractal modeling approach. Let f(k,l) be the original 
image, and g(k,l) be the modeled image after iterations. 
First, take the difference operation between f(k,l) and 
g(k,l) f1(k,l) = f(k,l) - g(k,l), (k,l) ∈ N1 × N2 where f1(k,l) 
is the residue image. It is appropriate to ignore the 
negative value of the difference image f1(k,l). Because 
negative part of f1(k,l) does not contain any information 
about spots (including microcalcifications) brighter than 
the background, so, assume f2(k,l) = max (0, f1(k,l)),(k,l) 
∈ N1 × N2  where f2(k,l) is the enhanced image from 
which background structures are removed. Image f2(k,l) 
contains useful signals and noises. Below a certain 
threshold T, any signal is considered unreliable. The 
threshold T is estimated from the image itself as α times 
the global standard deviation of the noise in an image 
f2(k,l). Thus, the value of α is the same for all images, 
but T depends on each individual image. T can be 
determined by a two-step estimation process.  

First, the standard deviation of the whole 
image f2(k,l) is taken, and the initial threshold is chosen 
to be about 2.5 times this global standard deviation. 
Second, only those pixels in which the gray values are 
below the initial threshold are used to recalculate the 
standard deviation of the noise. This is a simplified 
version of a robust estimation of the standard deviation 
of noise. The final threshold T is determined by 
adjusting the value of so that no subtle cases are missed 
using human 

judgment. It is found empirically that α = 3 is a suitable 
choice. The final enhanced image f3(k,l) is 
f3(k,l) = f2(k,l), if f2(k,l) ≥ T;  0, if f2(k,l) < T 

 It is showed that in terms of contrast, CII, 
PSNR, and ASNR, the fractal approach was the best, 
compared to the other methods. The noise level in the 
fractal approach was also lower than the other two 
methods. 
4.9. Adaptive Density-weighted Contrast 
Enhancement 

Petrick et al. [97] presented a approach for 
segmentation of suspicious mass regions in digitized 
mammograms using a new adaptive Density-Weighted 
Contrast Enhancement (DWCE) filter in conjunction 
with Laplacian-Gaussian (LG) edge detection. The 
DWCE enhances structures within the digitized 
mammogram so that a simple edge detection algorithm 

can be used to define the boundaries of the objects. 
Once the object boundaries are known, morphological 
features are extracted and used by a classification 
algorithm to differentiate regions within the image.  
4.10. Modal-Based Image Enhancement 

Highnam et al. [49] presented a way of 
estimating the scatter component of the signal at any 
pixel within a mammographic image, and use this 
estimate for model-based image enhancement. The first 
step is to divide breast tissue into “interesting” 
(fibrous/glandular/cancerous) tissue and fat. The scatter 
model is then based on the idea that the amount of 
scattered radiation reaching a point is related to the 
energy imparted to the surrounding neighborhood. This 
complex relationship is approximated using published 
empirical data and it varies with the size of the breast 
being imaged. The approximation takes the form of a 



weighting mask which is convolved with the total signal 
(primary and scatter) to give a value which is input to a 
“scatter function”, approximated using three reference 
cases, and which returns a scatter estimate. Given a 
scatter estimate, the more important primary component 
can be calculated and used to create an image 
recognizable by a radiologist. 
5. Segmentation 

There are two different goals for the 
segmentation of microcalcifications [76]. One is to 
obtain the locations of suspicious areas to assist 
radiologists for diagnose. The other is to classify the 
abnormalities of the breast into benign or malignant. 
Local thresholding is used by setting threshold values 
for sub-images. It requires selection of a window size 
and threshold parameters. Wu et al. [140] presented that 
the threshold for a pixel is set as the mean value plus the 
Root Mean Square (RMS) noise value multiplied by a 
selected coefficient in a selected square region around 
the thresholded pixel [30,32]. Kallergi et al. [61] 
compared local thresholding and region growing 

methods. It showed that the local thresholding method 
has greater stability, but is more dependent on 
parameter selection. Woods et al. [139] used local 
thresholding by subtracting the average intensity of a 
15×15 window from the processed pixel. Then, region 
growing is performed  
to group pixels into objects. Comparing with the multi-
tolerance region growing algorithm [116, 69] and the 
active contour model, it showed that the speed of the 
algorithm is more than an order of magnitude faster than 
the other two.  

Edge detection is a traditional method for 
segmentation. Many operators, Roberts gradient, Sobel 
gradient, Prewitt gradient and Laplacian operator, were 
published in the literature. Some mathematical 
morphological operations such as erosion, top-hat 
transformation and complicated morphological filters 
and multi-structure elements can also be used 
[56,57,93,100,150]. It is good in dealing with 
geometrically analytic aspects of image analysis 
problems. Stochastic approaches have also been used to 

Table 2. An overview of Enhancement Techniques 



segment calcifications [62-65,133]. Stochastic and 
Bayesian methods have provided a general framework 
to model images and to express prior knowledge. 
Markov Random Field (MRF) model was used to deal 
with the spatial relations between the labels obtained in 
an iterative segmentation process [62-65]. The process-
assigning pixel labels iteratively [25,98]. 

 Fuzzy approaches: Apply fuzzy operators, 
property and inference rules to handle the uncertainty 
inherent in the image [10,21,22,103,104]. Region-based 
approach: Group pixel into homogeneous regions 
[116,135]. The fractal model: Image context can be 
modeled by fractal objects, which are attractors of sets 
of 2-D affine transformations [51,80]. Multiscale 
analysis: Design wavelet-based filters to transform the 
image from spatial domain to spatial frequency domain, 
and to perform further processing [143,144,121-
126,136,96,22,38]. Statistical method: Using global or 
local statistics such as histogram, mean, standard 
deviation, etc [40,23].  
5.1. Segmentation and Thresholding 

Dengler et al. [57] presented systematic 
method for the detection and segmentation of 
microcalcifications in mammograms. This approach 
uses a two-stage algorithm for spot detection and shape 
extraction. The first stage applies a weighted difference 
of Gaussian filter for the noise-invariant and size 
specific detection of spots. A morphological filter 
reproduces the shape of the spots.  In the detection 
process, the weighted difference of Gaussian makes use 
of the knowledge of the approximate size of the spots. It 
also requires an idea of the inter-spot distance. The 
precise knowledge of both sizes is not crucial, however. 
The basic idea is that the grey-value average within a 
spot. A simple way to measure the difference of these 
averages is a difference of Gaussian operation with a 
positive kernel of width σ + reflecting the expected spot 
size, and a negative kernel of width σ- reflecting the 
expected distance to neighboring spots. 
 Morphological filtering: The theory of 
mathematical morphology is powerful to analyze and 
describe geometrical relations. Essentially, it is a 
formalization of intuitive concepts such as size or shape. 
The two basic morphological operations are erosion and 
dilation, which are consistently defined for binary and 
gray value images. Let B(x,y) be an image with 1 ≤ x ≤ 
n1 and 1 ≤ y ≤ n2 and M a structuring element 
representing a set of translations. As a structuring 
element, a disk with a diameter of 13 pixels was chosen. 
This is considered the maximal size of interest. In order 
to recover the positive peaks, the residual R of the 
opening is used: R = B – (M OPENING B) 
Here again the spots can be clearly seen, but obviously 
part of the noise remains. Therefore, a small threshold 

has introduced in order to get rid of the noise. In order 
to reconstruct the shape of the spots optimally, both 
morphological and modified Difference of Gaussian 
(DOG) operator methods are combined. To control the 
image from growing beyond the original size, a 
morphological conditional thickening is applied. The 
results of both filters are combined with a conditional 
thickening operation. The topology and the number of 
the spots are determined with the first filter, and the 
shape by means of the second. 
Kilday et al. [60] presented the classification of three 
common breast lesions, fibro adenomas, cysts, and 
cancers, was achieved using computerized image 
analysis of tumor shape in conjunction with patient age. 
The apparent method using all the features had the 
highest classification rate. The leaving-one-out test 
method using all the features resulted in a higher error 
rate that the two runs that used only a subset of the 
shape features. The increase in error rate using the 
leaving-one-out method is due to variability introduced 
into the classifier design in conjunction with the small 
number of samples.  
5.2. Markov Random Field (MRF) 

Li et al. [79] developed a technique for the 
detection of tumors in digital mammography. Detection 
is performed in two steps: segmentation and 
classification. The first step is choosing a prior 
interaction model, which was then tailor-fitted by a 
statistical method to the application of digital 
mammography. Initial segmentation scheme based on 
the knowledge, that suspicious areas are greatly brighter 
than their surrounding tissues. The first step is to 
separate the breast area from the background by simple 
thresholding. The threshold for this separation is 
selected from the peak of the average contrast 
histogram. In multi resolution segmentation, pixel 
classification is performed by progressively segmenting 
an image from coarse (low) to fine (high) spatial 
resolution. The segmentation is improved and small 
windows give more reliable and accurate estimates. 

In classification of extracted regions, the 
selected features should have the characteristics like, 
discrimination, reliability, independence and small 
number. Moreover, the fuzzy binary decision tree 
procedure contains three steps: 1) splitting nodes, 2) 
determining terminal nodes, and 3) assigning a class to 
the terminal nodes. In this method, the training data set 
is split into two independent sets. A large tree is grown 
based on the first training set by splitting until all 
terminal nodes have pure class membership. Then a 
pruned sub tree is selected by minimizing the second 
training
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set estimate of the misclassification rate over all the 
pruned sub trees. The procedure is then iterated, 
successively interchanging the roles of the first and 
second training sets. 
5.3. Deformable Models 

Valverde et al. [44] presented an algorithm for 
the segmentation of vessels in mammograms, which is 
very useful for the elimination of vascular false 
positives during detection of microcalcification in 
mammograms. The main problem is the high level of 
noise presence in mammograms. Two approaches 
(stages) have been used to deal with this problem. First, 
a theoretical analysis of edge detection is carried out in 
order to select the optimum edge detector and threshold 
value. This is applied to the whole image to improve the 
Signal to Noise (S/N) ratio thus avoiding significant 
signal loss. Second, a local approach, where local noise 
- represented as particle noise, remaining in the image 
from the global noise reduction - is removed by a 

segmentation process based on a snake with a new noise 
energy term, which extracts the vessel contour. 
6. Microcalcification Detection 

In this section, a few most important and 
efficient techniques for microcalcification detection are 
studied and compared. 
6.1. Wavelet 

Bruce et al. [81] applied the discrete wavelet 
transform mod-max method, to the problem of 
mammographic mass classification. This method was 
used to extract multiresolution features that quantify the 
mass shapes. Three new features were developed: 
variation ratio mean, variation ratio standard deviation, 
and the Lipschitz sum. These features were compared 
with traditional uniresolutional shape features in their 
ability to discriminate between shape classes. These 
features provided a means of evaluating the shapes at 
various scales. When utilizing a statistical classification 
system with Euclidean distance measures determining 



class membership, the use of multiresolution features 
significantly increased the classification rates. 

Ferrari et al. [41] presented a new method for 
the identification of the pectoral muscle in MLO 
mammograms based upon a multiresolution technique 
using Gabor wavelets. This new method overcomes the 
limitation of the straight-line representation considered 
in initial investigation using the Hough transform. The 
method starts by convolving a group of Gabor filters, 
specially designed for enhancing the pectoral muscle 
edge, with the region of interest containing the pectoral 
muscle. After computing the magnitude and phase 
images using a vector-summation procedure, the 
magnitude value of each pixel is propagated in the 
direction of the phase. The resulting image is then used 
to detect the relevant edges. Finally, a post-processing 
stage is used to find the true pectoral muscle edge. 

Chun-Ming Chang et al. [24] developed an 
enhancement algorithm relying on multiscale wavelet 
analysis and extracted oriented information at each scale 
of analysis was investigated. The evolution of wavelet 
coefficients across scales characterized well the local 
shape of irregular structures. Using oriented information 
to detect features of an image appears to be a promising 
approach for enhancing complex structures and subtle 
tissues of the breast. Steer able filters that can be rotated 
at arbitrary orientations reliably found visual cues 
within each spatial frequency sub-band of an image. 
Coherence measure and dominant orientation clearly 
improved discrimination of features from complex 
surrounding tissue and structure in dense mammograms. 

Wavelet theory provides a powerful framework 
for multiresolution analysis, and it can be used for 
texture analysis. The discrete wavelet transform is used 
to map the ROIs into a series of coefficients, which 
constituted a multiscale representation of the ROIs. To 
obtain the features reflecting scale-dependent properties, 
a set of features can be extracted from each scale of the 
wavelet transform. The most frequently used features 
are energy, entropy, and norm of the coefficients 
[37,67,108,122,145,146]. 

Lemaur et al. [78] provided new wavelets with 
a higher Sobolev regularity compared with the classical 
wavelets, assuming the same support width. Contrary to 
the classical smoothness or moment regularity of a 
wavelet (null moment’s property), the Sobolev 
regularity refers to the fractional derivatives of the 
signal (image) and to its singular spectrum, says a more 
sophisticated structure.  
6.1.1. New Wavelets 

To construct new compactly supported 
wavelets, let QN, K(x) a polynomial of degree  2N + 2K – 
1 (N, K are non null positive integers) such that     QN, 

K(x)= εN,K ∫
-1

x (1-t2)N–1 PK (t2) dt         (4) 

where εN, K is set such that QN, K(1) = 1 and PK (t2) is any 
polynomial of degree K such that  QN, K(x) ≥ 0. Clearly, 
QN, K fulfills the conditions cited to construct wavelets 
with the polynomial QN, K(x). However, to use QN, K(x) 
for the construction of compactly supported wavelets, 
one must first verify that QN, K(x) is positive on [0,1] 
and does not vanish on [1/2,1]. Note that the wavelet 
issued from QN, K(x) will have N null moments and that 
its support width is ΩN, K = 2N + 2K – 1. 

There exists an interesting family of 
polynomials called the Matzinger polynomials, which 
leads to wavelets with an improved regularity index. To 
obtain such wavelets have to replace, in formula (4), PK 
(t2) by  

(1 - α2t2)2K – 1 (1-β2t2) which yields 
QN, 2K(x)  = εN,2 K ∫

-1

x (1-t2)N – 1 (1-α2t2)2K – 1 (1-β2t2) dt          (5) 
where α is chosen such that 1 < α ≤ 2 and εN,2 K such 
that QN, 2K(1) = 1. 
 One needs to set QN, 2K(1-α) = 0 to let QN, 2K(x) verify 
the non-vanishing condition cited above. According to 
the variations of QN, 2K, to compute β, have to solve the 
following equation: 

∫
-1

-1/α (1-t2)N – 1  (1 - α2t2)2K – 1 (1-β2t2) dt = 0. 
One gets β, 1 < β < α. In this case PK (t2), has roots 
{±1/α, ±1/β} lying in the unit circle. For more details 
about this humdrum calculus, also show that QN, 2K(x) 
verifies all the conditions as soon as the inequality 0 < 
2K ≤ N. (in eq. (6) or in eq. (4) is satisfied) 
6.1.2. Regularity Ratio Estimates for the New 
Wavelets 

In this section, show that using the new family 
of wavelets introduced above in formula (5), new 
wavelets can construct which have a higher regularity 
ratio than the Daubechies ones for the same support 
width. Denote by the Sobolev regularity of the new 
wavelet. Since QL, K(x) has roots at -1, here L denotes a 
non-null integer, and one gets (6). 

QL, K(x) = [ ((1+x) / 2 )L A(x). where A(x) is a 
polynomial of degree L + 2K + 1. To compute the 
regularity ratio of the new wavelets, use a classical 
result. Let the equation shown at the bottom of the page 
hold then have for the Holder regularity, denoted here 
by σ’ 
L – (1 / 2 ln 2) ln ρ1 ≤ σ’ ≤L – (1 / 2 ln 2) ln ρ2   (6) 
Moreover, the same result states also that, having,  

σ’ – ½ ≤ σ ≤ σ’                     (7) 
6.2. Wavelet Expansion 

Heine et al. [58] developed a method for 
identifying clinically normal tissue in digitized 
mammograms is used to construct an algorithm for 
separating normal regions from potentially abnormal 
regions; i.e., small regions that may contain isolated 
calcifications. The first step is to decompose the image 
with a wavelet expansion that yields a sum of 



independent images, each containing different levels of 
image detail. When calcifications are present, there is 
strong empirical evidence that only some of the image 
components are necessary for detecting a deviation from 
normal. The underlying statistic for each of the selected 
expansion components can be modeled with a simple 
parametric probability distribution function. This 
function serves as an instrument for the development of 
a statistical test that allows for the recognition of normal 
tissue regions. The distribution function depends on 
only one parameter, and this parameter itself has an 
underlying statistical distribution. The values of this 
parameter define a summary statistic that can be used to 
set detection error rates. Once the summary statistic is 
determined, spatial filters that are matched to resolution 
are applied independently to each selected expansion 
image. Regions of the image that correlate with the 
normal statistical model are discarded and regions in 
disagreement (suspicious areas) are flagged. These 
results are combined to produce a detection output 
image consisting only of suspicious areas. This type of 
detection output is amenable to further processing that 
may ultimately lead to a fully automated algorithm for 
the identification of normal mammograms. 
6.3. Wavelet Based Sub band Decomposition 

Wand and Karayiannis [129] presented an 
approach for detecting microcalcifications in digital 
mammograms employing wavelet-based sub-band 
image decomposition. The microcalcifications appear in 
small clusters of few pixels with relatively high 
intensity compared with their neighboring pixels. These 
image features can be preserved by a detection system 
that employs a suitable image transform which can 
localize the signal characteristics in the original and the 
transform domain. Given that the microcalcifications 
correspond to high-frequency components of the image 
spectrum, detection of microcalcifications is achieved 
by decomposing the mammograms into different 
frequency sub-bands, suppressing the low-frequency 
sub-band, and, finally, reconstructing the mammogram 
from the sub-bands containing only high frequencies.  

Strickland et al. [126] developed a two-stage 
method based on wavelet transforms for detecting and 
segmenting calcifications. The first stage is based on an 
Undecimated wavelet transform, which is simple than 
the conventional filter bank implementation without 
down sampling, so that the low-low (LL) low-high 
(LH), high-low (HL), and high-high (HH) sub-bands 
remain at full size. The second stage is designed to 
overcome the limitations of the simplistic Gaussian 
assumption and provides an accurate segmentation of 
calcification boundaries. Detected pixel sites in HH and 
LH+HL are dilated then weighted before computing the 
inverse wavelet transform. Individual 
microcalcifications are greatly enhanced in the output 
image, to the point where straightforward thresholding 

can be applied to segment them. Free-response Receiver 
Operating Characteristic (FROC) curves are computed 
from tests using a freely distributed database of 
digitized mammograms. By combining sub-bands from 
the multiple transforms, it is conceivable that 
background structures could be favorably suppressed.  
6.4. Shape Features Wavelet 

Dhawan et al. [37] presented a gray-level 
image structure feature based approach for the analysis 
and classification of “difficult-to-diagnose” 
mammographic microcalcifications. The combined set 
of image structure included features from second order 
gray-level histogram statistics for representing global 
texture and wavelet decomposition-bases features for 
representing local texture of the microcalcifications area 
of interest, and first-order gray-level features from the 
segmented microcalcification regions.  
6.5. Template Matching 

Lai et al. [117] presented a method for 
detecting one type of breast tumor, circumscribed 
masses, in mammograms. It relies on a combination of 
criteria used by experts including the shape, brightness 
contrast, and uniform density of tumor areas. In the first 
step, median filtering is used to enhance mammogram 
images and template matching to detect breast tumors. 
The second step is concerned with tumor detection. This 
method is based on template matching and is capable of 
detecting suspicious areas in mammograms independent 
of their size, orientation, and position.  

Leungng et al. [118] presented a method for the 
mammographic detection and classification of two types 
of breast tumors, stellate lesions and circumscribed 
lesions. The method assumes that both types of tumors 
appear as approximately circular, bright masses with a 
fuzzy boundary and that stellate lesions are in addition 
surrounded by a radiating structure of sharp, fine lines.  
6.6. Feature Extraction 

Mudigonda et al. [94] developed a method for 
the detection of masses in mammographic images. 
Features based on flow orientation in adaptive ribbons 
of pixels across the margins of masses are used to 
classify the regions detected as true mass regions or 
False-Positives (FPs). The mass regions that were 
successfully segmented were further classified as benign 
or malignant disease by computing five texture features 
based on Gray-level Co-occurrence Matrices (GCMs) 
and using the features in a logistic regression method. 
The features were computed using adaptive ribbons of 
pixels across the boundaries of the masses.  

Karssemeijer and Veldkamp [65] also use a 
large set of microcalcification Features, form a feature 
vector, and their distributions are used as cluster 
features. In the first stage, Zhang et al. [149] used a set 
of microcalcification features as the inputs of a back-
propagation neural network to reduce the false 
detection. In the second Davies et al. [31] used fewer 



features: area, mean gray level, ratio of area to the 
square of the maximum linear dimension, shape 
parameter, and edge strength.  

Gulsrud et al. [131] dealt with the problem of 
texture feature extraction in digital mammograms. The 
feature extraction scheme contains two filters, the 
optimal filter and the smoothing filter. This filter 
combination should be designed in such a way that the 
classification of the feature images becomes as 
successful as possible. In the design process, both the 
filter coefficients and the filter size and shape have to be 
determined. Concerning the shape of the filters, due to 
the relatively random shapes and orientations of 
microcalcifications, it is not possible to find a filter 
shape that matches each different microcalcification. 
Thus, for simplicity, choose to only consider filters with 
a square support. Starting with the optimal filter, finding 
corresponding smoothing filter should be relatively 
small. The results indicate that the optimal filter-based 
method is very well suited for automated detection of 
clustered microcalcifications. 

Verma and Zakos [134] presented a system 
based on fuzzy-neural and feature extraction techniques 
for detecting and diagnosing microcalcifications’ 
patterns in digital mammograms. A combination of 
three features, such as entropy, standard deviation, and 
number of pixels, is the best combination to distinguish 
a benign microcalcification pattern from one that is 
malignant is used. A fuzzy technique in conjunction 
with three features was used to detect a 
microcalcification pattern and a neural network to 
classify it into benign/malignant.  

The fuzzy detection algorithm aims at 
detecting micro calcifications and suspicious areas. It 
uses a 16×16 window to scan over the entire digital 
mammogram and locate Microcalcification or other 
abnormalities: The algorithm only detects the center 
pixel of a microcalcification area. It is up to the user to 
view the surrounding area to decide how big the 
microcalcification area actually is. Microcalcification 
areas vary greatly in size, shape, and grey color. 
Therefore, it is very difficult to develop a good 
algorithm that is effective at detecting 
microcalcifications based only on digital image 
processing and FL. 

The most significant feature or combination of 
features was selected based on neural-network 
classification. It was done by starting with a single 
feature by feeding it to the neural network and 
analyzing the classification rate. If it was increased or 
unchanged by adding a particular feature, then include 
this feature to the input vector. Otherwise, remove this 
feature, added another feature to the existing input 
vector, and repeated the whole process again. 

Matsubara et al. [85] (Binarization Technique) 
developed two detection approaches for architectural 

distortions existing around skinline and within 
mammary glandular tissues.  
6.7. Fuzzy Logic and Scale Space Techniques 

Netsch and Peitgen [96] described a method for 
the automated detection of microcalcifications in 
digitized mammograms. The method is based on the 
Laplacian scale-space representation of the 
mammogram only. First, possible locations of 
microcalcifications are identified as local maxima in the 
filtered image on a range of scales. For each finding, the 
size and local contrast is estimated, based on the 
Laplacian response denoted as the scale-space signature. 
A finding is marked as a microcalcification if the 
estimated contrast is larger than a predefined threshold, 
which depends on the size of the finding. It is shown 
that the signature has a characteristic peak, revealing the 
corresponding image features. This peak can be robustly 
determined. The basic method is significantly improved 
by consideration of the statistical variation of the 
estimated contrast, which is the result of the complex 
noise characteristic of the mammograms. The method is 
evaluated with the Nijmegen database and compared to 
other methods using these mammograms. Results are 
presented as the FROC performance. At a rate of one 
false positive cluster per image, the method reaches a 
sensitivity of 0.84, which is comparable to the best 
results achieved. 

H.D. Cheng et al. [19] presented a novel 
approach to microcalcification detection based on fuzzy 
logic and scale space techniques. First, the fuzzy 
entropy principal and fuzzy set theory is used to fuzzify 
the images. Then, enhance the fuzzified image. Finally, 
scale-space and Laplacian-of-Gaussian filter techniques 
are used to detect the sizes and locations of 
microcalcifications. A free-response operating 
characteristic curve is used to evaluate the performance. 
The major advantage of the method is its ability to 
detect microcalcifications even in the mammograms of 
very dense breasts. Experimental results demonstrate 
that the microcalcifications can be accurately detected.  
6.7.1. Normalization and Fuzzification 
 The mammograms have different brightness 
and contrast due to the varying illumination. In order to 
reduce the variation and achieve computational 
consistency, the images are normalized. Map all the 
mammograms into a fixed intensities range r1 and r2 (0 
≤ r1 < r2 ≤ 255). Assume an image gi(x,y) whose 
maximum gray level is max Gi and minimum gray level 
is min Gi and transform gi(x,y) into Gk(x,y) 
Gk(x,y) = r1+[(gi (x,y) – min Gi) × ( r2 – r1 )]/ [max  Gi – min Gi  ] 
In this experiment, choose r1 = 60 and r2 = 210 due to 
the fact that maximum intensities and minimum 
intensities of the microcalcifications are not beyond r2 
and below r1 with certainty after investigating a huge 
amount of mammograms.  Mammograms have some 
degree of fuzziness such as indistinct borders, ill-



defined shapes and different densities. Mammographic 
enhancement is essential and important for reducing 
both the FN and FP rates. Homogeneity is mainly 
related to the local information of an image and reflects 
how uniform an image region is. A method is adopted 
for enhancing the mammograms that uses both global 
and local information. The Laplacian-of-a-Gaussian 
(∇2G) filter has been applied to variety tasks in multi-
scale image analysis, such as region detection and 
contrast enhancement. Gaussian smoothing has the 
effects: simplification by removing the fine scale 
features and distortion by flattening, dislocating and 
broadening of the surviving features.  
 Fuzzy theory and scale space is used to 
automatically detect microcalcification clusters in 

digitized mammograms. This approach is very efficient 
and effective for locating microcalcifications in the 
mammograms with various densities. (1) The micro 
calcifications can be accurately detected even in 
mammograms of very dense breast. (2) Mammogram 
enhancement is more adaptive and robust. (3) definition 
of the contrast based on fuzzy homogeneity uses both 
local and global information and the contrast 
enhancement algorithm can enhance the main feature 
while suppress the noise. (4) the parameters can be 
easily adjusted to obtain different True-Positives (TP) 
and False-Positives (FP) rates that are useful for 
deriving ROC or FROC curves. (5) Threshold factor is 
determined by neural network considering statistical and 
fuzzy nature of the mammograms. 

 
 
6.8. Statistical Analysis 

Karssemeijer [98] described a method to detect 
such stellate patterns. This method is based on statistical 
analysis of a map of pixel orientations. An important 
feature of the method is that the way in which an 
orientation of the image intensity map is determined at 
each pixel. A new method, based on the application of 
second-order operators, is presented for this purpose. If 
a line-like structure is present at a given site, the method 
provides an estimate of the orientation of this structure, 
whereas in other cases the image noise will generate a 
random orientation. Using scale space theory it will be 
shown how accurate estimates of line orientation can be 
obtained at a given scale from the output of only the 
directional, second-order, Gaussian derivative operators, 
differing by π/3 in orientation. 
 The line-based orientation estimates are used to 
construct two operators that respond to radial patterns of 
straight lines. Combination of the output of these 
operators in a classifier leads to a very sensitive method 
for detection of stellate patterns. The method is applied 
to detect stellate lesions an architectural distortion in 
mammograms from MIAS database.  

Another issue, which is investigated in here, is 
application of k-nearest neighbor, a neural network, and 
a decision tree for classification. In addition, the use of 
multiple scales for estimation of line orientation is 
validated by determining the performance at different 
single spatial scales. The results show that based on a 
line-based pixel orientation map many subtle spiculated 
lesions and architectural distortions can be detected at a 
high degree of specificity.  
6.8.1. Gray Level Image Texture Feature 

Dhawan et al. [37] defined a set of image 
structure features for classification or malignancy. Two 
categories of correlated gray-level image structure 
features are defined for classification of “difficult-to-
diagnose” cases. Surrounding Region Dependence 
Method (SRDM) is based on a second order histogram 

matrix that is calculated from two surrounding regions 
of a pixel [67,75]. The textural features can be extracted 
from the co-occurrence matrix. They are related to 
specific textural characteristics such as the 
homogeneity, contrast, entropy, energy and regularity of 
the structure within the image [27,36,37,39,43,86]. 
Pettazzoni et al. [107] provided a general scheme for 
detection and/or automated recognition of 
microcalcifications. Some modules that perform 
ROI selection is introduced, using special non- linear 
filters designed for microcalcification detection.  
6.9. Non-Linear Filtering  

A first type of filter selects pixels with specific 
statistical local features, as compared to the local mean. 
Among these, only pixels satisfying particular 
constraints on the local standard deviation are kept. 
Another type of filter then checks the local mean values 
of gradient components, so that sharp variations, 
unrelated to small close objects, can be eliminated. The 
scheme thus applies different non-linear filters in 
combination, making precise identification of clustered 
microcalcifications possible. This modular approach 
seems greatly to simplify system maintenance and 
consistency, as well as affording a comparison of 
different processing techniques and parameters. 

Bhangale et al. [7] and Rogova et al. [110] 
used a set of Gabor filters to process mammograms. By 
changing the center frequencies of Gabor filters, this 
method could change the original images into different 
scales and orientation spaces. Fractal dimension is a 
numerical value used to characterize a fractal, and it can 
be used as an indicator of the roughness of an image. 
Smoother areas of the images have lower fractal 
dimension values than rougher areas [12,39,110]. 

Hojjatoleslami and Kittler [50] used the 
number of microcalcifications within a region of a fixed 
area. A square of 1 cm2 is used as discontinuity measure 
to distinguish a new cluster. Nishikawa et al. [102] used 
the similar technology with [50] the features extracted 
from mammogram directly such as perimeter, area, 
compactness, elongation, eccentricity, thickness, 



orientation, direction, line, background, foreground, 
distance, and contrast. They are easy to extract and they 
originate from the experience of radiologists. Features 
used to describe the distribution of the 
microcalcification. [10,30,18,64,65,83,95,99-
101,115,138,139,145], cluster area, and number of 
microcalcifications in an area [16,25,102]. 

6.10. Adaptive Thresholding 
Hatanka et al. [147] devised an adaptive 

thresholding technique for detecting masses. The partial 
loss masses are identified by their similarity to a sector-
form model in the template matching process.   

Table 4. An Overview of Detection of Microcalcifications 

 



To calculate the similarity, four features are 
applied: 1) average pixel value; 2) standard deviation of 
pixel values; 3) standard correlation coefficient defined 
by the sector-form model; and 4) concentration feature 
determined from the density gradient. The FPs was 
eliminated using a second-order statistics technique. 
There were four parameters utilized. From the gray-
level co-occurrence matrix, three second-order statistics 
values, angular second moment (ASM), inverse 
difference moment (IDM), and entropy (ENT), were 
calculated. In addition, a contrast (CNT) was set by the 
matrix based on the gray-level difference method. 
6.11. Fuzzy – Genetic 

Andres et al. [13] applied a combined fuzzy-
genetic approach to the Wisconsin breast cancer 
diagnosis problem. These evolved systems first attain 
high classification performance with the possibility of 
attributing a confidence measure to the output 
diagnosis; second, the resulting systems involve a few 
simple rules, and are therefore interpretable. The fuzzy-
genetic approach is highly effective where such medical 
diagnosis problems are concerned.  
7. Classifiers 

Some of the classifiers are studied and compared 
in the following sections. 

7.1. Artificial Neural Network 
L. Zheng and Chan [77] described an algorithm 

that acts as a preprocessor for marking out suspicious 
tumor regions in a mammogram. Discrete Wavelet 
Transform (DWT)-based Multiresolution Markov 
Random Field (MMRF) segmentation is used for 
segmentation. In the procedure an image is first 
decomposed using DWT and the segmentation starts 
from the LL sub band of the coarsest resolution level. 
To avoid over-smoothing at this level, LL sub band 
image size is restricted to be at least 128 × 128. The 
MRF segmentation results are propagated according to 
the self-similarity mapping relations between different 
levels until to the finest level. In this application, the 
Iterated Conditional Modes (ICM) is chosen to find the 
Maximum a Posterior (MAP) estimation for the MRF 
because of its high efficient performance. After the 
segmentation procedure, the analyzed mammogram will 
be segmented into different regions according to their 
gray-levels and texture. The features of each region will 
be generated in the classification step for tumor 
detection. All feature parameters of a given extracted 
region are input into the binary decision tree. Each node 
in this tree contains a threshold for the feature it 
represents and the input data will flow along the 
direction of the arrows based on the result at each node. 
When the signal reaches the end, a classification result 
has been made. The following figure shows the block 
diagram of a typical classification scheme. 

 

 
Figure 7.1 Block Diagram of a typical Classification 

Scheme 
Rudy Setiono [112] described how the 

accuracy of the networks and the accuracy of the rules 
extracted from them could be improved by a simple pre-
processing of the data. Data pre-processing involves 
selecting the relevant input attributes and removing 
those samples with missing attribute values. The rules 
generated by neural network rule extraction algorithm 
are more concise and accurate than those generated by 
other rule generating methods reported in the literature. 
The outline of the rule extraction method is as follows, 
(1) Select and trains a network to meet the pre specified 
accuracy requirement. (2) Remove the redundant 
connections in the network by pruning while 
maintaining its accuracy. (3) Discretize the hidden unit 
activation values of the pruned network by clustering. 
(4) Extract rules that describe the network outputs in 
terms of the discretized hidden unit activation values. 
(5) Generate the rules that describe the discretized 
hidden unit activation values in terms of the network 
inputs. (6) Merge the two sets of rules generated in steps 
4 and 5 to obtain a set of rules that relates the inputs and 
outputs of the network. 

Bocchi et al. [8] described a method to detect 
microcalcifications from standard mammograms. The 
Fractional Brownian Motion (FBM) has permitted us to 
implement an optimized enhancement filter. Such a 
filter, along with ANN-based classifiers, exhibits good 
sensitivity and reasonable accuracy in detecting single 
microcalcifications. Following a proper segmentation 
procedure, microcalcification clustering has been 
modeled as fractal dust. In this way, it is able to extract 
effective descriptors of the spatial arrangements of 
microcalcifications. It must be pointed out that 
conventional FBMs can be extended in several 
directions to reflect, even more closely, the complexity 
of the imaged anatomy. Thus, the use of a space varying 
Hurst’s exponent is plausible. This method based 
mainly on the size and contrast of µCa spots. This 
would allow higher detection accuracy, the shape of 
microcalcifications is diagnostically relevant and can be 
used to evaluate their possible degree of malignancy. 

An artificial neural network is a parallel, 
distributed information processing structure consisting 
of processing elements interconnected by directional 
connections. A neural element carries out local 
operations. Distinct classes: suspicious and probably 
benign. An optimal neural network architecture selected 
by a simulated annealing optimization technique was 
used to improve the classification performance 
[71,36,55,70,75, 134,11, 138]. Genetic algorithms were 



also used to optimize the features for differentiating 
malignant from benign [3,114,15].  

K-nearest neighbor (KNN) classifier 
distinguishes unknown patterns based on the similarity 
to known samples. The KNN algorithm computes the 
distances from an unknown pattern to every sample and 
selects the K nearest samples as the base for 
classification. The unknown pattern is assigned to the 
class containing the most samples among the K-nearest 
samples [26,71,148].  
7.2. Pattern Recognition Algorithm 

Disagreement or inconsistencies in 
mammographic interpretation motivate utilizing 
computerized pattern recognition algorithms to aid the 
assessment of radiographic features. Fogel et al. (1998a) 
have studied the potential for using Artificial Neural 
Networks (ANNs) to analyze interpreted radiographic 
features from film screen mammograms. For suspicious 
masses, the best-evolved ANNs generates a mean area 
under the receiver operating characteristic curve (AZ) of 
0.9196±0.0040, with a mean specificity of 
0.6269±0.0272 at 0.95 sensitivity. Results when 
microcalcifications were included were not quite as 
good (AZ = 0.8464), however, ANNs with only two 
hidden nodes performed as well as more complex ANNs 
and better than ANNs with only one hidden node. The 
success of small ANNs in diagnosing breast cancer 
offers the promise that suitable explanation for the 
ANN’s behavior can be induced, leading to a greater 
acceptance by physicians. 

Bayesian Belief Network (BBN) is an optimal 
pattern recognition method; it uses a probabilistic 
approach to determine an optimal segmentation given a 
specific database [139,151,79]. Binary decision tree is 
an ordered list of binary threshold operations on the 
features organized as a tree. Each node will move down 
to its two descendents by thresholding values of the 
features. This procedure will continue until it arrives at 
a terminal node, which assigns a classification [77].   
7.3. Adaptive Resonance Theory 

Kim et al. [68] designed a new type of 
classifier combining an unsupervised and a supervised 
model and applied to classification of malignant and 
benign masses on mammograms. The unsupervised 
model was based on an Adaptive Resonance Theory 
(ART2) network that clustered the masses into a number 
of separate classes. The classes were divided into two 
types: one containing only malignant masses and the 
other containing a mix of malignant and benign masses. 
The masses from the malignant classes were classified 
by ART2. The masses from the mixed classes were 
input to a supervised Linear Discriminant Classifier 
(LDA). In this way, some malignant masses were 
separated and classified by ART2 and the less 
distinguishable benign and malignant masses were 
classified by LDA. Receiver operating Characteristics 

analysis was used to evaluate the accuracy of the 
classifiers. The average area under the ROC curve (Az) 
for the hybrid classifier was 0.81 as compared to 0.78 
for the LDA and 0.80 for the BPN. The partial areas 
above a true positive fraction of 0.9 were 0.34, 0.27 and 
0.31 for the hybrid, the LDA and the BPN classifier, 
respectively. These results indicated that the hybrid 
classifier is a promising approach for improving the 
accuracy of classification in CAD applications. 
7.4. Hybrid Neural Network Classification 

Papadopoulossa et al. [106] presented a hybrid 
intelligent system for the identification of 
microcalcification clusters in digital mammograms. The 
hybrid intelligent system employs two components: a 
rule based and a neural network sub-system. The rule 
construction procedure consists of the feature 
identification step as well as the selection of the 
particular threshold value for each feature. First, 
visualization of all the calculated features in two-
dimensional plots, in pairs, has been employed for the 
selection of suitable feature threshold values that lead to 
the categorization of a remarkable number of ROIs. For 
every feature, several threshold values are examined in 
the range of values corresponding to that feature. For 
each threshold value, the number of ROIs below and 
above the threshold value is recorded. The ratio of the 
number of ROIs that belong to a specific class (normal 
or pathological) over the total number of the ROIs that 
belong to the same class should be more than 6%. In 
addition, the number of the false negative ROIs must be 
equal or less than one.  

Lim et al. [17] presented a study of the 
application of autonomously learning multiple neural 
network systems to medical pattern classification tasks. 
The hybrid neural network architecture has been 
developed for on-line learning and probability 
estimation tasks. The network has been shown to be 
capable of asymptotically achieving the Bayes optimal 
classification rates, on-line, in a number of benchmark 
classification experiments. In the context of pattern 
classification, however, the concept of multiple 
classifier systems has been presented to improve the 
performance of a single classifier. Thus, three decision 
combination algorithms have been implemented to 
produce a multiple neural network classifier system. 
Here the applicability of the system is assessed using 
patient records in two medical domains. The first task is 
the prognosis of patients admitted to coronary care 
units; whereas the second is the prediction of survival in 
trauma patients. The results are compared with those 
from logistic regression models, and implications of the 
system as a useful clinical diagnostic tool are discussed.  
7.5. Modular Neural Network 

Huai Li et al. [52] developed a method, based 
on the enhanced segmentation of suspicious mass areas, 
further development of computer-assisted mass 



detection may be decomposed into three distinctive 
machine learning tasks: 1) construction of the featured 
knowledge database; 2) mapping of the classified and/or 
unclassified data points in the database; and 3) 
development of an intelligent user interface.  Decision 
support system may then be constructed as a 
complementary machine observer that should enhance 
the radiologist’s performance in mass detection. A 
mathematical feature extraction procedure is used to 
construct the featured knowledge database from all the 
suspicious mass sites localized by the enhanced 
segmentation. The optimal mapping of the data points is 
then obtained by learning the generalized normal 
mixtures and decision boundaries, and developed to 
carry out both soft and hard clustering. A visual 
explanation of the decision making is further invented 
as a decision support, based on an interactive 
visualization hierarchy through the probabilistic 
principal component projections of the knowledge 
database and the localized optimal displays of the 
retrieved raw data. A prototype system is developed and 
pilot tested to demonstrate the applicability of this 
framework to mammographic mass detection. 
7.6. Neuro-Fuzzy 

Grohman and Dhawan [137] reported that there 
are many different criteria for the comparative analysis 
of pattern classifiers. They include generalization 
ability, computational complexity and understanding of 
the feature space. A novel convex-set-based neuro-
fuzzy algorithm for classification of difficult-to-
diagnose instances of breast cancer is described. With 
its structural approach to feature, space the new method 
offers rational advantages over the backpropagation 
algorithm. The classification performance, 
computational and structural efficiencies are analyzed 
and compared with that of the BP network. The training 
procedure is completely automated-function parameters 
are automatically computed from statistical distributions 
of the data. Two different approaches to construction of 
fuzzy membership functions were tested: sigmoidal 
decision surfaces - (backpropagation-like approach) and 
bell-shaped functions - cluster-specific approach.  

The main idea behind the described method 
comes from the basic properties of feed forward 
artificial neural networks. Any layer of a feed forward 
network performs partitioning of its d-dimensional input 
feature space into a specific number of subspaces that 
are always convex and which number can be estimated. 
This is regardless of the training algorithm or the neural 
function f used. The only requirement is that the 
connection weights wi is linear, i.e., that the relationship 
between the layer's inputs xi and the post-synaptic signal 
processed by the neural function is of a form 
  ϕ = Σi=1

d xiwi + w0  
Most popular feed forward networks, including radial 
basis function and backpropagation, satisfy this 

requirement. For ϕ = 0 (or any other constant), the 
above synaptic equation represents a (d-1)-dimensional 
hyperplane H in the d-dimensional input space 
separating two regions defined by the connection 
weights wi  

(H: ϕ = 0 => ( H : Σi=1
d xiwi + w0 = 0 )  

Each network layer comprises many such hyper planes, 
which by intersecting with one another create a finite 
number of the aforementioned convex subspaces. 
Therefore, there is a direct relationship between the 
connection weight values and the obtained d-
dimensional convex subspaces. The process of network 
training could be seen as the attempt at finding an 
optimal dichotomy of the input space into these convex 
regions. Moreover, the relationship goes both ways, i.e. 
proceeding in the reverse order; one might say that 
finding the optimal dichotomy of the input space into 
convex subspaces is equivalent to network training. 
7.7. Support Vector Machines (SVM) 

Yilmaz et al. [142] investigated an approach 
based on Support Vector Machines (SVMs) for 
detection of microcalcification (MC) clusters in digital 
mammograms, and a successive enhancement-learning 
scheme for improved performance. SVM is a machine-
learning method, based on the principle of structural 
risk minimization, which performs well when applied to 
data outside the training set.  Then formulate 
microcalcification detection as a supervised-learning 
problem and apply SVM to develop the detection 
algorithm. SVM is used to detect at each location in the 
image whether a microcalcification is present or not. 
The ability of SVM to outperform several well-known 
methods developed for the widely studied problem of 
microcalcification detection suggests that SVM is a 
promising technique for object detection in a medical 
imaging application. 
7.8. Fuzzy-Nearest Neighbor Classifier 

Sekar et al. [53] investigated the fuzzy –nearest 
neighbor (F-NN) classifier as a fuzzy logic method. 
That provides a certainty degree for prognostic decision 
and assessment of the markers, and to compare it with: 
1) logistic regression as a statistical method and 2) 
multiplayer feed forward backpropagation neural 
networks an artificial neural-network tool, the latter two 
techniques having been widely used for oncological 
prognosis. In order to achieve this aim, breast and 
prostate cancer data sets are considered as benchmarks 
for this analysis. The overall results indicated that the 
FK-NN-based method yields the highest predictive 
accuracy, and that it has produced a more reliable 
prognostic marker model than the statistical and 
artificial neural-network-based methods. This is further 
compared to the LR and MLFFBPNN methods, which 
have been widely used for predictive analysis in 
oncology. The results presented show that the FK-NN 
technique yields the highest predictive accuracy. In 



addition, it has also produced a more reliable model as 
far as marker stratification is concerned. This method 
not only predicts a class of prognosis, as does 
MLFFBPNN, but also assigns a confidence degree for 
each predicted class.  
7.9. Fuzzy K-nearest Neighbor (FK-NN) Classifier 

The FK-NN is defined as a function of the 
number of neighborhoods K, class membership degrees, 
and distances between a pattern to be classified and 
patterns. A class membership degree between 0 and 1 is 
computed using the first K minimum distances and the 
known class membership degrees of the patterns. 

The FK-NN algorithm has the similar 
computation procedure as in a classical -nearest 
neighbor algorithm. They enable distances between an 
unlabeled pattern (i.e., a patient’s record), (x), whose 
class has to be determined, and patterns (xk) whose 
classes (uck) are previously known ordered in an 
ascending fashion. In FK-NN the membership degree 
(µc(x)) of an unlabeled pattern for class is computed 
using the first k distances as:                   

µc(x) =  [ Σ
K

k=1 uk(c) ( 1 / ( || x – xk || ) 2 / ( m – 1 ) ] / 

[ Σ
K

k=1 ( 1 / ( || x – xk || ) 2 / ( m – 1 )  ] 
where K is the number of neighborhoods selected, and 
m determines a level of fuzziness. The FK-NN not only 
gives a class to which the pattern is assigned, but also 
the class membership degree that provides information 
about the certainty of the classification decision. One of 
the main issues related to the FK-NN algorithm is the 
choice of the number of neighborhoods. This number 
must be much smaller than the minimum of the number 
of samples in a class; otherwise, the neighborhood no 
longer becomes the local neighborhood of a pattern. 
Since it is difficult to select a value for k, a priori, it is 
generally determined by a user according to 
experimental results, and is generally selected as the one 
that yields the highest predictive accuracy.  
7.10. Convolution Neural Network (CNN) 

Shainer et al. [114] investigated the 
classification of regions of interest (ROI’s) on 
mammograms as either mass or normal tissue using a 
convolution neural network (CNN). A CNN is a 
backpropagation neural network with two-dimensional 
(2-D) weight kernels that operate on images. A 
generalized, fast and stable implementation of the CNN 
was developed. The input images to the CNN were 
obtained from the ROI’s using two techniques. The first 
technique employed averaging and sub sampling. The 
second technique employed texture feature extraction 
methods applied to small sub regions inside the ROI. 
Features computed over different sub regions were 
arranged as texture images, which were subsequently 
used and CNN inputs. The effects of CNN architecture 
and texture feature parameters on classification 
accuracy were studied. ROC methodology was used to 

evaluate the classification accuracy. Although 
classification performance needs to be further improved 
in order for the classifier to be useful in a clinical 
setting, it indicates that a CNN can be trained to 
effectively classify masses and normal breast tissue on 
mammograms.  

Gurcan et al. [88] developed a computer 
program to detect microcalcification clusters 
automatically on digitized mammograms. They found 
that a properly selected and trained convolution neural 
network (CNN) could reduce false-positive (FP) 
findings and therefore improve the accuracy of 
microcalcification detection. In the current study, they 
evaluated the effectiveness of the CNN optimized with 
an automated optimization technique in improving the 
accuracy of the microcalcification detection program, 
comparing it with the manually selected CNN. The 
results indicated that the choice of CNN input images is 
more important than the choice of CNN architecture. 
Although classification performance needs to be further 
improved in order for the classifier to be useful in a 
clinical setting, this study indicates that a CNN can be 
trained to effectively classify masses and normal breast 
tissue on mammograms. We are currently investigating 
the effectiveness of the CNN classifier for 
differentiation of masses and normal ROI’s obtained 
with an automatic extraction algorithm as a step toward 
a fully automated computer-aided diagnosis scheme. 
7.11. Radial-Basis-Function Neural Network (RBF 
NN) 

Gurcan et al. [88] In order to improve the costs 
benefits ratio of breast cancer (BC) screenings, 
evaluated the performance of a back-propagation 
Artificial Neural Network (ANN) to predict an outcome 
(cancer: not cancer) to be used as classificator. 
Networks were trained on data from familial history of 
cancer, and sociodemographic, gynecoobstetric and 
dietary variables. 

Christoyiani et al. [54] presented a complete 
method for fast detection of circumscribed mass in 
mammograms employing an RBFNN. In this method, 
each neuron output is a nonlinear transformation of a 
distance measure of the neuron weights and its input 
vector. The non-linear operator of the RBFNN hidden 
layer is implemented using a Cauchy-like probability 
density function. Successful RBFNN implementation 
can be achieved using efficient supervised or 
unsupervised learning algorithms for an accurate 
estimation of the hidden layer weights. In this 
implementation, the K-means unsupervised algorithm 
was used to estimate the hidden-layer weights from a set 
of training data containing statistical features from both 
circumscribed lesions and normal tissue. After the initial 
training and the estimation of the hidden-layer weights, 
the weights in the output layer are computed using 
Wincer-filter theory, or equivalently, by minimizing the 



mean square error (MSE) between the actual and the 
desired filter output.  
7.12. ANN Pruning 

Rudy Setiono et al. [111] developed a new 
algorithm for neural network pruning. Using this 
algorithm, networks with small number of connections 
and high accuracy rates for breast cancer diagnosis are 
obtained. Then describe how rules can be extracted 
from a pruned network by considering only a finite 
number of hidden unit activation values. The accuracy 
of the extracted rules is as high as the accuracy of the 
pruned network. For the breast cancer diagnosis 
problem, the concise rules extracted from the network 
achieve an accuracy rate of more than 95% on the 
training data set and on the test data set. This algorithm 
allows us to consider only a small number of different 
hidden unit activation values and still maintain the 
accuracy of the original network. 
7.13. Self-Organizing Map (SOM) 

Markey et al. [90] identified and characterized 
clusters in a heterogeneous breast cancer computer-
aided diagnosis database. Identification of subgroups 
within the database could help elucidate clinical trends 
and facilitate future model building. A self-organizing 
map (SOM) was used to identify clusters in a large 
(2258 cases), heterogeneous computer-aided diagnosis 
database based on mammographic findings (BI-
RADSTM) and patient age.  

A self-organizing map relates similar cases 
(input vectors) to the same region of a map of Neurons. 
The SOM was computed using the SOM toolbox in 
MATLAB (The MathWorks Inc., Natick, MA). The 
basic SOM consisted of 16 neurons arranged in a single 
layer in a 2-D square grid of 4 × 4 neurons, but different 
configurations were considered. For each case, the 
Euclidean distance between the case and each neuron 
was calculated based on the seven input features (the 
biopsy outcome was not provided to the SOM). For 
input to the SOM, each feature was scaled by 
subtracting the mean and dividing by the standard 
deviation, resulting in each scaled feature having mean 
zero and standard deviation of one. After the most 
similar neuron was determined, the neurons in its 
neighborhood were identified. The neighborhood of a 
neuron was defined as all the neurons within a given 
link distance of the matched neuron. All the neurons in 
the neighborhood were adjusted to have feature values 
closer to the current case. The amount that the neuron 
weights were adjusted was controlled by the learning 
rate. The learning rates and distance threshold values 
used were the default values for the SOM toolbox.  
7.14. Constraint Satisfaction Neural Network 
(CSNN) 

After the clusters were identified, a CSNN was 
used to determine the profiles of the clusters. The 
Lyapunov energy function was used as a measure of the 

network stability. It was found that 1000 iterations were 
sufficient to achieve stability. The weights were 
predetermined using auto associative backpropagation 
neural networks (auto-BP). The auto-BP networks were 
trained with a learning rate of 1.0 for 100 iterations and 
the root mean squared training error was approximately 
0.1 (network outputs between 0 and 1). For each cluster, 
a CSNN was used to generate a profile. Each category 
of the categorical BI-RADS features corresponded to a 
binary variable and associated neuron. For example, the 
mass margin with its five non-zero categories was 
represented by five separate neurons. Patient age was 
translated into a discrete variable with five levels (<40 
years, 40 ≤ x < 50, 50 ≤ x < 60, 60 ≤ x < 70, ≥70 years). 
An additional neuron was used to signify cluster 
membership. The activation level of the neuron 
indicating cluster membership was set to the maximal 
value and the other neurons were allowed to evolve 
until the network reached a stable state. The feature 
neurons that were activated defined the profile of the 
cluster. A profile is a list of feature values that 
succinctly summarizes the cluster and defines a 
‘‘typical’’ case (e.g. mass margin is well circumscribed, 
mass shape is round, and patient age is between 50 and 
60 years). All cases in the cluster do not exactly match 
the profile; there is still a distribution of feature values. 
Notice that unlike common summary statistics, such as 
the cluster centroid, the CSNN profile implicitly 
includes feature selection; only features deemed 
relevant to the network for describing a cluster are 
included. 
7.15. Back-Propagation Artificial Neural Network 
(BP-ANN) 
  A feed-forward back-propagation artificial 
neural network (BP-ANN) was used to predict the 
biopsy outcome from the mammographic findings and 
patient age [2]. The BPANN was trained to minimize 
the sum-of-squares error using the back-propagation 
algorithm. The network had a single hidden layer of 14 
neurons and each neuron in the network used a logistic 
activation function. The network inputs (7) were the BI-
RADS features and patient age. Network inputs were 
rescaled from 0 to 1 (by subtracting the minimum value 
and dividing by the maximum minus the minimum). 
The biopsy outcomes were the network targets; there 
was one output node indicating malignancy. The 2258 
cases were presented to the network in a round-robin 
manner (leave-one out, k-fold cross-validation with k = 
N) and training ended before the average testing error 
on the left-out cases began to increase.  
7.16. Mixed Feature Based Neural Network (MFNN) 

Zheng et al. [152] presented a computationally 
efficient mixed feature based neural network (MFNN) 
for the detection of Microcalcification Clusters (MCC’s) 
in digitized mammograms. The MFNN employs 
features computed in both the spatial and spectral 



domain and uses spectral entropy as a decision 
parameter. Backpropagation with Kalman Filtering (KF) 
is employed to allow more efficient network training as 
required for evaluation of different features, input 
images, and related error analysis. A wavelet-based 
image-enhancement method is also employed to 
enhance microcalcification clusters for improved 
detection. The relative performance of the MFNN for 
both the raw and enhanced images is evaluated using a 
common image database of 30 digitized mammograms, 
with 20 images containing 21 biopsy proven MCC’s and 
10 normal cases.  

The computed sensitivity (true positive (TP) 
detection rate) was 90.1% with an average low false 
positive (FP) detection of 0.71 MCCs/image for the 
enhanced images using a modified k-fold validation 
error estimation technique. The corresponding 
computed sensitivity for the raw images was reduced to 
81.4% and with 0.59 FP’s MCCs/image. A relative 
comparison to an earlier neural network (NN) design, 
using only spatially related features, suggest the 
importance of the addition of spectral domain features 
when the raw image data is analyzed. Two sets of 
features are computed, one set in the spatial domain and 
the other set in the spectral domain. The intent is to 
compute these features from both the raw and wavelet 
based enhanced images. The features, in turn, are 
computed within images block that contain either 
microcalcifications or normal tissues. Then these 
features are applied to MFNN. 
7.17. Enhanced Rough Set Approach  

Aboul Ella Hassanien and J.M. Ali [1] 
presented an enhanced rough set approach for attribute 
reduction and generating classification rules from digital 
mammogram. The classifier model was built and 
quadratic distances similarly; function is used for 
matching process. To evaluate the validity of the rules 
based on the approximation quality of the attributes, a 
statistical test is made to evaluate the significance of the 
rules. The experimental results show that the 
classification algorithm performs well, reaching over 
93% in accuracy with less number of rules compared 
with a well-known decision trees and neural network 
classifier models. 
8. Result Analysis 
        Result analysis is based on ROC and FROC  
8.1 ROC and FROC curve analysis 
       Another measure of performance is the Receiver 
Operating Characteristic (ROC) curve. ROC curves 
measure predictive utility by showing the tradeoff 
between the true-positive rate and the false-positive rate 
inherent in selecting specific thresholds on which 
predictions might be based. The area under this curve 
represents the probability that, given a positive case and 

a negative one, the classifier rule output will be higher 
for the positive case and it is not dependent on the 
choice of decision threshold. 

Table 5.Overview of Classifiers 

 

 



  ROC analysis is based on statistical decision 
theory, developed in the context of electronic signal 
detection, and has been applied extensively to 
diagnostic systems in clinical medicine. The ROC 
curve is a plot of the classifier’s true positive 
detection rate versus its false positive rate. The false 
positive (FP) rate is the probability of incorrectly 
classifying a non-target object (e.g. normal tissue 
region) as a target object (e.g. tumor region). 
Similarly, the true positive (TP) detection rate is the 
probability of correctly classifying a target object as 
being a target object. The TP and FP rates both are 
specified in the interval from 0.0 to 1.0, inclusive, in 
medical imaging, the TP rate is referred to as 
sensitivity, and (1.0 – FP rate) is called specificity. 
Statistical classifiers have parameters that can be 
varied to alter the TP and FP rates. Using these 
parameters, an ROC curve can be generated which 
shows the TP/FP trade-off associated with the 
different values that the parameter(s) may assume. It 
would the be possible to trade a lower (higher) FP rate 
for a higher (lower) TP detection rate by choosing 
appropriate value(s) for the parameter(s) in question. 

 
Figure 8.1. An Example of Two typical ROC Curves 

A typical ROC curve is shown in Figure 8.1. 
The Area under the ROC curve (AUC) is an accepted 
way of comparing classifier performance [127,89]. A 
perfect classifier would have a TP rate of 1.0 (or 
100%) and a FP rate of 0.0 and therefore would have 
an AUC of 1.0. Random guessing would result in an 
AUC of 0.5. When the different possible errors that 
can be made by the classifier have different “costs” 
then “profits” can be maximized by selecting the 
appropriate operating point on the ROC curve. In 
practical application, this requires that the underlying 
parameters of the classifier be easily manipulate to 
facilitate selection of the ROC operating point [47]. 

The AUCs are estimated by using the 
trapezoid rule for the discrete operating points. The 
AUC can also be computed by fitting a continuous 

binormal curve to the operating points, requiring an 
assumption to be made about the functional from of 
the ROC curve [89]. This type of curve fitting is 
generally done for medical imaging studies when 
operating points are obtained by presenting a reader 
with normal and abnormal images in random order, 
and the reader is asked to rank each image on a 
discrete ordinal scale of 5 or 6 categories ranging 
from definitely normal to definitely abnormal 
[45,46,89,127]. This is known as a confidence rating. 
The ROC points are obtained by successively 
considering broader and broader categories of 
abnormal. In other words, thresholds are labeled 
abnormal. While any images rated below the 
threshold are labeled normal.  

For evaluating true-positive detection, 
sometimes it is required not only the existence but 
also the localization of the tumor. A better method for 
this case is FROC analysis that is a plot of operating 
points showing the tradeoff between the TP rates 
versus the average number of false positives per 
image. However, both FROC and ROC analysis 
suffer from their limitations. For instance, they do not 
address the complexity of images and are difficult to 
transform the subjective measurements (radiologist’s 
observations) to the objective FROC curve.  

Zwiggelaar et al. [109] described methods 
for detecting linear structures in mammograms, and 
for classifying them into anatomical types (vessels, 
spicules, ducts, etc). Several different detection 
methods are compared, using realistic synthetic 
images and ROC analysis. 

 
8.2 Sensitivity versus Specificity:  

The use of the overall classification accuracy 
as an evaluation metric is adequate provided the class 
distribution among examples is constant and 
relatively balanced. Furthermore, this evaluation 
approach also assumes equal error costs, i.e. that a 
false positive error is equally significant as a false 
negative error.  Unfortunately, in real-life problems, 
these assumptions are not always true. Consequently, 
the performance of such systems is best described in 
terms of their sensitivity and specificity quantifying 
their performance related to false positive and false 
negative instances.  These metrics are based on the 
consideration that a test point always falls into one of 
the following four categories:  
 False Positive (FP) if the system labels a negative 

point as positive;  
 False Negative (FN) if the system labels a 

positive point as negative; 
 True Positive (TP) and  
 True Negative (TN) if the system correctly 

predicts the label. 



The sensitivity or true positive rate of a learning 
machine is defined as the ratio between the number of 
true positive predictions TP and the number of 
positive instances in the test set. It is defined as 
follows:  

Sensitivity = TP /  ( TP + FN ) 
While, the specificity or true negative rate is defined 
as the ratio between the number of true negative 
predictions TN and the number of negative instances 
in the test set. It is defined as follows:  

Specificity = TN /  ( TN + FP ) 
The overall accuracy is the ratio between the total 
number of correctly classified instances and the test 
set size. It is defined as follows: 

OverallAccuracy = ( Nr / N ) * 100 % 
Where, Nr is the number of correctly classified 
samples during the test run and N is the complete 
number of test samples. 
 
8.3 Metrices  

Recent prospective studies have suggested 
that user’s confidence in computer-aided detection 
(CAD) marks and their tolerance of false positive 
(FP0) marks play a role in the benefit gained from a 
CAD device [141].  To introduce new metrics to 
improve the characterization of the latest generation 
of CAD algorithms and to describe the algorithm 
performance tradeoffs with user adjustable operating 
points. As CAD algorithms continue to improve, the 
new measurements presented. Provide the user with 
more information and a more accurate assessment of 
CAD system performance, while user determined 
operating points allow for tailored/individualized 
incorporation of CAD into the reading environment.  
 
9. Conclusions 

Automated breast cancer detection has been 
studied for more than two decades. This survey was 
conducted in order to establish a roadmap that is able 
to forecast the future developments of image 
processing technology in medicine and healthcare. In 
this paper, we have examined various steps in 
detection of microcalcifications (1) the pre processing 
and enhancement, (2) bilateral subtraction techniques, 
(3) segmentation algorithms, (4) features extraction, 
selection and classification, (5) classifiers, (6) 
Receiver Operating Characteristic (ROC); Free-
response Receiver Operating Characteristic (FROC) 
analysis and their performances were studied and 
compared. 

We have described a comprehensive of 
methods in a uniform terminology, to define general 
properties and requirements of local techniques, to 
enable the readers to select the efficient method that is 
optimal for the specific application in detection of 
microcalcifications in mammogram images. Although 

by now some progress has been achieved, there are 
still remaining challenges and directions for future 
research, such as, developing better preprocessing, 
enhancement and segmentation techniques; designing 
better feature extraction, selection and classification 
algorithms; integration of classifiers to reduce both 
false positives and false negatives; employing high 
resolution mammograms and investigating 3D 
mammograms. The CAD mammography systems for 
microcalcifications detection have gone from crude 
tools in the research laboratory to commercial 
systems.  

Several commercial companies such as R2 
Technology Inc., Hewlett Packard Co., Sterling 
Diagnostic Imaging, Siemens, General Electric, Med 
Detect/Lockheed Martin, were developing or 
designing mammography systems for clinical 
applications. R2 Technology Inc. has produced a 
system Image Checker for microcalcifications and 
mass detection. In order to reduce false positive, 
several different types of features, sometimes, with 
clinical information should be used. As the 
complexity of algorithm increases, the time 
complexity of the CAD will also increase.   
  Mammogram image analysis society 
database is standard test set but defining different 
standard test set (database) and better evaluation 
criteria are still very important. With some rigorous 
evaluations, and objective and fair comparison could 
determine the relative merit of competing algorithms 
and facilitate the development of better and robust 
systems. 
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