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Summary

This thesis is concerned with supervised classification problems in which the aim is to

build a rule to assign objects to one of a finite set of classes. Systems able to perform

these operations using a set of known examples are called classifiers. In particular, this

work focuses on problems where we have to distinguish between two mutually exclusive

classes. In this case, many distinct criteria for comparing performance of rules can be

used. In this thesis an analysis of the Receiver Operating Characteristics (ROC) curve

methodology in pattern recognition is performed and the use of the Area under the ROC

curve (AUC) as performance measure for building dichotomizers and combination rules is

proposed.

The thesis is organized as follows:

• Chapter 1: we introduce the framework of pattern recognition in which this work is

placed. Starting from the basis of statistical pattern recognition we introduce the

main problems of the topics of this thesis that are the two-class classification and in

this context the combination of classifiers.

• Chapter 2: the ROC curve is introduced. We start by giving an overview of the

performance measures depending on prior distributions and misclassification costs.

Next, we present some topics of ROC analysis in pattern recognition and propose

the AUC as a measure to evaluate the ranking of the classifier output on the two

classes.

• Chapter 2: after an analysis of the linear discriminant functions in the light of

the ROC analysis, we propose a non parametric classifier that performs a linear

combination of features. In particular, a weight vector maximizing the ranking of

the classifier through an iterative pairwise coupling of the features is evaluated. The

proposed algorithm is tested on artificial and real data sets and compared with well

known methods in literature.
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• Chapter 4: we start with a brief review of the characteristics of classifier combination.

Then, a technique for the optimal combination in terms of AUC between already

trained dichotomizers is investigated. In particular, the dependence of the AUC on

the weights of combination is analyzed and a method to find the optimal weight

between two classifiers is proposed. Moreover, a greedy approach to extend the

rule to several dichotomizers is presented and experiments on standard data sets are

performed to confirm the effectiveness of the approach.

• Chapter 5: some conclusions and possible future works are presented.

• Appendices: three appendices are provided to render the work self-contained. Ap-

pendix A includes some notes on the data sets employed in the performed experi-

ments. Appendix B is a review of the statistical tests used to assess a statistically

significant difference in the performed while appendix C is a brief introduction to an

algorithm of optimization used in the experiments.
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Chapter 1

Introduction

The purpose of pattern recognition is to analyze a new object and assign it to one of a set

of classes which are known beforehand. The complexity of this problem is hidden by the

human capability in recognizing objects, understanding languages or reading characters.

Systems able to perform these operations using a set of known examples are called clas-

sifiers. A common classification problem consists in distinguishing between two different

mutually exclusive classes (two class or binary problem). In this thesis we will focus on the

analysis of new techniques to better the performance of a classification system according to

a particular performance measure that evaluates the probability of correct discrimination

between the two classes.

In this first chapter we will give the framework in which this research is placed. Starting

from the basis of statistical pattern recognition we will introduce the main problems of the

topics of this work that are the binary classification and in this context the combination

of classifiers. An outline of the thesis is presented in the last section of the chapter.

1.1 Learning from Data

Pattern recognition is a term used to cover the analysis of a problem through discrimi-

nation and classification imitating the ability of living organisms to learn. The goal of

classification is to infer a rule which can assign the correct label and a function which out-

puts a class label for each input objects is called classifier. However, in many classification

problems explicit rules do not exist but examples can be easily obtained. Therefore, in

pattern recognition or machine learning we try to infer decision rules from a limited set of

training examples. The examples are instances in some input space (pattern space) and the

rules consist of general observations about the structure of the input space. We will use the

1



CHAPTER 1. Introduction

words object, pattern or sample to denote a Q-dimensional data vector x = (x1, . . . , xQ)

whose components xi ∈ R are measurements of the features of an object. The features

are the variables specified by the analyzer and thought to be important for classification

(Webb, 2002). In our work we will assume that all the components in the vector are known

and there are no missing values. In this way, each object can be represented as a point in

a feature space X and the continuity assumption should hold: two objects that resemble

each other in the real life should be near in the feature space (i.e. should belong to the

same class).

In multiclass classification we assume that there exist C classes, say ω1 . . . ωC associated

to each pattern x. A general multiclass problem can always be decomposed in several

binary classification problems (Fukunaga, 1990). Therefore, the two-class problem can be

considered as the basic classification problem. In this case, we face with just two classes

labelled as ω1 and ω2.

For the classification, a function f(x) has to be evaluated from a training set. A

training set can be defined as a set of objects (assumed to be independently distributed)

where each one is associated with a label ωi ∈ {ω1, ω2}:

Xtr = {(xi, ωi) |i = 1 . . . L} . (1.1)

The function f should be constructed such that for a given input vector x an estimate of

the label is obtained:

ω̂ = f (x) with f : RQ → {ω1, ω2} . (1.2)

Such a rule partitions the features space in two regions, one for the class ω1 and the other

for the class ω2. Each region can be multiply connected, i.e. it may be made up of several

disjoint regions. The boundaries between these regions are called decision boundaries (or

decision surfaces). Generally, in the regions close to the boundaries there is the highest

probability of misclassifications. An example of such a function is shown in fig. 1.1 where

a linear function is assumed as classifier to separate the two classes ω1 and ω2 according

to two measurements x1 and x2.

If we fix beforehand the decision function, in the training phase just some parameters

for the function has to be determined. In every case, the most usual procedure to fix the

correct set of parameters for the classifier is to minimize an error function on the training

set. The classifier that exhibits the minimum error is the Bayes decision rule that assigns

an object x to the class with the largest a posteriori probability P (ωk|x) with k = 1, 2,

2
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Figure 1.1: Plot of the training set available for a binary classification problem. A simple
linear classifier is shown with its decision boundary. Some misclassifications are present
due to the inability of the classifier to well separate the two classes.

i.e.:

fBayes(x) =







ω1, if P (ω1|x) ≥ P (ω2|x) ,

ω2, if P (ω1|x) < P (ω2|x) .
(1.3)

The Bayes rule is the theoretical optimal rule, i.e. it has the best classification performance

over all possible classifiers (Bishop, 1995). The problem is that this rule requires the real a

posteriori probability of all the classes for all the samples, condition that is not verified in

practice. However, it represents the best rule when there is a complete knowledge of the

a posteriori probabilities and as a consequence it becomes useful in terms of comparison

when artificial data distribution are used.

Indeed, since we have a finite number of examples, achieving optimal performance on

the training set is not required. In general, the training set should be a characteristic

set representative of the true operating conditions and moreover, the larger the sample

size the better the characteristics of data can be determined. Therefore, the main goal of

the classification is not to obtain optimal performance on the training data but it is the

good classification of new and unseen objects. This property called generalization avoids

to find an optimistic estimate of the performance of the classifier. As an example let us

show in fig. 1.2 the same classes distribution of fig. 1.1 but now, instead of using a linear

classifier, we choose a function that perfectly separates the two classes. In these conditions

3
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Figure 1.2: An example of overtrained classifier. This is able to have zero errors on the
training set but it shows low generalization on the test set.

the function well describes the distribution of the training set but, in this way, it is not

adapted to the real structure of data. This phenomenon is called overtraining or overfitting

and it becomes more severe when a large number of features is used. Also the opposite

problem, the underfitting, can occur when the function is not flexible enough to follow

all characteristics in the data. Moreover, since the function f(x) should be defined in the

complete feature space, the volume that should be described increases exponentially in

the number of features (the so called curse of dimensionality (Duda et al., 2001)). Hence,

if the classifier is too complex (i.e. there are too many free parameters) it may model

the noise in the training set but if the classifier is not complex enough then it may fail to

capture the real structure of the data (Webb, 2002).

In this situation although numerous classification functions are available, to find the

real structure in the data is often very hard since it is difficult to find an optimal model

that is able to handle all the details of the data. In fact, a classifier is optimal according

to some quality measure but there are several ways of measuring classifier performance.

In literature, the most employed measures are the error rate or the conditional risk that

present several limitations since they depend on the priors of the classes. Therefore, a new

topic in pattern recognition is to explore alternative criteria to build classifiers directly

optimizing a desired measure. Moreover, it appears that the classification performance

4
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can often be improved by extending one classifier to a combination of classifiers. The

idea of combining classifiers is not a new one but it has received increasing attention in

recent years. The use of different classifiers seems to be reasonable since using only an

optimal classifier to solve a problem often disregards valuable information contained in

other suboptimal classifiers that may be superior in some specific areas of the feature

space.

In this work we focus on the Receiver Operating Characteristic (ROC) curve that

is one of the most commonly used methods to summarize the discriminative ability of

a classification system. In particular, in this thesis we will analyze methods to build a

classification system trying to directly maximize the Area Under the ROC curve (AUC)

that is a measure interpretable as the probability of correct discrimination between the

two classes independently on priors and cost distributions of the classes. We focus on the

search of both a classifier and a combination rule able to directly maximize the AUC. In

the former case we propose a way to estimate the optimal weight of the linear combination

of features so obtaining a ranker in the feature space able to maximize the AUC while in

the latter case a similar method is proposed to combine two dichotomizers extending the

method to several classifiers.

1.2 Outline of the thesis

In this chapter we introduced the basic problems of the pattern recognition and we gave

some motivations for our work. In the next chapter the ROC methodology in pattern

recognition is introduced and an analysis of the statistical properties of the AUC is pre-

sented. In the third chapter a non parametric classifier that performs a linear combination

of features is presented and experiments to assess the reliability of the method are per-

formed. Then, the fourth chapter focuses on the analysis of the combination rules and in

particular, a linear combiner for the direct maximization of the AUC of a classification

ensemble is proposed. Moreover, a new curve to evaluate the separability of the ranking

of the classifier’s output distributions is proposed and experimental results obtained for

the comparison of our method with the literature are shown. Some conclusions and future

developments are drawn in the last chapter. In the end, some appendices are reported

including notes on the data sets and on the statistical tests employed in the performed

experiments.
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Chapter 2

The ROC Methodology in Pattern

Recognition

Receiver Operating Characteristics (ROC) analysis is one of the most widely used methods

to summarize the intrinsic properties of a classification system. ROC graphs are commonly

used in medical decision making, and in recent years have been used increasingly in ma-

chine learning and pattern recognition research due to its capability to compare classifiers

visualizing their performance. One of the most popular and convenient indices is the

Area Under the ROC curve (AUC) that can be interpreted as the probability of correct

discrimination between two different classes.

In this chapter we propose an introduction to the ROC curve and then to the AUC

that is presented as a measure evaluating the ranking capability of the classifier output

on the two classes. The goal is to give a view of these problems according to the research

proposed in the next chapters.

2.1 Performance Measures

In this section we want to provide a general view of the several performance measures

that have been proposed in literature to highlight the different facets explored using the

AUC. To this aim let us consider a binary classification problem between two mutually

exclusive classes (hereafter called Positive (P ) and Negative (N)) class with priors πP and

πN respectively. An evaluation of a trained model is based on the outcomes following the

application on a test set. If we have a classifier f that provides for a given sample x an

output f(x) ∈ R, without loss of generality we can say that f(x) is a confidence degree

that the sample belongs to one of the two classes, e.g. the class P . The sample should be

7
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Table 2.1: The confusion matrix for a two class problem

True Class
P N

Predicted Class
P True Positive False Positive
N False Negative True Negative

consequently assigned to the class N if f(x)→ −∞ and to the class P if f(x)→ +∞.

A threshold t is usually chosen, so as to attribute the sample x to the class N if f(x) ≤ t

and to the class P if f(x) > t. For a given threshold value, two appropriate performance

figures are given by the True Positive Rate (TPR(t)), i.e. the fraction of actually-positive

cases correctly classified and by the False Positive Rate (FPR(t)), given by the fraction

of actually-negative cases incorrectly classified as ”positive”. It is important to take into

account both quantities for a particular choice of t since the consequences of false-negative

and false-positive errors are often very different and hard to quantify.

Let us now suppose to know, besides the function f(x), the class conditional probability

densities on X, i.e. p(x|P ) and p(x|N). In this case, we can also obtain the likelihoods

of P and N with respect to f (i.e. the class conditional densities of the classifier score)

fP (τ) = p(f(x) = τ |x ∈ P ) and fN (τ) = p(f(x) = τ |x ∈ N). As a consequence, TPR(t)

and FPR(t) are given by:

TPR(t) =

∫ +∞

t
fP (τ) dτ, (2.1a)

FPR(t) =

∫ +∞

t
fN (τ) dτ. (2.1b)

Taking into account samples with score less than the threshold it is also possible to define

a True Negative Rate (TNR) and a False Negative Rate (FNR) as:

TNR(t) =

∫ t

−∞
fN (τ) dτ = 1− FPR(t), (2.2a)

FNR(t) =

∫ t

−∞
fP (τ) dτ = 1− TPR(t). (2.2b)

Although a confusion matrix as shown in table 2.1 can provide all of the information

about the classifier quality, it is usual to extract measures from this matrix to illustrate

specific aspects of the performance. As introduced in sec. 1.1, the most used measure is
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the error rate Err defined as:

Err(t) = πP FNR(t) + πNFPR(t), (2.3)

or its complementary measure, the accuracy Acc:

Acc(t) = πP TNR(t) + πNTPR(t) = 1− Err(t). (2.4)

The accuracy estimates the overall probability of correctly labelling a test sample, but

combines the results for both classes in proportion to the priors (Swets, 1988).

In an imbalanced setting, where the prior probability of one class is significantly less

than the others (we can say that the two classes are skewed defining as skew ϑ the ratio

between πP and πN ), accuracy is inadequate as a performance measure since it becomes

biased towards one of the two classes (Provost & Fawcett, 1998), (Huang & Ling, 2005).

In practice, when the skew increases accuracy loses the recognition capability towards

the minority class. To some researchers, large class skews and large changes in class

distributions may seem contrived and unrealistic (Fawcett, 2006). However, class skews

of 101 and 102 are very common in real world domains, and skews up to 106 have been

observed in some domains (Clearwater & Stern, 1991), (Fawcett & Provost, 1996), (Kubat

et al., 1998), (Saitta & Neri, 1998). Substantial changes in class distributions are not

unrealistic either. For example, in medical decision making epidemics may cause the

incidence of a disease to increase over time and in fraud detection, proportions of fraud

varied significantly from month to month and place to place (Fawcett & Provost, 1997).

In each of these examples the prevalence of a class may change drastically without altering

the fundamental characteristic of the class.

In these situations, other performance measure that remains sensitive to the perfor-

mance on each class can be proposed, an example is the precision Prec that expresses the

fraction of the positives detected that are actually correct:

Prec(t) =
TPR(t)

TPR(t) + ϑFPR(t)
.

However, also this measure is related to a single decision threshold for a classification

model.

A similar situation can be described for the misclassification costs related to each class.
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In this case, a cost matrix can be defined as:

Λ =

(

λPP λNP

λPN λNN

)

, (2.5)

where λAB is the cost of assigning a pattern to the class B when it actually belongs to the

class A; the aim is to minimize the conditional risk (Risk) associated to the classification

of a given sample x which in the two class case is defined as:

Risk(t) = πNλNN

∫ t

−∞
fN (τ) dτ + πNλNP

∫ +∞

t
fN (τ) dτ

+ πP λPN

∫ t

−∞
fP (τ) dτ + πP λPP

∫ +∞

t
fP (τ) dτ

= πNλNNTNR(t) + πNλNP FPR(t) + πP λPNFNR(t)

+ πP λPP TPR(t) = πN (λNP − λNN )FPR(t)

+ πP (λPP − λPN )TPR(t) + πP λPN + πNλNN . (2.6)

If we assign the sample to one of the two classes, the Risk becomes:

Risk =











λNNπNfN (f(x))+λPNπP fP (f(x))
πNfN (f(x))+πP fP (f(x)) , if x is assigned to N ,

λNP πNfN (f(x))+λPP πP fP (f(x))
πNfN (f(x))+πP fP (f(x)) , if x is assigned to P .

(2.7)

As a consequence, the risk is minimized when the sample x is assigned to the class P if:

l (f(x)) =
fP (f(x))

fN (f(x))
>

(λNP − λNN )πN

(λPN − λPP )πP
, (2.8)

where l(t) is the likelihood ratio:

l(t) =
fP (t)

fN (t)
. (2.9)

In well defined environments, i.e. where class priors and misclassification costs are

known, evaluation at a single operating point is appropriate. However, in imprecise en-

vironments or when comparing models operating at different points the ROC analysis

becomes more appropriate (Provost & Fawcett, 2001).
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2.2 The ROC Space

A ROC curve is a technique to visualize, organize and select classifiers based on their

performance (Fawcett, 2006). This has been introduced in the signal theory during the

second world war for the analysis of radar signals to depict the tradeoff between the rates

of hit and false alarm of friendly and enemy airplanes (Egan, 1975), (Swets et al., 2000).

Then, the ROC analysis has been successfully extended to the visualization of the behavior

of a diagnostic system (Metz, 1986), (Swets, 1988). One of the first paper in machine

learning is Spackman (1989) that demonstrated the capability of ROC curves in comparing

learning algorithms. Moreover, as introduced in the previous section, its capability to

describe the classifier performance when dealing with skewed class distribution and unequal

classification error costs makes it a very useful instrument in cost sensitive and unbalanced

environments classification.

The ROC curve plots TPR(t) vs. FPR(t) by sweeping the threshold t into the whole

range of f , thus providing a description of the performance of the dichotomizer at different

operating points. As it is possible to note from equation (2.2), the pair (FPR(t), TPR(t))

is sufficient to completely characterize the performance of the classifier since the other

indices are dependent on these. As an example, in fig. 2.1 the ROC space and the per-

formance indices are shown for a given threshold value and gaussian confidence densities.

If we have a perfect knowledge of the class conditional densities the ROC curve can be

easily obtained estimating the likelihood ratio.

If we do not have knowledge of the class densities but we know the values of the classifier

score, the value of the threshold t can be varied between −∞ and +∞ and the quantities

in eq. (2.1) vary accordingly, thus defining the set of the operating points, given by the

pairs (FPR(t), TPR(t)), achievable by the classifier. The two extreme points are reached

when t tends to −∞ or +∞; in the former case, both TPR(t) and FPR(t) approach 1

since all the negative and positive samples are classified as belonging to the positive class

while the contrary happens when t→ +∞. In this way, we obtain an empirical estimator

of the ROC curve by evaluating, for each possible value of t the empirical true and false

positive rates as follows:

T̂PR(t) =
1

mP

mP
∑

i=1

S (f(pi) ≥ t) , (2.10a)

F̂PR(t) =
1

mN

mN
∑

j=1

S (f(nj) ≥ t) , (2.10b)
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(a)

(b)

Figure 2.1: (a) The indices TPR, FPR, TNR, FNR evaluated on two gaussian shaped
confidence densities for a given threshold value t. (b) The same quantities mapped on the
(FPR, TPR) plane.

where S(·) is a predicate that is 1 when the argument is true and 0 otherwise, mP and mN

are the number of samples in the positive and negative class respectively and pi and nj are

the i-th and th j-th sample of the positive and negative class. Let us call the obtained curve

empirical ROC curve in order to distinguish it from the ideal ROC curve that we obtain

with a perfect knowledge of the class conditional densities. A perfectly discriminating

classifier has an ROC curve that passes through the upper left corner (where TPR = 1.0

and FPR = 0.0), while a non discriminating classifier is represented by a diagonal line

from the lower left to the upper right corner. Qualitatively, the closer the curve to the

upper left corner, the better the classifier.

It is worth noting that once the two classes have been specified through their condi-

tional densities, the ideal ROC is unique, while different classifiers trained on the same

problem have different empirical ROCs. A typical empirical ROC curve is shown in fig.

2.2 together with the densities of the confidence degree for the two classes. It is worth

noting that the threshold t varies between the minimum and the maximum value of the

classifier output.

An important feature of the ideal ROC curve is stated in the following lemma:

Lemma 2.2.1. The slope of the curve at any point (FPR(t), TPR(t)) is equal to the

likelihood ratio:

l(t) =
fP (t)

fN (t)
. (2.11)
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(a)

(b)

Figure 2.2: (a) The densities of the confidence degree obtained by the classifier output on
real data and (b) the corresponding ROC curve.

Proof. The proof (Van Trees, 2001), (Green & Swets, 1966) is straightforward: consider

that the slope in correspondence of the point (FPR(t), TPR(t)) is given by:

dTPR(τ)

dFPR(τ)

∣

∣

∣

τ=t
,

which, recalling equation (2.1), is equal to:

−fP (t)

−fN (t)
= l(t).

This is a key result since two very popular decision criteria (risk minimization and

Neyman-Pearson) are based on the likelihood ratio and thus the ROC curve can be prof-

itably used to find the best operating point for both rules. Recalling eq. (2.8) the corre-

sponding operating point on the ROC curve is that where the curve has gradient (Kanungo

& Haralick, 1995):

∇ROC =
(λNP − λNN )πN

(λPN − λPP )πP
.

Such point can be easily found moving down from above in the ROC plane a line with

slope (see eq. (2.6)) m = (λNP−λNN )πN

(λPN−λPP )πP
and selecting the point in which the line touches

13
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Figure 2.3: The ROC curve shown in fig. 2.2 and its convex hull. Three level lines with
the same slope are also shown: the line touching the ROC convex hull determines the
optimal operating point since it involves the minimum risk. The line above the optimal
line does not determine any feasible point, while the line below identifies only suboptimal
points.

the ROC curve (Webb, 2002). This is realizable for an ideal curve but if the ROC curve is

defined by means of a finite number of experimental points connected with straight lines

(such as the curve in fig. 2.2), the optimal operating point can be determined by the point

where a line with slope m, moving down from above touches the ROC curve (Zweig &

Campbell, 1993). Such point lies on the ROC Convex Hull, i.e. the smallest convex set

containing the points of the ROC curve, as formally proved in Provost & Fawcett (2001).

This can be understood by looking at fig. 2.3, where the ROC curve of fig. 2.2 is shown

together with its convex hull and some level lines (called isocost lines) with the same slope.

The line touching the ROC curve determines the optimal point: in fact the line above does

not determine any feasible operating point for the classifier, while the line below intersects

the ROC curve in at least two points, but at the highest expected cost. Once the optimal

operating point has been found, the optimal threshold topt is consequently determined by

reading the value of t related to that point.

An alternative to the risk minimization is the Neyman-Pearson decision rule, where

we assume to know the conditional densities, but not the costs and the prior probabilities.

The goal here is to minimize the probability of error on one class (say P ) subject to the

constraint that the error probability on the other class is not larger than a given constant
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ε. The optimal operating point on the ROC curve is the point with abscissa FPR = ε

corresponding to the decision rule l (f(x)) > τ where τ is the threshold generating the

point. A major consequence of such property is that we can identify the optimal ROC

curve, i.e. the curve which, for each FPR ∈ [0, 1], has the highest TPR among all possible

criteria based on f(x). This is possible if we recall the Neyman-Pearson lemma (Neyman

& Pearson, 1933) which in this case (the proof can be found in Mukhopadhyay (2000) and

Garthwaite et al. (2002)) can be stated as:

Lemma 2.2.2. Consider the decision rule l (f(x)) > τ with τ chosen to give FPR = ε.

There is no other decision rule providing a TPR higher than TPR(τ) with a FPR ≤ ε.

Proof. Let l1 (f(x) (hereafter l1) be a decision rule with:

FPRl1 ≤ ε,

The following identity holds for any decision rule l1:

∫

(l − l1) (fP (x)− τfN (x)) dx ≥ 0, (2.12)

This can be seen by considering all possible values of x: for those values for which l ≥ τ ,

l − l1 ≥ 0 and fP (x) − τfN (x) ≥ 0; similarly, for those values for which l ≤ τ , l − l1 ≤ 0

and fP (x) − τfN (x) < 0. Multiplying out eq. (2.12) and writing the results in terms of

true positive and false positive rate, we get:

∫

(l − l1) (fP (x)− τfN (x)) dx =

∫

lfP (x) dx−
∫

l1fP (x) dx

− τ

∫

lfN (x) dx + τ

∫

l1fN (x) dx = (TPRl − TPRl1)

− τ (FPRl − FPRl1) ≥ TPRl − TPRl1 ≥ 0, (2.13)

where the first inequality follows from the assumption that FPRl1 ≤ ε = FPRl, and the

second inequality follows from eq. (2.12). Thus, TPRl ≥ TPRl1 and l is a decision rule

that maximizes the true positive rate for a given false positive rate.

2.3 Generating an ROC Curve

Up to now we spoke about the ROC curve built from the output of a classifier on a

test set. Indeed to generate an ROC curve we can refer to two alternative approaches:
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Figure 2.4: The ROC curve evaluated with the empirical and the parametric (binormal)
approach.

parametric and non parametric. The latter, introduced in the previous section, is based

on the exploitation of the monotonicity of thresholded classification, i.e. any instance

that is classified positive with respect to a given threshold will be classified as positive

for all lower thresholds as well (Fawcett, 2006). The parametric approach consist in

techniques for fitting ROC curves to continuously-distributed data estimating the curve

parameters on the basis of some assumptions concerning the form of the decision-variable

distributions (Metz et al., 1998). Both the methods present some disadvantages: the non

parametric approach has high computational complexity and gives a non smooth curve

while the parametric model can be wrong if the assumptions on the distributions do not

correspond to the real data (Goddard & Hinberg, 1990). In this paragraph we report an

efficient algorithm to generate the ROC curve in a non parametric way (that is used in the

following of the work) and the most common parametric model, i.e. the binormal model.

A parametric and non parametric ROC curve are compared for the same data in fig. 2.4.

2.3.1 The non parametric approach

A diffused way to obtain T points of the ROC curve of a classifier is to consider the

outputs provided by the classifier on a labelled data set, compute T thresholds ranging
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from the smallest to the largest values produced by the classifier and evaluate the resulting

TPR and FPR for each of the T thresholds. Such kind of method is quite unsatisfactory

because it is strictly dependent on the choice of T and when the discretization applied

to the classifier output is too coarse (the T threshold values considered are few compared

with the number of different values the classifier output assumes) the approximation can

be poor and misrepresent the actual plot.

On the contrary, the ROC curves we use have been generated by employing all the

scores returned by the classifier as possible decision thresholds, thus obtaining a faithful

plot. To this aim we have used an efficient algorithm, described in Fawcett (2006) and

reported in Algorithm 2.1, that simply sorts the test instances decreasing by f scores and

move down the list, processing one instance at a time and updating true positives and

false positives as it goes on. In this way an ROC curve can be created from a linear scan

with complexity O(nlogn) in the number of the data samples L.

The best ROC is generated when all the positive samples end up at the beginning of

the sequence while the worst ROC is generated when the positive and negative samples

are perfectly alternated in the sequence (starting with a positive sample). The principal

problem of this algorithm is when for some samples we obtain the same score. In this case

the algorithm averages the pessimistic and optimistic ROC not emitting any operating

point until all instances of equal f have been processed.
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Algorithm 2.1 Efficient method to generate an ROC curve

Input: Out: the set of the output of the classifier f on a data set; mP > 0 and mN > 0,

the number of positive and negative examples.

Output: R, a list of ROC points increasing by FPR.

Outsort ← Out sorted by decreasing scores

FP ← TP ← 0

R← [ ]

fprev ← −∞
i← 1

while i ≤ card(Outsort) do

if f(i) 6= fprev then

put
(

FP
mN

, TP
mP

)

onto R

fprev ← f(i)

end if

if Outsort(i) is a positive example then

TP ← TP + 1

else /*i is a negative example*/

FP ← FP + 1

end if

i← i + 1

end while

put
(

FP
mN

, TP
mP

)

onto R

2.3.2 The Parametric Approach

To fit an ROC curve with a continuous data distribution different techniques have been

proposed. An approach could be to estimate the mean and the variance of the data

distribution and evaluating the parametric ROC on the basis of a chosen distribution

function. However, one should not use this method unless the data are obtained from test

distributions with known form, since the method is extremely sensitive to the validity of

its distributional assumptions (Goddard & Hinberg, 1990).

Another possible approach less dependent on the choice of the distribution function

is to assume that the data arises from a known distribution; the most common of this

approaches is the binormal model. Such method has the advantage that the obtained

fit is much less dependent upon the validity of assumptions concerning the form of the

underlying distributions, due to the invariance of ROC curves under monotonic transfor-
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mations of the decision-variable scale (Swets et al., 1961), (Egan, 1975). The binormal

model consists of choosing a normal distribution for both the classes and has been found

empirically to provide satisfactory ROC fits to data generated in a very broad variety of

situations (as shown in several papers (Hanley, 1988), (Swets, 1986), (Hajian-Tilaki et al.,

1996)). The approach consists of estimating the mean and the variance of the two normal

distributions assumed for the two classes. Let us say (µP ,σP ) and (µN ,σN ) the parameters

for the positive and negative class respectively, the two distribution functions are:

FN (x) = Φ

(

x− µN

σN

)

,

FP (x) = Φ

(

x− µP

σP

)

,

(2.14)

where Φ(z) = 1√
2π

∫ z
−∞ e−ζ2/2 dζ is the standard normal cumulative distribution function.

If t is the threshold between positive and negative class we can evaluate the TPR and

FPR as:

FPR(t) = Prob(x > t|x ∈ N) = 1− Prob(x ≤ t|x ∈ N)

= 1− Φ

(

t− µN

σN

)

= Φ

(

µN − t

σN

)

, (2.15a)

TPR(t) = Prob(x > t|x ∈ P ) = 1− Prob(x ≤ t|x ∈ N)

= 1− Φ

(

t− µP

σP

)

= Φ

(

µP − t

σP

)

, (2.15b)

and we obtain:

−t = σNΦ−1 (FPR)− µN = σP Φ−1 (TPR)− µP

⇓

Φ−1 (TPR) =
µP − µN

σP
+

σN

σP
Φ−1 (FPR) . (2.16)

If we define Metz et al. (1998):

a =
|µP − µN |

σP
, b =

σN

σP
, (2.17)
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substituting in eq. (2.16) we obtain every point of the ROC curve as:

Φ−1 (TPR) = a + bΦ−1 (FPR)

⇓
TPR = Φ

(

a + bΦ−1 (FPR)
)

, (2.18)

and the two normal distribution according to eq. (2.14) are:

FN (x) = Φ(x), FP (x) = Φ(bx− a). (2.19)

In practice, we have a parametrization that is still based on the binormal model but with

only two parameters {a, b} that better represent the data.

2.4 Comparing Classifiers: the AUC

In the previous section we have shown that the ROC curve is a two-dimensional depiction

of classification performance. However, if we want to compare the average performance of

different classifiers it can happen that ROC curves cross each other, and in general that

one classifier can be superior for some values of the threshold and another superior for

other values of the threshold. To evaluate the classifier performance independently of the

threshold a single scalar value can be adopted: the Area Under the ROC curve (AUC)

(Bamber, 1975). To put in evidence this behavior we report in fig. 2.5 the ROC curves of

two classifiers (Fawcett, 2006), say f1 and f2. In the left graph we plot two classifiers with

crossing ROC curves; in this case also if f2 has greater AUC than f1, it becomes worst

for an FPR > 0.6. In the right graph another example is reported for a discrete classifier

f1 that reaches the performance of the probabilistic classifier f2 just for one value of the

threshold but it becomes inferior further from this point.

Also if AUC fails to take this into account, it is often used when a general measure

of predictiveness is desired since it represents a good measure on how well the rule differ-

entiates between the distributions of the two classes without being influenced by external

factors. In practice it can be seen as an alternative parameter to the Bayes risk to evaluate

the quality of the decision rule since it is not related to a particular prior probabilities and

costs distributions.

Since the AUC is a portion of the area of the unit square, its value will always be

between 0 and 1 (for perfectly discriminating classifiers). However, since random guessing

produces the diagonal line between the points (0,0) and (1,1) (i.e. an AUC of 0.5), no
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(a) (b)

Figure 2.5: Comparison of the ROC curves and the AUCs for two classifiers f1 and f2.
The graph (b) shows the AUC for a discrete (f1) and a probabilistic (f2) classifier.

realistic classifiers should have an AUC less than 0.5. If this happens it means that our

classifier is able to discriminate between the two classes but it exchanges the labels. For

example if the AUC for a classifier is equal to zero it means that all the positive samples

are classified as negative and all the negative as positive, i.e. our classifier perfectly

discriminates the two classes but the decision is always wrong. In this case if we exchange

the label, the AUC will be equal to 1.

It is worth noting that the AUC is an overall measure of how accurately the classifier

ranks negative from positive patterns. In the ideal case, the following lemma states:

Lemma 2.4.1. The AUC provides the probability that f(pi) > f(nj) where pi and nj

are two samples randomly extracted from the positive and the negative class respectively.

Proof. We know that:

AUC =

∫ 1

0
TPRdFPR (2.20)

Therefore:

AUC =

∫ 1

0
Prob (f(p) > t|p ∈ P ) dProb (f(n) > t|n ∈ N) .

Recalling eq. (2.1b) we obtain that:

dProb (f(n) > t|n ∈ N) = −fN (t)dt;
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moreover, we can perform a change of variable in the integral so obtaining:

AUC = −
∫ +∞

−∞
Prob (f(p) > t|p ∈ P ) fN (t)dt

= −
∫ +∞

−∞
Prob (f(p) > t|p ∈ P ) fN (t)dt.

the last integral is actually the Prob (f(pi) > f(nj)|pi ∈ P,nj ∈ N) and the lemma is

proved.

Nevertheless, some relations can be drawn between the AUC and the figures to be

optimized in the decision criteria described in sec. 2.1. For the risk minimization criterion,

it is simple to verify that, AUC provides the probability that l(f(pi)) > l(f(nj)) and the

average Bayes risk becomes:

〈R〉 =

∫ +∞

−∞
Risk(t)φl(t)dt =

∫ +∞

−∞
Risk(t) (πP fP (t) + πNfN (t)) dt

=

∫ +∞

−∞

(

πN (λNP − λNN )FPR(t) + πP (λPP − λPN )TPR(t)

+ πP λPN + πNλNN

)

(πP fP (t) + πNfN (t)) dt

=πP πN (λNP − λNN )

∫ +∞

−∞
FPR(t) dTPR + π2

N (λNP − λNN )

·
∫ +∞

−∞
FPR (−dFPR) + π2

P (λPP − λPN )

∫ +∞

−∞
TPR dTPR

+ πP πN (λPP − λPN )

∫ +∞

−∞
TPR (−dFPR) + π2

P λPN + πP πNλPN

+ π2
NλNN + πP πNλNN

=πP πN (λNP − λNN )(1−AUC) +
1

2
π2

N (λNP − λNN ) +
1

2
π2

P (λPP − λPN )

− πP πN (λPP − λPN )AUC + π2
P λPN + πP πNλPN + π2

NλNN + πP πNλNN

= (λNP + λPN )πP πN +
1

2

(

(λNP + λNN ) π2
N + (λPN + λPP )π2

P

)

− (λNP + λPN − λNN − λPP )πP πNAUC. (2.21)

where φl(t) is the unconditional density of the likelihood ratio. This represents a more
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general result than the one presented in Hand & Till (2001) that does not take into account

the cost distributions. In summary, there exists a linear relation between the AUC and the

Bayes risk: the higher the AUC for the decision rule, the lower the average Bayes risk. As

a consequence, a learning algorithm which maximizes the AUC produces a classification

system with minimal average Bayes risk. However, it is worth noting that this does not

imply that, for a given set of costs and a priori probabilities, a system with a high AUC

provides necessarily a Bayes risk lower than a system with smaller AUC (see again fig.

2.5).

As regards the Neyman-Pearson criterion, it is simple to verify that the AUC is related

with the average error made on class P . In fact we have:

AUC =

∫ 1

0
TPRdFPR =

∫ 1

0
(1− εP )dεN , (2.22)

from which:

〈εP 〉 = 1−AUC,

where εN and εP are the error probabilities on class P and N respectively.

Due to its characteristics, the AUC has been recently proposed as an alternative single

number measure for evaluating the predictive ability of learning algorithms. Huang &

Ling (2005) have been shown theoretically and empirically that AUC is a better measure

than accuracy and should replace it in comparing learning algorithms. Therefore, we

can conclude that in every case, a classifier that maximizes the AUC also maximizes the

average quality measure of the decision criterion.

2.5 How to Evaluate the AUC

Since the AUC is the area under a curve it can be numerically estimated by integrating

the corresponding ROC, i.e. using eq. (2.22). Bradley (1997) proposed to construct an

estimate of the ROC curve directly for specific classifiers by varying a threshold and then

to use an integration rule (for example, the trapezium rule) to obtain an estimate of the

area beneath the curve. Moreover, Provost & Fawcett (2001) elaborated an algorithm to

evaluate the AUC with the trapezoid rule with a low computational complexity.

The estimation can also be performed using the binormal model presented in sec. 2.3.2.

In this case the AUC can be evaluated as:

ÂUC = Φ

(

a√
1 + b2

)

,
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where a and b have been defined in eq. (2.17).

The AUC, despite being defined as a geometric quantity, has two important statis-

tical interpretations. First, the empirical AUC is equal to the Wilcoxon-Mann-Whitney

(WMW) statistic (Mann & Whitney, 1947): recalling that f (pi) and f (nj) are the output

of a classifier on the i-th positive sample pi and on the j-th negative sample nj , we have:

R =

mP
∑

i=1

mN
∑

j=1

I(f (pi) , f (nj))

mP mN
, (2.23)

where I(a, b) is an indicator function defined as

I(a, b) =



















1, if a > b,

0.5, if a = b,

0, if a < b.

In this way, it is possible to evaluate the AUC of f directly through (2.23) without explicitly

plotting the ROC curve and estimating the area with a numerical integration. Several

papers try to maximize the AUC suggesting an approximation approach to the WMW

statistic. For example in Yan et al. (2003) and Herschtal & Raskutti (2004) a continuous

function is used so as it is possible to use the gradient methods to solve the optimization

problem. The proof of this equivalence can be found in Pepe (2003) and Sing (2004).

Second, the AUC represents also the probability that a randomly chosen negative

example will have a smaller estimated probability of belonging to the positive class than a

randomly chosen positive example, i.e. the probability of correct pairwise ranking (Hanley

& McNeil, 1982).

We can state it in the following proposition:

Proposition 2.5.1. 1. The area under an empirical ROC curve is equivalent to the

Wilcoxon-Mann-Whitney statistic R in eq. (2.23).

2. The area under an empirical ROC curve is equal to the probability that the learner

will assign a higher score to a randomly drawn positive sample than to a randomly drawn

negative sample: AUC = Prob (f(pi) > f(nj)|p ∈ P andn ∈ N).

Proof. Without loss of generality we assume that the values that the classifier f assigns

to the samples are pairwise different.

1. If we refer to the algorithm 2.1 to build the ROC curve, we can see that the AUC

is the sum of the area of the vertical columns under the curve evidenced in fig. 2.6.
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Figure 2.6: The ROC plot used in the proof of proposition 2.5.1.

The area for the column for the sample f(nj) is equal to the number of positive samples

that are scored higher, which is the relative rank of the negative sample with respect to

the positive samples. For positive and negative samples labelled in descending order (i.e.

f(p1) > . . . > f(pmP
) and f(n1) > . . . > f(nmN

)), we have that the area under a column

is the rank of a negative sample with respect to all the positive samples, i.e.:

Acol =

mN
∑

j=1

rank (f(nj)|{f(p1), . . . , f(pmP
)}) .

Since the AUC is the sum on all positive samples scaled by mP ·mN , we can write:

AUC =
1

mP mN
Acol =

1

mP mN

mN
∑

j=1

rank (f(nj)|{f(p1), . . . , f(pmP
)})

=
1

mP mN
I(f (pi) , f (nj)) = R.

and the equivalence is proved.

2. From the proof of the point 1 we can see that the area of a column for the sample
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nj can also be evaluated as the Prob (f(nj) < f(p)|p ∈ P ). Therefore, we have:

AUC =

mN
∑

j=1

Prob (f(nj) < f(p)|p ∈ P )

= Prob (f(pi) > f(nj)|p ∈ P and n ∈ N) .

Moreover, since it can be demonstrated that the WMW statistic provides an unbiased

estimate of the probability Prob (f(pi) > f(nj)) ∀i = 1 . . .mP , j = 1 . . .mN (Lehmann &

D’Abrera, 1975), the empirical AUC has a propriety similar to the ideal AUC shown in

lemma 2.4.1 and it represents a measure of the quality of the ranking of the classifier: when

AUC=1, the classifier correctly ranks all the pairs (p,n) while if AUC=0.5 the classifier

is ineffective, i.e. its performance is equal to a random ranker.

2.6 AUC in Ranking Problems

In the previous sections we reported an analysis of the ROC curve in the context of pattern

recognition. In particular, the AUC have been introduced as measure independent on

priors and misclassification costs and its statistical properties in association to the ranking

between positive and negative samples of the classifier’s output has been shown.

Therefore, AUC can be helpful in many real cases where imbalanced environments

are present or when the ranking is more useful than the categorization of patterns into

classes. The former case is a fundamental aspect of medical detection problems or other

screening applications where imbalanced class priors or misclassification costs are often

present (Bradley, 1997).

The second aspect becomes important in many data mining applications where accu-

racy is not enough. As an example, consider a document retrieval application (Cortes &

Mohri, 2003) where a search engine selects a prefixed number of documents from a huge

database on the basis of some search criteria and prompts them to the user according

to an estimated order of relevance. In this case, the actually significant outcome is the

ranking of the documents rather than their categorization.

Another example is in direct marketing (Huang & Ling, 2005) where we need to pro-

mote the top percent customers during gradual roll-out, or we often deploy different pro-

motion strategies to customers with different likelihood of purchasing. To accomplish these

tasks a ranking of customers in terms of their likelihoods of buying is needed more than
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a classification of buyers and non buyers. Thus, a ranking is much more desirable than

just a classification (Ling & Li, 1998) and it can be easily obtained since most classifiers

produce probability estimations that can be used for ranking examples.

It is worth noting that the difference between classifier and ranker is the threshold.

If no threshold is fixed, the classifier can be considered as a ranker, since it orders the

patterns in such a way that f(x1) > f(x2) means that pattern x1 is more likely belonging

to class P than pattern x2.

Cortes & Mohri (2003) have proved that algorithms designed to minimize the error rate

may not lead to the best possible AUC thus motivating the use of algorithms and combiners

directly optimizing the AUC. In literature, this problem has been recently analyzed and

new algorithms focusing on the AUC have been proposed. In the next chapters we follow

this approach and propose new combination rules and classifiers directly built to maximize

the AUC.
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Chapter 3

A Linear Classifier Maximizing

the AUC

One of the most useful way to represent pattern classifiers is in terms of a set of discrim-

inant functions. To fix such a function is equivalent to specify a decision rule without

any assumptions on the class conditional densities. Discriminant functions that are linear

combination of the features have a variety of pleasant analytical properties and result in

linear decision boundaries. Different optimization schemes can be used to correctly esti-

mate the parameters of this function according to some adopted performance measure. In

literature the majority of the built classification systems try to minimize the error rate

and only recently the AUC has become of interest in the project of a classifier.

In this chapter, after a brief review of the state of the art and an analysis of the

linear discriminant functions with respect to the ROC curve, we propose a nonparametric

classifier that performs a linear combination of features choosing weights suitable for the

maximization of the AUC. The approach is based on the study of the WMW statistic

of each single feature and on an iterative pairwise linear coupling of the features used to

optimize the ranking of the combination.

3.1 Discriminant Functions and Ranking

In sec. 1.1 we introduced the search of a decision rule and a decision boundary to well

separate two or more classes making assumptions on the class conditional probability densi-

ties. Another approach consists in making assumptions about the form of the discriminant

functions.

The choice of a discriminant function may depend on prior knowledge about the pat-
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terns to be classified or may be a particular functional form whose parameters are adjusted

by a training procedure (Webb, 2002). In every case, a classifier can be viewed as a machine

that computes a set of discriminant functions and assign the label to the corresponding

largest discriminant. The choice of a discriminant function is not unique. We can always

apply to the discriminant function a monotonically increasing function without influenc-

ing the resulting classification. Therefore, even though the discriminant can be written in

different ways the decision rules and the partition of the feature space in decision regions

are equivalent.

The problem of finding a discriminant function can be formulated as a problem of

minimizing a criterion function, i.e. it depends on the performance measure we want

to maximize. In the previous chapter, we introduced the AUC as a suitable measure

to evaluate the ability of a classifier to rank instances in binary classification problems.

Therefore, in our analysis we focus on learning algorithms that take into account this

performance measure.

3.1.1 Learning Algorithms based on Ranking

Ranking is a popular topic in the machine learning field and on these bases several learning

algorithms have been proposed in the recent literature.

A first approach can be based on the direct maximization of the WMW statistic. In

particular, a method based on logistic regression is proposed in Herschtal & Raskutti

(2004) where a continuous function is used to approximate the WMW statistic and the

descent gradient method is applied to solve the optimization problem. However, such an

approximation in the case of rank optimization has to be carefully handled since in this

process information related to ranking may be easily lost.

A well performing learning algorithm is proposed in Freund et al. (2003) where a

method to combine rankings based on the boosting approach has been introduced. Boost-

ing is a method to produce highly accurate prediction rules by combining many weak

rules which may be only moderately accurate (Freund & Schapire, 1997). Like all boost-

ing algorithms, RankBoost operates in rounds assuming access to a separate procedure

(i.e. the “weak learner”) that, on each round, is called to produce a weak ranking. The

algorithm maintains a distribution Dτ over X ×X that is passed on round τ to the weak

learner. Intuitively, RankBoost chooses Dτ to emphasize different parts of the training

data. A high weight assigned to a pair of instances indicates a great importance that the

weak learner orders that pair correctly. Weak rankings have the form hτ : X → R and

they are based on the given ranking features. In particular, Freund et al. (2003) derives a
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weak ranking from the ranking of the feature xi by comparing the score of xi on a given

instance to a threshold θ and assigning a default score to instances not correctly ranked by

xi. Then, the weak rankings are used in the boosting algorithm to update the distribution

Dτ according to:

Dτ+1(pi, nj) =
Dτ (pi, nj) exp(ατ (h(pi)− h(nj)))

Zτ
,

where Zτ is a normalization factor given by:

Zτ =
∑

pi,nj

Dτ (pi, nj) exp(ατ (h(pi)− h(nj))).

In practice, supposing that for (pi, nj) we want pi to be ranked higher than nj (in all other

cases Dτ will be zero) and assuming ατ > 0, this rule decreases the weight Dτ (pi, nj) if hτ

gives a correct ranking (i.e if hτ (pi) > hτ (nj)) and increases the weight otherwise. Thus,

Dτ will tend to concentrate on the pairs whose relative ranking is hardest to determine.

The weight ατ is chosen to be equal to:

α =
1

2
ln

(

1 + r

1− r

)

,

with

r =
∑

pi,nj

Dτ (pi, nj)(h(pi)− h(nj)),

and the final ranking H is a weighted sum of the weak rankings:

H(x) =
T
∑

τ=1

ατhτ (x).

A variation of RankBoost is proposed in Rudin et al. (2005). In particular, since in the

boosting approach the margin is an important indicator of the classifier’s generalization

ability, they provide a general margin-based bound for ranking and derive an algorithm

able to create large margins. In fact, RankBoost is not directly built to maximize the

ranking margin and thus, it may not increase the margin at every iteration. Therefore, they

introduced the Smooth Margin Ranking algorithm that is based on a different estimation

of the weights ατ at each iteration and is able to make progress in increasing the ranking

margin.

Another approach for the maximization of AUC is applied to the well known decision
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trees (Breiman et al., 1984). In Ferri et al. (2002) a novel splitting criterion is proposed to

choose the split that guarantees the highest local AUC. In particular, the AUC between

two consecutive points of the ROC curve obtained sorting the leaves of each split by local

positive accuracy is evaluated and the value maximizing this quantity is used to determine

the best split in terms of AUC for the decision tree.

Recently, rank optimizing classifiers based on the well known Support Vector Machines

(SVM) (Vapnik, 1998) have came into focus. In Rakotomamonjy (2004) rank optimizing

kernels has been investigated leading to a formulation that produced comparatively inferior

results to the regular SVM. Given a linear classifier f(x) = wTx, it minimizes the l2-norm

of w with constraints on the ordering of the objects. The optimization problem is defined

as follows:

min
∥

∥w2
∥

∥+ C

mP
∑

i=1

mN
∑

j=1

ξij

s.t.∀i, j : f(pi)− f(nj) ≥ 1− ξij , ξij ≥ 0,

where C is a trade off parameter between the two parts of the objective and the slack

variables ξij are used to approximate the indicator function in the WMW statistic. By

introducing a kernel, thanks to the self duality of the l2-norm, the above formulation

remains valid for nonlinear SVM.

A similar kernel formulation which led to a better ranking performance compared to

the previous work has been introduced in Brefeld & Scheffer (2005). In their algorithm

they used regularized quadratic optimization to find a kernel structure that improves the

ranking performance. Moreover, they provide a method to achieve a lower computational

complexity of the algorithm reducing the number of constraints of the problem representing

the mP mN pairs in mP + mN cluster centers.

A linear programming approach similar to l1-norm SVM (Bennett & Mangasarian,

1992) has been developed in Ataman et al. (2006) while in Tax et al. (2006) a similar

linear weighting of features (called AUC Linear Programming Classifier(AUC-LPC)) has

been successfully applied to the interstitial lung disease. In this cases the optimization

problem for a linear classifier can be written as:

min
∥

∥w1

∥

∥+ C

mP
∑

i=1

mN
∑

j=1

ξij

s.t.∀i, j : wT (pi − nj) ≥ 1− ξij , ξij ≥ 0.
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This can be rewritten in a linear programming formulation as:

min
∑

h

(uh + vh) + C

mP
∑

i=1

mN
∑

j=1

ξij

s.t.∀i, j : (uT − vT )(pi − nj) ≥ 1− ξij , ξij ≥ 0,∀h : uh ≥ 0, vh ≥ 0.

Since using the slack variables ξij to approximate the indicator function in the WMW

statistic has serious drawback (the number of constraints is quadratic in the number of

the objects), different strategies to speed up the algorithm are also proposed: in the first

paper the strategy consists of randomly sample the objects from both classes while the

latter randomly subsample the constraints avoiding to focus on the local structure of the

data.

3.2 Linear Discriminant Functions and ROC Curve

In this section we focus on the analysis of the linear classifiers and the relative decision

boundary to put in evidence its relation with ROC curve and AUC. A linear discriminant

function can be written as:

f(x) = wTx + w0 =
L
∑

i=1

wixi + w0, (3.1)

where w is the weight vector and w0 the threshold weight. We know that a sample x is

assigned to the class P if f(x) > 0 and to the class N if f(x) ≤ 0, i.e. x is assigned to

P or to N if wTx exceeds or not the threshold −w0. The equation f(x) = 0 defines the

decision boundary φ that separates the two decisions regions. In our case the decision

boundary is a hyperplane. For a given threshold w0 = −t it is possible to define a TPR

and a FPR as in eq. (2.10) and so it is possible to build an ROC curve and evaluate the

corresponding AUC.

To put in evidence the relation between the discriminant linear function and the ROC

curve let us focus on a two-dimensional problem. In this case the decision function sim-

plifies in:

f(x) = w1x1 + w2x2 + w0, (3.2)

and the sample x will be assigned to P if w1x1 + w2x2 + w0 > 0 and to N otherwise.

In this case the hyperplane collapses in a straight line with slope m equal to −w1/w2.

Defining the two weights w1 and w2 is equivalent to fix the slope of the decision boundary

33



CHAPTER 3. A Linear Classifier Maximizing the AUC

FPR

T
P

R

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

t
1

t
2
 

t
3

(a)

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

x
1

x 2
φ

1
φ

2
φ

3

(b)

Figure 3.1: Example of two-dimensional problem with two overlapping classes. Figure (a)
shows the ROC curve for a linear classifier with three different operating points corre-
sponding to the three straight lines shown in figure (b).

while varying the value −w0 means that we are translating the boundary in the feature

space. Once a particular value for the slope has been chosen, the distribution of the value

w0 produces a family of lines (decision boundaries) with the same slope. Each of them

defines a particular classifier which produces a certain pair (TPR,FPR) corresponding to a

particular point on the ROC curve. When the value of w0 is varied (and thus the decision

boundary is translated) the whole ROC curve is drawn. In summary, each value for m

produces a particular ROC curve where each point is associated to one of the parallel

lines with that slope in the feature space. In fig. 3.1 an example of a two-dimensional

problem with two overlapping classes is shown. Fig. 3.1.a shows the ROC curve for

a linear classifier with three different operating points corresponding to three different

straight lines in the feature space represented in fig. 3.1.b. Each point (TPR,FPR) on the

curve corresponds to a particular (operating point for the) classifier, i.e. to a particular

value for the threshold −w0 and, consequently, to one of the parallel lines defined by the

chosen slope.

A same reasoning can be done for the AUC. In this case let us consider the decision

function in eq. (3.2) and the decision boundary Φ. Given two points in the feature space

p = (p1, p2) and n = (n1, n2) coming, respectively, from class P and N their signed
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distance from the decision boundary are:

d(p, φ) =
w1p1 + w2p2 + w0√

w2
1 + w2

2

,

d(n, φ) =
w1n1 + w2n2 + w0√

w2
1 + w2

2

.

Thus, for a correct ranking of the pair p and n we should have d(p, φ) > d(n, φ); this means

that the positive point follows the negative point on the line orthogonal to the decision

boundary. As a consequence, the classification cannot be wrong for both samples: in the

worst case, if the threshold is not adequately chosen, both the points lie on the same side

of the decision boundary. However, a suitable shifting of the decision boundary allows the

two points to be correctly classified. Hence, if w1p1 + w2p2 > w1n1 + w2n2, we can choose

a threshold w∗
0 such as:

− (w1p1 + w2p2) ≤ w∗
0 ≤ − (w1n1 + w2n2)

⇓
w1p1 + w2p2 + w∗

0 ≥ 0 and w1n1 + w2n2 + w∗
0 ≤ 0.

On the other side, if the pair p and n is not correctly ranked, there is no any value

for the threshold w0 which can correctly classify both the points. In summary, the slope

maximizing the AUC is the slope for which there is the maximum number of pairs correctly

ranked, i.e. of the pairs that could be correctly classified with a suitable choice of the

threshold.

A two-dimensional example is shown in fig. 3.2. Five samples for the positive class

and five for the negative class, i.e. twenty-five possible pairs, are plotted. In fig. 3.2.a the

decision boundary φ is shown with a slope that maximizes the AUC. As an evidence, we

consider the perpendicular to phi and project all the samples on that line; fixing a way to

move along the line, it is possible to obtain a correct ranking among all the possible pairs

(AUC = 1). If we choose a threshold on this line it is possible to build a linear classifier

that is able to assign all the samples to the correct class. In fig. 3.2.b we have a similar

situation but in this case the slope of the decision boundary does not lead to a perfect

ranking (AUC = 22/25) and this reflects in errors in the class assignment.
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Figure 3.2: Two-dimensional problem with five positive samples (asterisks) and five neg-
ative samples (plus signs). In (a) the decision boundary leading to a correct ranking, i.e.
maximum AUC, is shown while in (b) no suitable threshold can be chosen to linearly
separate the two classes.
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3.3 AUC Maximization in the Two-Dimensional Feature

Space

In the previous section we put in evidence the meaning of the AUC for a linear classifier.

According to this, let us now focus on an approach to linearly combine features so as to

maximize the AUC of the resulting linear classifier. To this aim, we firstly consider how

to find an opportune slope for the linear combination of two features that maximizes the

WMW statistic. Let X be the set of samples as defined in sec. 1.1 and let us consider two

generic features xh and xk. Let us consider the values of the h-th and k-th features on

the i-th positive sample pi and the j-th negative sample nj : ph
i nh

j pk
i nk

j and the relative

ranking measures for the two features according to eq. (2.23) by:

Rh =

mP
∑

i=1

mN
∑

j=1

I(ph
i , nh

j )

mP mN
and Rk =

mP
∑

i=1

mN
∑

j=1

I(pk
i , n

k
j )

mP mN
. (3.3)

Since we want to maximize the AUC we are independent of the threshold. Hence, let us

consider a linear combination of the two features:

xlc = αxh + (1− α)xk, (3.4)

where α/ (1− α) is the relative weight of the features xk with respect to xh. The value of

xlc on the positive and negative sample will be:

plc
i = αph

i + (1− α)pk
i , (3.5a)

nlc
j = αnh

j + (1− α)nk
j . (3.5b)

According to the WMW statistic the quality of the ranking of xlc can be measured by

Rlc =

mP
∑

i=1

mN
∑

j=1

I(plc
i , nlc

j )

mP mN
, (3.6)

and depends on the value of the weight α. We want to maximize the AUC relative to the

pair of features; to this aim we have to analyze the term I(plc
i , nlc

j ) that depends on the

value of I(ph
i , nh

j ) and I(pk
i , n

k
j ). We can distinguish three different important cases1:

1It is worth noting that the cases relative to I(a, b) = 1/2 (that are only common in the nominal data)
are treated as in the worst case, i.e. when the ranking between the features is wrong
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• I(ph
i , nh

j ) = 1 and I(pk
i , n

k
j ) = 1 means that according to both features the two

samples are correctly ranked and I(plc
i , nlc

j ) = 1 independently of α.

• I(ph
i , nh

j ) = 0 and I(pk
i , n

k
j ) = 0 means that neither feature correctly ranks the two

samples and I(plc
i , nlc

j ) = 0 independently of α.

• I(ph
i , nh

j ) = 1 and I(pk
i , n

k
j ) = 0 or I(ph

i , nh
j ) = 0 and I(pk

i , n
k
j ) = 1 means that only

one feature correctly ranks the two samples and the value of I(plc
i , nlc

j ) is dependent

on α.

According to these cases we can subdivide the set of samples in four different subsets

defined as:

Xrs =
{

(i, j)|I(ph
i , nh

j ) = r and I(pk
i , n

k
j ) = s

}

. (3.7)

As a consequence the expression of the ranking of the combined features will be:

Rlc =
1

mP mN





∑

(i,j)∈X00

I(plc
i , nlc

j ) +
∑

(i,j)∈X11

I(plc
i , nlc

j ) +
∑

(i,j)∈X10∪X01

I(plc
i , nlc

j )





=
1

mP mN
[0 + card(X11) + ν(α)] . (3.8)

Hence, we have to focus on the pairs on which the features are differently ranked, i.e. on

the sets X10 and X01. In order to find the value of α that maximizes the ranking we have

to study the term
∑

(i,j)∈X10∪X01
I(ξi, ηj) looking at the weight for which I(ξi, ηj) = 1⇒

ξi > ηj , i.e. :

αph
i + (1− α)pk

i > αnh
j + (1− α)nk

j

⇓
α∆h

ij + (1− α) ∆k
ij > 0, (3.9)

where ∆h
ij = ph

i − nh
j and ∆k

ij = pk
i − nk

j . From eq. (3.9) we can obtain two different

constraints on α according to which set we are considering; we have:

α <
∆k

ij

∆k
ij −∆h

ij

if (i, j) ∈ X10, (3.10a)

α >
∆k

ij

∆k
ij −∆h

ij

if (i, j) ∈ X01. (3.10b)
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Figure 3.3: Example of the distributions of the ratio
∆k

ij

∆k
ij−∆h

ij

evaluated on the sets X10

(a) and X01 (b)

If eqs. (3.10) is verified for each pair (i, j) ∈ X10 ∪ X01, it is possible to obtain the

maximum value for the function ν(α), i.e. the cardinality of X10 ∪X01. In this case, we

can find an optimum α:

max
(i,j)∈X01

∆k
ij

∆k
ij −∆h

ij

< αopt < min
(i,j)∈X10

∆k
ij

∆k
ij −∆h

ij

. (3.11)

Anyway, this condition is verified only if the two sets are completely disjoint, i.e. if

the two features are highly complementary in the ranking evaluation. When the two sets

are not separated we have to evaluate the weight α using the cumulative distributions:

F10 = card

(

(i, j) ∈ X10

∣

∣

∣

∣

∣

∆k
ij

∆k
ij −∆h

ij

> α

)

, (3.12a)

F01 = card

(

(i, j) ∈ X01

∣

∣

∣

∣

∣

∆k
ij

∆k
ij −∆h

ij

< α

)

. (3.12b)

Hence, the function that has to be maximized is:

ν(α) = F10(α) + F10(α), (3.13)

and the optimal value of α can be found by means of a linear search.
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Figure 3.4: The trend of the function ν(α) obtained by the two distributions shown in fig.
3.3

An example of the real distributions of the ratios ∆k
ij

/

(∆k
ij −∆h

ij) in the two sets X10

and X01 is shown in fig. 3.3 while the function ν(α) obtained by these two distributions

is plotted in fig. 3.4.

3.4 AUC Maximization in the Multidimensional Feature

Space

The next step of our method consists in extending the procedure described in the previous

section to a higher number of features. To this aim, let us consider Q features x1 . . . xQ

and their linear combination:

xlc = α1x1 + · · ·+ αQxQ =

Q
∑

i=1

αixi = αTx. (3.14)

The goal is to find the weight vector:

αopt = (α1 . . . αQ) , (3.15)

maximizing the WMW statistic associated with the ranker described by xlc. However, it

is not possible to extend our approach to this case since the direct optimization of the
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x1 x2 x3 x4 x5

xlc1

xlc2

xlc3

xlc4

α1 1− α1

α2 1− α2

α3 1− α3

α4 1− α4

xlc4 = α1α3α4x1 + (1 − α1) α3α4x2 + α2 (1 − α3) α4x3 + (1 − α2) (1 − α3) α4x4 + (1 − α4) x5

Figure 3.5: Example of the tree used to rebuild the weight vector. Moving from each leave
to the root and multiplying the values on the edges we can recover the weight associated
to each feature.

function in eq. (3.6) is intractable.

Therefore, a suboptimal algorithm that approximates the solution using a greedy ap-

proach has been adopted. Greedy methods build solutions piece by piece. Each step

increases the size of the partial solution and is based on local optimization: the selected

choice is the one that produces the largest immediate gain, i.e. the best ranking, main-

taining the feasibility of the problem. In our case, instead of finding a weight vector in

one step we iteratively find the optimal weight of the linear combination of two features

(as described in the previous section) so as to evaluate all the combination weights in at

most Q− 1 steps.

In this context an important role is played by the order of combination, i.e. which pair

of features should be combined at first, to avoid considering every possible combination.

From eq. (3.11) we know that the more separated are the two distributions relative to

the sets X10 and X01 the greater is the improvement to the ranking of the combined

features. Therefore, it is possible to combine the features choosing the pair that exhibits
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the maximum diversity in the ranking, i.e. the minimum rank correlation coefficient

between features (Kuncheva et al., 2000). To this aim, we choose the Spearman’s rank

correlation coefficient, a nonparametric measure of correlation that assesses how well an

arbitrary monotonic function could describe the relationship between two features without

making any assumptions about the frequency distribution (Lehmann & D’Abrera, 1975).

It is:

ρhk = 1− 6

L
∑

i=1

(

rh
i − rk

i

)2

L (L2 − 1)
, (3.16)

where rh
i and rk

i are the rankings on the two considered features h and k.

Once the procedure has been repeated until a single feature is obtained (i.e. Q − 1

times), it is necessary to recover the weight for each of the features to be combined. To this

aim, a combination tree is built during the evaluation of the weight vector. The original

features are the leaves of the tree and a parent node is added when a pair of features is

combined. The edges are labelled with the weights assigned to each feature in each step.

Multiplying the values found on the edges by running through the tree (from the leaves

down to the root) it is possible to recover the weight for each single feature. Fig. 3.5

shows an example of such a tree for a classification problems with five features. In the

first step the pair (x1, x2) is combined obtaining a new feature xlc1 = α1x1 + (1− α1)x2;

in the second step x3 and x4 are combined and so on until we obtain a single feature xlc4 .

To recover the weights associated to x1 . . . x5, we multiply the weights on the edges that

we encounter on the path from the single features to xlc4 . As an example, moving from

the feature x3 towards xlc4 we encounter the weights α3, 1− α2 and α4 and so the weight

relative to x3 is α3(1− α2)α4.

A pseudo code of the whole algorithm is reported in 3.1.

3.5 Experiments

In this section some experiments are reported to assess the reliability of the proposed

method. To evaluate our approach a comparison with other classifiers that work on ranking

has been conducted. In particular, three classifiers has been used: SVM (Vapnik, 1998),

(Cristianini & Shawe-Taylor, 2000), RankBoost (Freund et al., 2003) and AUC-LPC (Tax

et al., 2006).

SVM is a well known classifier not directly built to maximize the ranking performance

but to minimize the error rate; nevertheless, in literature it is considered to be a good

ranker among classifiers methods. In our experiments a linear kernel has been considered
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Algorithm 3.1 The Maximum AUC Linear Classifier (MALC)

Input: A L-dimensional matrix representing the training set with Q features x1, . . . ,xQ;
the number of classifiers to be combined; mP > 0 and mN > 0, the number of positive
and negative samples with L = mP + mN .

Output: α, the weight vector of the linear combination of features.

1: for h = 1 to Q do

2: r
(0)
h ← x

(0)
h sorted by decreasing values and ranked

3: end for

4: for h = 1 to Q− 1 do

5: for k = h + 1 to Q do

6: ρ
(0)
h,k = 1− 6

L(L2−1)

∑L

i=1

(

rh
i − rk

i

)2
/*evaluate the rank coefficient matrix at step

0*/
7: end for

8: end for

9: for m = 1 to Q− 1 do

10: (σ, τ) ← arg minh,k ρ(m−1) /*find the pair of classifiers with the minimum rank
coefficient*/

11: for i = 1 to mP do

12: for j = 1 to mN do

13: Xrs ←
{

(i, j)
∣

∣I
(

pσ
i , nσ

j

)

= r and I
(

pτ
i , n

τ
j

)

= s
}

with r, s = 0, 1

14: ∆σ
i,j = pσ

i − nσ
j

15: ∆τ
i,j = pτ

i − nτ
j

16: end for

17: end for

18: evaluate F στ
10 and F στ

01

19: ν(α)← F στ
10 + F στ

01

20: αopt ← maxα ν(α)
21: update the combination tree

22: r
(m)
σ+τ ← αxσ + (1− α)xτ sorted by decreasing values and ranked

23: n← 2
24: while (m < Q− 1 and n < Q−m) do

25: ρ
(m)
σ+τ,n = 1− 6

L(L2−1)

∑L

i=1

(

rσ+τ
i − rn

i

)2

26: n← n + 1
27: end while

28: end for

29: ρ(m) ← ρ(m−1) eliminating ρ
(m−1)
σ and ρ

(m−1)
τ and adding ρ

(m)
σ+τ /*update the rank

correlation matrix*/
30: evaluate α by multiplying the values on the edges of the tree
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due to the linear behavior of the proposed approach. A linear classifier similar to SVM

is the AUC-LPC that is specifically setup to maximize ranking performance. As we in-

troduced in subsec. 3.1.1 a serious drawback of this method is the number of constraints

(quadratic in the number of the considered objects) that leads to a non optimal solution.

Another technique well known in literature is the RankBoost that utilizes a multistage

approach to combine preferences according to the boosting method (Freund & Schapire,

1997). Even if RankBoost is a multistage non-linear approach the comparison with this

method is performed since it is considered to be the state of the art algorithm.

In order to evaluate the performance of the proposed method (hereafter called Max-

imum AUC Linear Classifier (MALC)), experiments on both artificial and real data sets

has been performed. The former approach has been used to put in evidence the behav-

ior of the MALC on known data distributions while experiments on real data have been

performed to verify the utility of our method even when dealing with real problems. In

particular, the admissibility of MALC on some data sets has been proved in a statistical

way with respect to the employed methods.

To avoid any bias in the comparison a 10-fold cross validation procedure (Duda et al.,

2001) has been performed on all data sets. In each run 9 folds have been used as training

set to train the classifiers and the remaining fold as test set to evaluate the classifiers

performance.

All the classifiers have been implemented by means of PRTools (Duin, 2000) (van der

Heijden et al., 2004) toolbox. Since SVM and AUC-LPC are parametric classifiers, differ-

ent architectures of these algorithms have been employed. In particular, we have varied

the C parameter (see subsec. 3.1.1) for both the SVM and the AUC-LPC between 0.1 and

1000. For the sake of readability we report in the following tables only the best results

obtained for these classifiers.

It is worth repeating that the comparison has been performed in terms of AUC since

we are aiming at the maximization of the ranking quality of the classifier and not at the

evaluation of the error rate (or other measures depending on a threshold value). Hence, in

our experiments only the value of the AUC has been evaluated using the WMW statistic

according to eq. (2.23).

3.5.1 The Artificial Data

The first part of our experiments focuses on synthetic data: in particular, some data sets

have been built to analyze the characteristics of the classifier. To this aim, a Gaussian

distribution for both classes has been used to generate 500 samples varying three param-
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Table 3.1: Results on the test set for a Gaussian data set with uncorrelated class distri-
butions, ∆µ equal to 0.3 and variable number of features.

Q

Classifiers
MALC SVM AUC-LPC RankBoost

5 0.616 (0.073) 0.615 (0.074) 0.615 (0.073) 0.594 (0.105)
10 0.575 (0.054) 0.552 (0.045) 0.562 (0.060) 0.573 (0.063)
30 0.584 (0.095) 0.559 (0.082) 0.570 (0.110) 0.558 (0.075)
50 0.555 (0.067) 0.550 (0.072) 0.548 (0.048) 0.596 (0.061)
75 0.540 (0.042) 0.538 (0.068) 0.522 (0.071) 0.586 (0.070)
100 0.533 (0.044) 0.528 (0.068) 0.512 (0.047) 0.551 (0.062)

Table 3.2: Results on the test set for a Gaussian data set with uncorrelated class distri-
butions, ∆µ equal to 0.5 and variable number of features.

Q

Classifiers
MALC SVM AUC-LPC RankBoost

5 0.685 (0.073) 0.674 (0.065) 0.681 (0.068) 0.654 (0.084)
10 0.600 (0.060) 0.593 (0.059) 0.582 (0.062) 0.570 (0.094)
30 0.611 (0.094) 0.605 (0.091) 0.604 (0.099) 0.582 (0.075)
50 0.610 (0.057) 0.611 (0.075) 0.598 (0.052) 0.619 (0.072)
75 0.575 (0.065) 0.572 (0.066) 0.567 (0.054) 0.577 (0.083)
100 0.561 (0.043) 0.560 (0.049) 0.552 (0.047) 0.583 (0.075)

eters: the number of features Q to put in evidence the behavior of the greedy approach

for high dimensionality problems, the difference ∆µ between the means of the two classes

distributions to evaluate the performance for different overlapping of data and the co-

variance matrix of the classes distributions to consider both correlated and uncorrelated

data. Q has been varied between 5 and 100 while ∆µ has been varied between 0.3 to 1 for

uncorrelated data and between 1 and 3 for correlated data. In our case, greater values of

this parameter have no significance since the two classes become easily separable. More

characteristic of the employed data sets are reported in appendix A.

The results of the comparison of the four employed classifiers are presented in tables

3.1-3.3 for uncorrelated data and in tables 3.4-3.6 for correlated class distributions. Each

cell of the tables contains a value corresponding to the mean (and the standard deviation

in parentheses) of the AUC relative to the performance of each classifier on each data set

for the relative number of features.

Firstly, let us analyze the results obtained on uncorrelated data. In this case, it is

possible to highlight the good behavior of MALC when the dimensionality of the feature

space is not high. In fact, MALC gives the highest mean value among the four classifiers
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Table 3.3: Results on the test set for a Gaussian data set with uncorrelated class distri-
butions, ∆µ equal to 1 and variable number of features.

Q

Classifiers
MALC SVM AUC-LPC RankBoost

5 0.939 (0.019) 0.937 (0.023) 0.936 (0.022) 0.931 (0.022)
10 0.920 (0.047) 0.914 (0.047) 0.910 (0.049) 0.913 (0.047)
30 0.929 (0.032) 0.921 (0.038) 0.918 (0.037) 0.931 (0.025)
50 0.915 (0.028) 0.880 (0.038) 0.888 (0.024) 0.919 (0.027)
75 0.741 (0.059) 0.726 (0.079) 0.701 (0.074) 0.800 (0.048)
100 0.886 (0.037) 0.843 (0.058) 0.841 (0.051) 0.908 (0.022)

Table 3.4: Results on the test set for a Gaussian data set with correlated class distributions,
∆µ equal to 1 and variable number of features.

Q

Classifiers
MALC SVM AUC-LPC RankBoost

5 0.809 (0.055) 0.771 (0.052) 0.767 (0.053) 0.711 (0.070)
10 0.796 (0.015) 0.773 (0.077) 0.771 (0.069) 0.662 (0.026)
30 0.756 (0.041) 0.740 (0.052) 0.733 (0.054) 0.654 (0.065)
50 0.655 (0.501) 0.707 (0.065) 0.726 (0.061) 0.602 (0.090)
75 0.634 (0.080) 0.686 (0.067) 0.666 (0.057) 0.598 (0.068)
100 0.632 (0.076) 0.633 (0.060) 0.641 (0.064) 0.605 (0.042)

on all the employed data sets until the value of Q is lower than 50. When Q becomes

greater than 50 RankBoost exhibits the best performance but MALC is still better than

SVM and AUC-LPC (there is just one exception for the data set with ∆µ equal to 0.5 and

Q equal to 50 where SVM is better than MALC). The reason for the good performance

of RankBoost in high dimension space can be found in its characteristics since it is a

multistage approach that trains different classifiers on different samples in each round

of its procedure (see subsec.3.1.1). On the contrary, the three linear classifiers have a

different behavior on these data: if we look at tables 3.1-3.3, we can observe that MALC

loses at least the 5% in AUC when passing from 30 to 100 features and a similar behavior

is shown by SVM and AUC-LPC that, as reported by the same authors (Vapnik, 1998),

(Tax et al., 2006), suffer the high dimensionality of data. In our approach problems that

occur with high dimensionality data are probably due to the greedy approach, i.e. to the

propagation of the error in each step of the algorithm.

For correlated data the situation is more complicated to analyze since there is no clear

dominance of one method above the others. In this case, RankBoost does not exhibit good

performance in comparison with the other rankers probably due to the correlation among
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Table 3.5: Results on the test set for a Gaussian data set with correlated class distributions,
∆µ equal to 2 and variable number of features.

Q

Classifiers
MALC SVM AUC-LPC RankBoost

5 0.920 (0.013) 0.920 (0.039) 0.920 (0.037) 0.862 (0.035)
10 0.928 (0.022) 0.926 (0.042) 0.927 (0.039) 0.844 (0.087)
30 0.901 (0.072) 0.933 (0.027) 0.932 (0.027) 0.810 (0.027)
50 0.919 (0.021) 0.906 (0.017) 0.901 (0.024) 0.808 (0.075)
75 0.826 (0.070) 0.849 (0.041) 0.854 (0.042) 0.803 (0.082)
100 0.838 (0.075) 0.859 (0.037) 0.863 (0.040) 0.833 (0.068)

Table 3.6: Results on the test set for a Gaussian data set with correlated class distributions,
∆µ equal to 3 and variable number of features.

Q

Classifiers
MALC SVM AUC-LPC RankBoost

5 0.980 (0.024) 0.979 (0.023) 0.979 (0.023) 0.843 (0.047)
10 0.985 (0.011) 0.984 (0.015) 0.985 (0.014) 0.862 (0.034)
30 0.975 (0.014) 0.975 (0.018) 0.971 (0.018) 0.835 (0.053)
50 0.972 (0.011) 0.969 (0.021) 0.972 (0.016) 0.844 (0.042)
75 0.979 (0.015) 0.968 (0.019) 0.970 (0.021) 0.825 (0.0686)
100 0.970 (0.055) 0.963 (0.022) 0.977 (0.019) 0.847 (0.061)

the weak classifiers that are used to perform the boosting approach. If we compare the

linear rankers it is possible to highlight a dominance of MALC for low dimensional data,

i.e. until Q is lower than 30. When the number of features grows, we have a different

behavior according to the overlapping of the classes. When the classes are well separated

(see table 3.6) MALC is the best classifier if we exclude one case (Q = 100 where AUC-

LPC performs better). In table 3.5 for a medium overlapping we have a similar behavior

(i.e. for Q = 100 and Q = 75 MALC is not the best ranker) except for Q = 30 where

SVM and AUC-LPC perform better than MALC. When the data are almost completely

overlapping (see table 3.4) the performance of MALC decrease quickly when Q grows and

even for Q = 50 it exhibits lower values of the AUC than the other two linear classifiers.

In the end, from the analysis of artificial data we have shown that the proposed method

performs very well for Gaussian data with low dimensionality (less than 50 features)

both for correlated and uncorrelated data distributions, i.e. our ranker is admissible in

comparison with well known methods in literature.
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3.5.2 Experiments on Real Data Sets

In this subsection we propose another type of experiments based on real data sets to

confirm the behavior of MALC shown on artificial data. However, there is no standard

experimental set up to build a variety of classifiers and the probability that it occurs

in a real-life experiment is a vacuous notion (Kuncheva & Whitaker, 2003). Then, we

do not need to create a classifier for the purpose of finding out whether it is better or

not of another one. Hence, our goal is not to find a new classifier that always performs

better than all the other methods but to propose an admissible classifier. We can say

that a classifier is admissible if no other classifier performs always equal or better, i.e. we

demand that the proposed method is somewhere best.

To this aim, the proposed method has been tested on several data sets publicly available

at the UCI Machine Learning Repository (Blake et al., 1998). All of them have two classes2

and a variable number of numerical input features. More details for each data sets are

given in appendix A.

The results obtained for the four classifiers are reported in table 3.7 on 22 data sets.

Each cell of the tables contains a value corresponding to the mean (and the standard

deviation in parentheses) of the AUC relative to the performance of each classifier on each

data set.

A first analysis can be done looking at the mean AUC values; in this case we can note

that our algorithm performs better than the others in 12 (9 plus 3 ties) of the 22 considered

data sets while SVM on 6 (4 plus 2 ties), RankBoost on 5 (4 plus 1 tie) and AUC-LPC on

2. Moreover, MALC exhibits the worst performance among the four classifiers just on the

Diabetes data set and only in 3 cases (Glass2, Sonar and Wine1) has lower performance

than two of the other methods.

To give more reliability to the comparison a statistical test has been performed. Statis-

tics offers more powerful specialized procedures for testing the significance of differences

between multiple means. In our situation, the most interesting is the Friedman test

(Friedman, 1937), i.e. a non parametric equivalent of the well known ANOVA (Fisher,

1959). Friedman (1940) experimentally compared ANOVA and his test on 56 independent

problems showing that the two methods mostly agree. The problem is that ANOVA is

based on assumptions which are most probably violated when analyzing the performance

of learning algorithms. First, ANOVA assumes that the samples are drawn from normal

distributions and in general this is not guaranteed across a set of problems. However, even

2Three multiclass data sets (Glass, Waveform and Wine) have also been used. In this case, a One vs.
All approach has been applied to select two of the classes from the multiclass data set (see Appendix A
for more details).

48



3.5 Experiments

Table 3.7: Results obtained in the experiments performed on real data sets.

Data Sets

Classifiers
MALC SVM AUC-LPC RankBoost

Arrhythmia 0.783 (0.066) 0.720 (0.097) 0.765 (0.095) 0.736 (0.070)
Biomed 0.968 (0.044) 0.958 (0.041) 0.961 (0.040) 0.927 (0.069)
Breast 0.996 (0.005) 0.995* (0.006*) 0.994* (0.006*) 0.990* (0.008*)

Cancer wpbc 0.762 (0.041) 0.780 (0.055) 0.762 (0.047) 0.741 (0.046)
Diabetes 0.811 (0.038) 0.826 (0.035) 0.821 (0.042) 0.834 (0.058)
Glass1 0.841 (0.084) 0.840 (0.093) 0.827 (0.095) 0.870 (0.056)
Glass2 0.660 (0.048) 0.627 (0.046) 0.714 (0.059) 0.748 (0.038)
Glass3 0.838 (0.045) 0.804 (0.054) 0.782 (0.082) 0.802 (0.031)
Glass4 0.943 (0.086) 0.940 (0.031) 0.925 (0.057) 0.937 (0.025)
Glass5 0.921 (0.029) 0.920 (0.033) 0.948 (0.023) 0.912 (0.058)
Heart 0.895 (0.057) 0.895 (0.057) 0.902 (0.060) 0.542 (0.058)

Hepatitis 0.855 (0.048) 0.784 (0.074) 0.802 (0.067) 0.790 (0.053)
Ionosphere 0.893 (0.087) 0.895 (0.056) 0.880 (0.070) 0.701 (0.120)

Liver 0.720 (0.069) 0.714 (0.044) 0.718 (0.063) 0.720 (0.085)
Sonar 0.821 (0.046) 0.845 (0.042) 0.85 (0.050) 0.830 (0.030)

Thyroidsub 0.987 (0.013) 0.973 (0.017) 0.984 (0.014) 0.998 (0.001)
Waveform1 0.937 (0.029) 0.937 (0.027) 0.931 (0.030) 0.921 (0.027)
Waveform2 0.940 (0.037) 0.922 (0.027) 0.919 (0.030) 0.935 (0.031)
Waveform3 0.953 (0.036) 0.953 (0.037) 0.948 (0.036) 0.942 (0.033)

Wine1 0.996 (0.013) 1.000 (0.000) 0.971 (0.042) 0.999 (0.004)
Wine2 0.994 (0.014) 0.993 (0.014) 0.977 (0.037) 0.990 (0.017)
Wine3 0.999 (0.005) 0.999 (0.005) 0.980 (0.063) 0.995 (0.010)

if distributions are not normal this is a minor problem and in many cases ANOVA is used

unless the distributions were, for instance, clearly bimodal (Hamilton, 1990). The second

and more important assumption is sphericity, a property similar to the homogeneity of

variance which requires that the distributions have equal variance. Due to the nature of

the learning algorithms and data sets this cannot be taken for granted. Therefore, ANOVA

does not seem to be a suitable omnibus test for the study of learning problems.

In recent papers (Demšar, 2006) has been pointed out that the Friedman test even if

it has theoretically less power than parametric ANOVA (when the ANOVA’s assumptions

are met) results to be more general than the ANOVA. This test ranks the algorithms

separately: the best performing algorithm gets the rank of 1, the second best rank 2 and

so on as shown in table 3.8. In case of ties average ranks are assigned. In our case, the null

hypothesis for the Friedman test corresponds to a not statistically significant difference

between the mean AUC of the employed methods. Therefore, when the null hypothesis

is rejected there is a statistical difference among the classifiers. In our comparison the

Friedman test has been performed with 3 (number of algorithms −1 = 4 − 1) and 36

((number of algorithms −1)∗(number of runs of the cross validation −1) = (4−1)∗(10−1))

degrees of freedom (see appendix B).

In this case, we can proceed with a post-hoc test to find out which classifiers exhibits

a statistically different behavior. Two different situations can be evaluated: to compare
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Table 3.8: Comparison of the AUC obtained with the cross validation procedure on the
employed methods using the Hepatitis data set. In parentheses we report the ranks that
are used in the computation of the Friedman test and in the last rows the average rank
obtained for each method to order the classifiers in the Holm procedure.

Cross Validation Classifiers

Runs MALC SVM AUC-LPC RankBoost

1 0.722 (3) 0.694 (4) 0.833 (1) 0.778 (2)
2 1.000 (1) 0.972 (2) 0.944 (3) 0.875 (4)
3 0.861 (1) 0.750 (3.5) 0.833 (2) 0.750 (3.5)
4 0.778 (1) 0.500 (4) 0.722 (2) 0.708 (3)
5 1.000 (1) 0.861 (3) 0.750 (4) 0.875 (2)
6 0.861 (3) 0.944 (1.5) 0.944 (1.5) 0.792 (4)
7 0.694 (2.5) 0.778 (1) 0.694 (2.5) 0.583 (4)
8 0.974 (1) 0.897 (2) 0.821 (3) 0.808 (4)
9 0.923 (1) 0.789 (4) 0.865 (2) 0.846 (3)
10 0.731 (2) 0.654 (3) 0.615 (4) 0.885 (1)

Average Rank 1.65 2.50 2.80 3.05

all the classifiers between each other or to compare all classifiers with a control method.

However, the power of a post-hoc test is much greater in the second case when all classifiers

are compared with a single method such as compare a newly proposed classifier with several

existing methods. Thus, since we are testing if MALC gives better performance than the

existing methods, we focus on the Holm’s step-down procedure (Holm, 1979), that, in

addition, does not make any additional assumptions about the hypotheses tested. Holm’s

procedure starts with the most significant rank r value. If r1 is below αls/(k − 1) (where

αls is the level of significance of the test), the corresponding hypothesis is rejected and we

are allowed to compare r2 with αls/(k − 2). If also the second hypothesis is rejected, the

test proceeds with the third, and so on. As soon as a certain null hypothesis can not be

rejected, all the remaining hypotheses are retained as well. More details on the employed

tests can be found in appendix B.

As an example in table 3.8 we report the results obtained in terms of AUC on the

Hepatitis data set on the 10 folds of the cross validation procedure. In parentheses we

report the ranks among the classifiers that are used in the computation of the Friedman

test. The average rank used to order the classifiers in the Holm procedure is reported in

the last row of the table. In this example the Friedman test rejects the null hypothesis

(i.e. there is statistical difference between some of the classifiers) and the Holm’s test can

be performed.

The obtained results are reported in table 3.7. A bold value in the table indicates that
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the corresponding method on that data set has lower statistically significant performance

than MALC according to the Holm procedure. If the value is underlined MALC exhibits

lower performance compared to that method while if the value is in normal style it means

that the corresponding method has undistinguishable performance from MALC. When

the values in a row of the table are signed with an asterisk there is no statistical difference

according to the Friedman test (i.e. the null hypothesis can not be rejected). All the tests

(both the Friedman and the Holm test) have been performed with a level of significance

equal to 0.05.

From these results we can see that there is a statistical difference among the employed

methods according to the Friedman test in 14 of the considered data sets. In one case

(i.e. Breast data set) the null hypothesis is rejected according to the Friedman test but

the post-hoc fails to detect which classifiers are statistically different due to the lower

power of the post-hoc with respect to Friedman (in such a case the only thing that we

can say is that some of the algorithms differs but no other conclusions can be drawn). On

the 14 data sets for which a statistical difference is found according to Friedman we can

consider that only in two cases (Glass2 and Thyroidsub) MALC is worst than one of the

other methods (in these cases RankBoost) while the proposed method results in four cases

better than SVM and in seven cases better than RankBoost and AUC-LPC.

In conclusion, we have shown that also on real data the proposed approach can be

profitably used to maximize the AUC on the analyzed problem. In fact, the reported

results show the admissibility of the classifier on some of the considered data sets and

therefore, our ranker is able to compete with other well known methods proposed in

literature.
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Chapter 4

Linear Combination of Classifiers

via the AUC

In order to improve the classification performance, a well established technique is to com-

bine more classifiers so as to take advantage of the strengths of the single classifiers and

avoid their weaknesses. To this aim, a huge number of possible combination rules has been

proposed up to now which generally try to decrease the classification error.

In this chapter, after a brief review of the characteristics of classifiers combination,

we propose a method based on AUC maximization to achieve an optimal combination

between already trained dichotomizers. In particular, in this work, we focus on the linear

combination since it is the most frequently adopted in literature. Our problem consists in

finding the optimal parameters to maximize the AUC of the resulting classification system.

To this aim, an analysis of the dependence of the AUC on the weights has been performed

and a method to find the optimal weights for two dichotomizers has been carried out. In

order to accomplish an effective way to find αopt and to extend the method to K > 2

dichotomizers, we introduce a new curve (the Difference Ratio Operating Characteristic

curve) and discuss the problem of measuring the diversity among dichotomizers referred

to their ranking capability. A greedy approach is proposed to extend the combination

method to several classifiers.

4.1 Multiple Classifier Systems

The term classifier fusion or multiple classifier system usually refers to the combination

of predictions from multiple classifiers to yield a single class prediction (Webb, 2002). The

idea of combining classifiers is not a new one, but it has received increasing attention
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in recent years. Early developed techniques focused on the combination of two-class dis-

crimination rules (Devijver & Kittler, 1982) and also recursive partitioning methods (such

as decision trees (Breiman et al., 1984)) lead to the idea of defining different rules for

different parts of a feature space. The terms “classifier selection” (Woods et al., 1997)

and “classifier choice” (Hand et al., 2001) have been introduced for classification systems

that attempt to predict the best classifier for a given region of the feature space. Re-

cently, many experimental works have shown the improvement in performance that can

be achieved by multiple classifiers in several applications (Kuncheva, 2005), (Oza et al.,

2005).

By combining classifiers we are aiming at a more accurate classification decision at the

expense of increased complexity (Ho, 2002). In Dietterich (2001)three different reasons

are presented to explain why a classifier ensemble should be better than a single classifier:

• Statistical: a statistical problem arises when the amount of training data available

is too small compared to the size of the hypothesis space. Without sufficient data, a

learning algorithm can find different hypotheses that all give the same accuracy on

the training data. By constructing an ensemble out of all of these accurate classifiers,

the algorithm can “average” their votes and reduce the risk of choosing the wrong

classifier.

• Computational: many classifiers work by performing local search that may get stuck

in local optima. An ensemble constructed by running the local search from many

different starting points may provide a better approximation to the true unknown

function than any of the individual classifiers.

• Representational: in most applications of machine learning and pattern recognition,

the decision function f can not be represented by any of the possible hypotheses.

By forming weighted sums of hypotheses, it may be possible to expand the space of

representable functions.

A starting point for grouping ensemble methods can be sought in the ways of building

the ensemble (Kuncheva, 2004). According to fig. 4.1 four different approaches aiming at

building ensembles of diverse classifiers can be considered:

• Combination level: when different combiners are designed, i.e. when different ways

of combining classifier decisions are chosen independently of the employed base clas-

sifiers (in this work we will focus on the design of this level of the ensemble).

• Classifier level: different classifiers can be used as base classifiers for the ensemble.

The model of the classifiers is chosen according to interpretability of their decision
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Figure 4.1: Combination system of classifiers evidencing the different levels that can be
modified to build the ensemble.

process, implementability (the base classifiers are easy to implement with low com-

putational complexity) and adaptability (the base classifiers has to be adaptable to

different problems) (Webb, 2002).

• Feature level: when different feature subsets are used for the classifiers.

• Data level: if the data set can be modified so as each classifier is trained on a different

data set (this approach is successfully in the bagging (Breiman, 1996) and boosting

(Freund & Schapire, 1997) methods).

Another important characteristic of a combination system is the structure that can be:

• Serial: when the base classifiers are used sequentially with the output of one used

by the next one in the sequence.

• Parallel: if all the results of the base classifiers are passed together to the combiner

that takes the final decision.

• Hierarchical: when the classifiers are combined in a hierarchy with the output of the

base classifiers used as inputs to a parent node.
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4.2 Characteristics of a Combiner

The different ways of combining the outputs of K classifiers in an ensemble depend on

which is the information that we obtain from the base classifiers. In Xu et al. (1992) three

different classifier outputs (and so three different types of combiners) are defined:

• The abstract level: when each classifier produces a class label without any further

information about the reliability of the predicted class (since any classifier is able to

produce a label, this level is the most general).

• The rank level: when the output of each classifier is a subset of the set of the classes,

with the alternatives ranked in order of reliability of being the correct label (Tubbs

& Alltop, 1991), (Ho et al., 1994).

• The measurement level: when each classifier produces a confidence degree on each

class, i.e. an estimate (or a measure akin to an estimate) of the probability that a

sample belongs to one of the classes.

In Kuncheva (2004) another level has been introduced:

• The oracle level: when the output of the classifier is just to know if the decision is

wrong or correct without any knowledge on the class label that has to be assigned.

Another important characteristic of a combination rule is the choice of the training strategy

of the combiner since we can have trainable and non trainable combiners. The choice is

dependent on which part of the combining scheme we want to optimize, i.e. if we want

to optimize the combiner alone or the base classifiers or both. According to this, a non

trainable combiner, i.e. a fixed rule of combination (such as sum, product, maximum,

majority etc.), can be used if we are sure that the base classifiers are not overtrained while

if we use undertrained base classifiers a trainable combiner is preferred (Duin, 2002). An

important aspect of the trainable combiner is the right choice of the training set. Duin

(2002) suggests to choose a separate training set for the base classifiers and the combiner

while in Dietrich et al. (2003) the second training set is chosen as partly overlapping of

the first one used for the base classifiers. An alternative to these approaches is given by

the stacked generalization proposed by Wolpert (1992) that improve the generalization in

pattern classification.

Simple non trainable combiners calculate the support for each class ωj using only the

output of the classifiers involved in the combination for that class by:

fc,j(x) = F (f1,j(x) . . . fK,j(x)) , (4.1)
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where F is a combination function. The class label of x is found as the index of the

maximum fc,j(x). The combination function F can be chosen in many different ways.

The most popular choices are:

• Simple Average (SA) where F is the arithmetic average:

fSA,j(x) =
1

K

K
∑

i=1

fi,j(x). (4.2)

• Minimum where F is the minimum function:

fMIN,j(x) = min
i

fi,j(x). (4.3)

• Maximum where F is the maximum function:

fMAX,j(x) = max
i

fi,j(x). (4.4)

• Median where F is the median function:

fMED,j(x) = medianifi,j(x). (4.5)

• Trimmed Mean (competition jury): for a certain percentage pc trimmed mean the S

degrees of support are sorted and pc percent of the values are dropped on each side.

The overall support fc,j(x) is found as the simple average of the remaining degrees

of support.

• Product (F is the product):

fPROD,j(x) =
K
∏

i=1

fi,j(x). (4.6)

4.3 The Linear Combination of Classifiers

Of the various combining rules proposed in the literature, linear combiners are the most fre-

quently used (Kittler et al., 1998), (Tumer & Ghosh, 1999), (Kuncheva, 2002), (Tax et al.,

2000). A linear combination of classifiers is the linear combination of their outputs(see fig.

4.2). A weight αi is assigned to each classifier and the decision of the combiner is taken
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Figure 4.2: The linear combination rule for K classifiers.

according to:

flc(x) =
K
∑

i=1

αifi(x). (4.7)

In spite of their wide use and the success of linear combiners, many important issues

related to their operation for pattern classification tasks have been developed. In Tumer &

Ghosh (1996) an analysis of the decision boundaries for the linear combination of classifiers

is proposed while Ueda (2000) describes a way to estimate the optimal weight for the

combination of neural networks. A theoretical analysis has been proposed in Fumera &

Roli (2005) where simple average (SA) and weighted average (WA) methods are studied.

The former is a non trainable method discussed in the previous section while in the latter

the weights are estimated on a training set proportionally to the performance of the base

classifiers:

fWA(x) =
K
∑

i=1

wifi(x). (4.8)

In its simpler form with one non negative weight per classifier the evaluation of the weight

is based on the estimated error rate of each base classifier:

wi =
Acci

∑K

i=1
Acci

. (4.9)

Theoretically speaking, WA is always able to outperform SA but this is not guaranteed

in practice where weights must be estimated from training data. In real applications, the
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theoretical superiority of WA can be rapidly negated by weight estimations from small

and noisy data sets to the extent that WA can actually perform worse than SA (Verikas

et al., 1999). Hence, Fumera & Roli (2005) conclude that it is not possible to show any

clear experimental superiority over SA, in particular, for the simplest implementation of

WA described before.

In literature the majority of the methods look at the estimation of the weight to

maximize the accuracy of the combiner, while we are interested in AUC maximization.

In literature, this topic has not received great attention: an approach is proposed in Su

& Liu (1993) where the information carried by multiple classifiers is used for maximizing

the TPR uniformly over the entire FPR range under the multivariate normal distribution

model with proportional covariance matrices and, under these conditions, an estimate

of the AUC of the combination is obtained. This work has been extended in Liu et al.

(2005), where an alternative linear combination with higher TPR over a range of low

FPR is derived. Another parametric approach based on the binormal model is proposed

in Marrocco et al. (2005a). In this paper a method to estimate the ROC curve of the

linear combination of two dichotomizers given the ROC curves of the single classifiers is

derived. This represents a useful result to have an immediate preview of the performance

of the system obtained by applying the combination without evaluating the outputs on

the samples of the data set.

4.4 Linear Combination of Two Dichotomizers via AUC

The purpose of the method we are going to introduce is to construct a linear combination

of dichotomizers aimed at maximizing the AUC of the resulting classification system. We

focus first on the combination of two dichotomizers and then in the next sections we extend

the method to K > 2 dichotomizers. On this topic some preliminaries have been proposed

in Marrocco et al. (2005b), Marrocco et al. (2006b) and Marrocco et al. (2006a)

Let X be the set of samples as defined in sec. 1.1 and let us indicate the outputs of

two dichotomizers f1 and f2 on positive and negative samples as:

x1
i = f1(pi), y1

j = f1(nj),

x2
i = f2(pi), y2

j = f2(nj).

The AUCs for the two dichotomizers evaluated according to the WMW statistic in eq.
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(2.23) are:

AUC1 =

mP
∑

i=1

mN
∑

j=1

I(x1
i , y

1
j )

mP mN
AUC2 =

mP
∑

i=1

mN
∑

j=1

I(x2
i , y

2
j )

mP mN
. (4.10)

Let us now consider a linear combination of f1 and f2. Without any loss of generality1,

the resulting classifier can be represented by:

flc(x) = f1(x) + αf2(x), (4.11)

where α is the relative weight of f2 with respect to f1. The outputs of flc to pi and nj

will be consequently:

ξi = flc(pi) = x1
i + αx2

i ,

ηj = flc(nj) = y1
j + αy2

j .
(4.12)

According to the WMW statistic, the AUC of flc is given by:

AUClc =

mP
∑

i=1

mN
∑

j=1

I(ξi, ηj)

mP mN
, (4.13)

and depends on the value of the weight α. Therefore, the optimal choice for the weight is

the value maximizing AUClc:

αopt = arg max
α

AUClc(α). (4.14)

To this aim, let us analyze the term I(ξi, ηj) and study how it depends on the values of

I(x1
i , y

1
j ) and I(x2

i , y
2
j ); for the following analysis we consider a tie as an error and thus we

group together the cases for which I(a, b) = 0.5 and I(a, b) = 0. With this assumption,

we can distinguish three cases:

• I(x1
i , y

1
j ) = 1 and I(x2

i , y
2
j ) = 1: in this case both the dichotomizers rank correctly

the two samples and I(ξi, ηj) = 1 whatever the value of α.

• I(x1
i , y

1
j ) = 0 and I(x2

i , y
2
j ) = 0 : in this case neither dichotomizer ranks correctly

the samples and thus I(ξi, ηj) = 0 whatever the value of α.

1In general, a linear combination of two classifier is given by α1f1 + α2f2. However, any decision rule
based on the comparison with a threshold t is equivalent to the decision rule which compares the output
of the classifier flc with the threshold t/α1.
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• I(x1
i , y

1
j ) xor I(x2

i , y
2
j ) = 1: only one dichotomizer ranks correctly the samples while

the other one is wrong. In this case the value of I(ξi, ηj) depends on the weight α.

According to this result, the set of all the pairs on which AUClc is evaluated can be split

in four subsets X12, X1̄2, X12̄, X1̄2̄, which are defined as:

X12 =
{

(pi,nj)|I(x1
i , y

1
j ) = 1 and I(x2

i , y
2
j ) = 1

}

, (4.15a)

X1̄2 =
{

(pi,nj)|I(x1
i , y

1
j ) = 0 and I(x2

i , y
2
j ) = 1

}

, (4.15b)

X12̄ =
{

(pi,nj)|I(x1
i , y

1
j ) = 1 and I(x2

i , y
2
j ) = 0

}

, (4.15c)

X1̄2̄ =
{

(pi,nj)|I(x1
i , y

1
j ) = 0 and I(x2

i , y
2
j ) = 0

}

. (4.15d)

As a consequence the expression for AUClc in eq. (4.13) can be written as:

AUClc =
1

mP mN

(

∑

(pi,nj)∈X1̄2̄

I(ξi, ηj) +
∑

(pi,nj)∈X12

I(ξi, ηj)

+
∑

(pi,nj)∈X12̄∪X1̄2

I(ξi, ηj)

)

=
0 + card(X12) + ν(α)

mP mN
. (4.16)

In other words, while the pairs on which both dichotomizers are wrong do not contribute

to AUClc and the pairs correctly ranked by both the dichotomizers give a contribution

independent of the value of α, the dependence of AUClc on α is limited to the set of

pairs on which the dichotomizers disagree. Therefore, the larger the set X12̄ ∪ X1̄2 (i.e.

the higher the disagreement between f1 and f2), the higher the value of AUClc which, in

principle, can be obtained. Taking into account eqs. (4.14) and (4.16) can be restated as:

αopt = arg max
α

ν(α). (4.17)

In order to find the value of αopt let us make explicit the dependence of I(ξi, ηj) on α. To

this aim, recall that the indicator function is not null only if ξi > ηj , i.e. if:

(

x1
i − y1

j

)

+ α
(

x2
i − y2

j

)

> 0. (4.18)

To simplify the following calculations, let us call Score Difference Ratio (SDR) the quan-

tity:

SDR = −
x1

i − y1
j

x2
i − y2

j

, (4.19)
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and denote it with Γ1
2(pi,nj); for pairs (pi,nj) belonging to X12̄ or X1̄2 this value is

positive because in both cases the differences have opposite signs. The condition (4.18)

leads to different constraints on depending on which of the two sets X12̄, X1̄2, we consider.

In particular we obtain:

α < Γ1
2(pi,nj) if (pi,nj) ∈ X12̄, (4.20a)

α > Γ1
2(pi,nj) if (pi,nj) ∈ X1̄2. (4.20b)

If such conditions are verified for each pair (pi,nj) ∈ X12̄ ∪ X1̄2, we would obtain the

maximum value allowable for ν(α), i.e. card(X12̄) + card(X1̄2). In this case, there would

exist an αopt such that:

max
(pi,nj)∈X1̄2

Γ1
2(pi,nj) ≤ αopt ≤ min

(pi,nj)∈X12̄

Γ1
2(pi,nj), (4.21)

and the resulting AUC would be:

AUClc =
card(X12) + card(X12̄) + card(X1̄2)

mP mN
= AUC1 + AUC2 −

card(X12)

mP mN
,

where:

AUC1 =
card(X12) + card(X12̄)

mP mN
, AUC2 =

card(X12) + card(X1̄2)

mP mN
.

However, the condition max(pi,nj)∈X1̄2
Γ1

2(pi,nj) ≤ min(pi,nj)∈X12̄
Γ1

2(pi,nj) is verified

only when the two dichotomizers are highly complementary. In particular, the term

min(pi,nj)∈X12̄
Γ1

2(pi,nj) becomes high when the dichotomizer f1 correctly ranks each pair

(pi,nj) ∈ X12̄ producing a high difference |x1
i − y1

j | between the outputs, while f2, even

though incorrectly ranking (pi,nj), provides a low difference |x2
i − y2

j |. This means that

the errors made by f2 can be recovered thanks to the good performance of f1 on the

same pairs. Conversely, a low value for the term max(pi,nj)∈X1̄2
Γ1

2(pi,nj) is obtained

when the dichotomizer f2 correctly ranks each pair (pi,nj) ∈ X1̄2 with a high difference

|x2
i −y2

j | between the outputs, while f1 incorrectly ranks (pi,nj), but with a low difference

|x1
i −y1

j |. In this case f2 helps in recovering the erroneous rankings produced by f1. When

eq. (4.21) is verified, the value of αopt allows eliminating all the errors made by both the

dichotomizers, except for those on which f1 and f2 agree. Unfortunately, such condition

is only rarely verified since the distributions of Γ1
2(pi,nj) evaluated on the two sets X12̄

and X1̄2 are usually not separated.
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(a) (b)

Figure 4.3: Example of the distributions of the ratio Γ1
2(pi,nj) evaluated on the sets X12̄

(a) and X1̄2 (b)
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Figure 4.4: The trend of the function ν(α) = F12̄(α)+F1̄2(α) obtained by the two distribu-
tions shown in fig. 4.3. The points on which the combination reduces to one dichotomizer
are shown.
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CHAPTER 4. Linear Combination of Classifiers via the AUC

As a consequence, αopt has to be found by maximizing the number of the pairs satis-

fying eq. (4.20). To this aim, if we consider the cumulative functions:

F12̄ = card

(

(pi,nj) ∈ X12̄

∣

∣

∣

∣

∣

Γ1
2(pi,nj) > α

)

, (4.22a)

F1̄2 = card

(

(pi,nj) ∈ X1̄2

∣

∣

∣

∣

∣

Γ1
2(pi,nj) < α

)

, (4.22b)

the function to be maximized can be defined as:

ν(α) = F12̄(α) + F1̄2(α), (4.23)

and the optimal value of α is given by:

αopt = arg max
α

(F12̄(α) + F1̄2(α)) , (4.24)

that can be easily found by means of a linear search.

An example of real distributions of the ratio Γ1
2(pi,nj) evaluated on the two sets X12̄

and X1̄2 is shown in fig. 4.3, while fig. 4.4 shows the relative function ν(α) as in eq. 4.23.

If we consider what happens at the bounds of the range of α, it is possible to observe

that, if α → 0, ν(α) → card(X12̄) and the combination reduces to the only dichotomizer

f1, while when α → +∞, ν(α) → card(X1̄2) and the combination reduces to the only

dichotomizer f2. These extreme points are shown in fig. 4.4: in this case, since the

maximum of ν(α) is higher than both the bound values, we have AUClc(αopt) > AUC1

and AUClc(αopt) > AUC2, i.e. the linear combination performs better than each of the

two dichotomizers. As a concluding remark, it is worth noting that the method cannot be

applied when card(X12̄) = 0 or card(X1̄2) = 0. However, in this case the combination is

not profitable since it does not give better results than the single dichotomizer. In fact, if

e.g. card(X1̄2) = 0, there are no pairs incorrectly ranked by f1 which are correctly ranked

by f2 and thus the combination is useless since it cannot recover any error made by f1.

4.5 The DROC Curve

αopt should be found by means of a linear search maximizing the number of the pairs

satisfying eq. (4.20). However, it is possible to define another more effective method to

evaluate the optimal weight. First of all, in order to simplify the notation in the following

analysis, let us disregard the dependence on the particular samples in the SDRs and denote
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4.5 The DROC Curve

with δ1̄2
r with r = 1, . . . , card(X1̄2) the SDR value of the r-th pair contained in X1̄2) and

with δ12̄
s with s = 1, . . . , card(X12̄) the SDR value of the s-th pair contained in X12̄.

Now let us choose a value α for the weight of the linear combination; with such choice,

in each set some pairs will be correctly ranked while others will not. Let us define the Cor-

rectly Ranked Rate on X1̄2, CRR1̄2(α) and the Wrongly Ranked Rate on X1̄2, WRR1̄2(α)

as:

CRR1̄2(α) =
card

({

δ1̄2
r < α, r = 1 . . . card(X1̄2)

})

card(X1̄2)
, (4.25a)

WRR1̄2(α) =
card

({

δ1̄2
r ≥ α, r = 1 . . . card(X1̄2)

})

card(X1̄2)
. (4.25b)

Both indices are in the range [0, 1] and are not independent since CRR1̄2(α)+WRR1̄2(α) =

1. In a similar way, it is possible to evaluate the same indices on the set X12̄:

CRR12̄(α) =
card

({

δ12̄
s > α, s = 1 . . . card(X12̄)

})

card(X12̄)
, (4.26a)

WRR12̄(α) =
card

({

δ12̄
s ≤ α, s = 1 . . . card(X12̄)

})

card(X12̄)
. (4.26b)

Since for each set the indices are dependent on each other, it is sufficient to know only

one index for each set in order to have the corresponding value for ν(α). A possible choice

could be to consider only WRR1̄2(α) and CRR12̄(α) and to represent them as coordinates

in a plane: in this way, the values produced by a particular α individuate a point in the

unit square whose corners are the points (0, 0), (1, 0), (0, 1) and (1, 1) (see fig. 4.5).

When the value of the weight α varies between 0 and +∞ the quantities WRR1̄2(α)

and CRR12̄(α) vary accordingly, thus drawing a curve running from (1, 1) to (0, 0). We

call it Difference Ratio Operating Characteristic (DROC ) curve.

Similarly to the ROC curve, the DROC curve has some noteworthy features:

• the extreme points of the curve represent the extreme configurations for the combi-

nation of f1 and f2: the point (0, 0) is reached when α→ +∞ and the combination

reduces to the only dichotomizer f2, while (1, 1) is obtained for α = 0 where the

combination reduces to the only dichotomizer f1;

• if the distributions are perfectly separated, the curve passes through the point (0, 1):

in this case, there exists a value for α which verifies the condition in eq. (4.20).
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Informally speaking, the closer the curve to the point (0,0), the more separated the

distributions;

• if the distributions totally overlap, the curve turns into a diagonal line from the

bottom left corner to the upper right corner;

• the DROC curve is not defined if card(X12̄) = 0 or card(X1̄2) = 0. However, in this

case the combination is not profitable since it does not give better results than the

single dichotomizer. In fact, if e.g. card(X1̄2) = 0, there are no pairs incorrectly

ranked by f1 which are correctly ranked by f2 and thus the combination is useless

since it cannot recover any error made by f1.

4.5.1 Generating the DROC Curve

The plot of the DROC curve can be drawn in many ways. For example, we could obtain

T points of the DROC curve of a pair of dichotomizers by imposing T thresholds ranging

from the smallest to the largest values obtained for the SDRs and evaluating the resulting

CRR and WRR for each of the T thresholds. However, such kind of method is quite un-

satisfactory because it is strictly dependent on the choice of T and when the discretization

is too coarse (the T threshold values considered are few compared with the number of

different values the SDRs assume) the approximation can be poor and misrepresent the

actual plot. For this reason, we have chosen to generate the plots for the DROC curves

by employing all the values exhibited by the SDRs as possible decision thresholds, thus

obtaining a faithful plot. To this aim we have defined an efficient algorithm (see algo-

rithm 4.1), derived by the one described in sec. 2.3.1 for plotting the ROC curve, with

complexity O(nlogn) in the number of the SDR values.

4.5.2 Finding αopt by means of the DROC Curve

The DROC is not only a tool for visualizing how the difference ratio distributions are

separated, but it can also be profitably used to select the optimal value of the weight

αopt. To this aim, let us point out that the quantity to be maximized in eq. (4.17) can be

written as:

ν(α) = card(X12̄)CRR12̄(α) + card(X1̄2) (1−WRR1̄2(α)) . (4.27)
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4.5 The DROC Curve

(a)

(b)

Figure 4.5: The (WRR1̄2, CRR12̄) plane (a) with the four indices CRR1̄2(α), CRR12̄(α),
WRR1̄2(α) and WRR12̄(α) corresponding to the value of α shown on the histogram dis-
tributions in (b).
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Algorithm 4.1 Efficient method to generate a DROC curve

Input: mP > 0 and mN > 0, the number of positive and negative samples; (x1
i , y

1
j )

and (x2
i , y

2
j ), the output of the two classifiers on the i-th positive sample and the j-th

negative sample ∀i = 1 . . .mP ,∀j = 1 . . .mN .
Output: D, a list of DROC points.

build X1̄2 and X12̄

δ1̄2 ← δ1̄2
r with r = 1, . . . , card(X1̄2)

δ12̄ ← δ12̄
s with s = 1, . . . , card(X12̄)

put the two distributions δ1̄2 and δ12̄ in the same vector τ
τ ← τ sorted by decreasing values
D ← [ ]
CR←WR← 0
τprev ← −∞
for h = 1 to length(τ) do

if τ(h) 6= τprev then

put
(

CR
card(X12̄)

, WR
card(X1̄2)

)

onto D

τprev ← τ(h)
end if

if τ(h) ∈ X12̄ then

CR← CR + 1
else

WR←WR + 1
end if

end for

put
(

CR
card(X12̄) ,

WR
card(X1̄2)

)

onto D /*this corresponds to the point (1,1)*/

Two different points
(

WRR′
1̄2

, CRR′
12̄

)

and
(

WRR′′
1̄2

, CRR′′
12̄

)

give the same ν(α) if:

card(X12̄)CRR′
12̄ + card(X1̄2)

(

1−WRR′
1̄2

)

= card(X12̄)CRR′′
12̄ + card(X1̄2)

(

1−WRR′′
1̄2

)

,

that is if:

CRR′
12̄
− CRR′′

12̄

WRR′
1̄2
−WRR′′

1̄2

=
card(X1̄2)

card(X12̄)
= m. (4.28)

This is equivalent to say that the two points lie on a line with slope m; obviously,

all the points on the same line provides the same ν(α) and thus it represents an iso-

performance line. In other words, the level curves of the linear function in eq. (4.27) on

the DROC plane are lines with slope m; the lines with the highest values for ν(α) are
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4.5 The DROC Curve

Figure 4.6: The DROC curve relative to the distributions in fig. 4.3 shown together with
its convex hull and some iso-performance lines with slope m defined in eq. (4.28).

those with largest y-intercept. If the DROC curve is defined by means of a finite number

of experimental points connected with straight lines, the optimal operating point is the

one where a line with slope m touches the DROC curve. In particular, such point lies on

the DROC Convex Hull, i.e. the smallest convex set containing the points of the DROC

curve. This can be visually understood by looking at fig. 4.6 where an empirical DROC

curve is shown together with its convex hull and some level lines with the same slope m

and decreasing value for ν(α). The line touching the DROC curve determines the optimal

weight: in fact the line above, even though exhibits the highest value for ν(α), does not

determine any feasible point, while the line below intersects the DROC curve in at least

two points, but at lowest values for ν(α). Once the optimal point has been found, the

optimal weight αopt is consequently determined by reading the value of α related to that

point.

This property is formally stated and proved in the following lemma 4.5.1. It is worth

noting that a similar result holds for the convex hull of the ROC curve when the best

classifier that minimizes the expected classification cost is searched. Such result is demon-

strated in Provost & Fawcett (2001) and we strictly follow the proof provided in that

paper formalizing it fir the DROC curve.
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Figure 4.7: The notation used in the search of the optimal weight.

Lemma 4.5.1. For a given DROC curve and a given ratio card(X1̄2)
/

card(X12̄),

there exists a point on the DROC convex hull with maximum ν(α). Thus, the value of α

pertaining to that point is the optimum weight for the linear combination.

Proof. Assume that for a given ratio card(X1̄2)
/

card(X12̄), the point M with the maxi-

mum ν(α) is not on the DROC convex hull. Nevertheless, it must belong to the DROC

curve otherwise it would not be a feasible point for the combination. M will be either

above the convex hull or below the convex hull. If M is above, then the DROC convex

hull does not enclose all the points of the DROC, but that is absurdum. If M is below

the convex hull, then the line with slope card(X1̄2)
/

card(X12̄) containing M will intersect

the DROC convex hull at least in one point M ′. If M ′ is a vertex of the convex hull,

then it will exhibit the same ν(α) of M , which contradicts our initial assumption that the

maximum ν(α) is not provided by a point on the convex hull. If M ′ is not a vertex, then it

will be lie on an edge of the convex hull with non null slope; in this case one of the vertices,

let V denote it, of such edge will be also on a line parallel to the line MM ′, but with a

higher y intercept. This means that the point V provides a larger value for ν(α) than M ,

but this contradicts our initial assumption that the point with the maximum ν(α) is not

on the DROC convex hull. So we can conclude that the lemma must be true.

Lemma 4.5.1 allows us to sensibly simplify the search for the optimal α: in fact, if an
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4.5 The DROC Curve

estimate of the DROC curve on which the optimal weight has to be searched is available,

we can limit the search only to the points coinciding with vertices of the DROC convex

hull. On the contrary, a direct search on the points of the DROC would have a higher

computational cost. Hence, the optimal thresholds can be found by means of a simple

search on the slopes of the edges of the DROC convex hull. To this aim, let us call

V0, V1, . . . , Vz the vertices of the DROC convex hull, with V0 ≡ (0, 0) and Vz ≡ (1, 1) and

let sk be the slope of the edge joining the vertices Vk−1 and Vk (see fig. 4.7); moreover,

let us assume that s0 = +∞ and sz+1 = 0. For a given slope m, the vertex providing the

searched weight is the vertex Vk such that sk > m > sk+1. However, it can exist an edge

Vk−1Vk with slope sk = m; in this case, the level curve and the edge are coincident and

thus either of the vertices Vk−1 and Vk can be chosen; the only difference is that the left

vertex will have lower CRR12̄ and WRR1̄2, while the right vertex will have higher CRR1̄2

and WRR12̄, thus one can refer to the requirements of the application at hand to make

the most appropriate choice.

4.5.3 The Area under the DROC Curve

As we have seen in sec. 4.5, the shape of the DROC curve can give some information

about the degree of separation between the distributions of the SDRs. Informally, we

can add that the Area Under the DROC Curve (AUDC) could be assumed as a concise

index to measure such degree of separation: it ranges from 0.5 for distributions totally

overlapped to 1.0 if the distributions are totally separated. In order to establish a rigorous

relation between the AUDC and the degree of separation between the distributions, let us

consider the two sets of the pairs coming from X12̄ ×X1̄2 which are correctly ranked by

one dichotomizer but not by the other one, i.e.:

C12̄ =
{

(ρ, σ) ∈ X12̄ ×X1̄2|δ12̄(ρ) < δ12̄(σ) and δ1̄2(ρ) > δ1̄2(σ)
}

, (4.29a)

C1̄2 =
{

(ρ, σ) ∈ X12̄ ×X1̄2|δ12̄(ρ) > δ12̄(σ) and δ1̄2(ρ) < δ1̄2(σ)
}

. (4.29b)

Moreover, let us define the probability P12̄>1̄2 that two pairs (ρ′, σ′) and (ρ′′, σ′′), randomly

extracted from C12̄ and C1̄2 respectively, have their SDRs ranked in decreasing order as:

P12̄>1̄2 = Prob
(

Γ1
2(ρ

′, σ′) > Γ1
2(ρ

′′, σ′′), (ρ′, σ′) ∈ C12̄, (ρ
′′, σ′′) ∈ C1̄2

)

. (4.30)

The following theorem holds:

Theorem 4.5.2. The area under the DROC curve (AUDC) evaluated on the sets X12̄
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Figure 4.8: The notation used in the proof of the theorem 4.5.2 to evaluate the AUDC.

and X1̄2 is an unbiased estimate of the probability P12̄>1̄2 defined as in eq. (4.30).

Proof. With reference to the algorithm 4.1 in sec. 4.5.1, let us analyze how the DROC

curve is built. After the SDRs are sorted in decreasing order, the sequence is traversed

from the highest value to the lowest one: for each SDR belonging to X1̄2, the curve moves

on the DROC plane 1/ card(X1̄2) to the right, while it moves 1/ card(X12̄) upward for

each SDR coming from X12̄. From fig. 4.8 it is possible to see that the generic δ1̄2
k coming

from X1̄2 contributes to the AUDC with a rectangle having area

Â =
1

card(X1̄2)

1

card(X12̄)
Nk, (4.31)

where Nk is the number of SDRs δ12̄
h greater than δ1̄2

k . Therefore, we have:

AUDC =
1

card(X1̄2) card(X12̄)

card(X1̄2)
∑

k=1

Nk. (4.32)

Since Nk can be defined as:

Nk =

card(X12̄)
∑

h=1

I
(

δ12̄
h , δ1̄2

k

)

, (4.33)
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we finally have:

AUDC = WX12̄>X1̄2
=

1

card(X1̄2) card(X12̄)

card(X1̄2)
∑

k=1

card(X12̄)
∑

h=1

I
(

δ12̄
h , δ1̄2

k

)

, (4.34)

where WX12̄>X1̄2
is the WMW statistic applied on the SDR distributions over X12̄ and

X1̄2. Let us now calculate the expectation of WX12̄>X1̄2
:

E
[

WX12̄>X1̄2

]

=
1

card(X1̄2) card(X12̄)

card(X1̄2)
∑

k=1

card(X12̄)
∑

h=1

E
[

I
(

δ12̄
h , δ1̄2

k

)]

. (4.35)

If we recall the definition of the indicator function we obtain:

E
[

I
(

δ12̄
h , δ1̄2

k

)]

= 1 · P12̄>1̄2 + 0 · (1− P12̄>1̄2) = P12̄>1̄2, (4.36)

and thus:

E
[

WX12̄>X1̄2

]

=
1

card(X1̄2) card(X12̄)

card(X1̄2)
∑

k=1

card(X12̄)
∑

h=1

P12̄>1̄2 = P12̄>1̄2. (4.37)

Therefore, WX12̄>X1̄2
is an unbiased estimator of the probability P12̄>1̄2. Since AUDC =

WX12̄>X1̄2
, the theorem is proved.

4.6 Measuring the Ranking Diversity

A recently emerging issue in classifier combination is to evaluate to which extent two

classifiers are different. In Kuncheva (2005) it is claimed that the diversity among the

classifiers to be combined is a “vital requirement for the success of the ensemble” since

it is possible to improve the performance of the base classifiers only if they make errors

on different objects. However, the relation between diversity and quality in classifier

ensembles is very ambiguous for two main reasons: first, the diversity can be measured in

many ways (Kuncheva & Whitaker, 2003) and no one of the possible different measures

seems to be definitely better than the others2; the second reason is the lack of a definitive

connection between the measures and the improvement of the accuracy which makes it

difficult to decide how to employ the diversity for the design of the classifier ensemble.

2In conclusions of Kuncheva & Whitaker (2003) the authors suggest to use a particular measure of
diversity among the ten described mainly for three reasons: ease of interpretation, formally demonstrable
relationship between the value of the measure and the limits of majority voting combination, ease of
computation.
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Moreover, another issue to be taken into account is that the diversity measures based

on accuracy are actually related to the particular operating point chosen for the classifier.

As an example, consider a classifier providing an estimate of the a posteriori probability

that an object belongs to a certain class. Depending upon the particular application, the

different kinds of errors that the classifier could incur yield different costs and the decision

about the class is taken by comparing the a posteriori probability with a threshold related

to such costs. For this reason, whichever the assumed diversity index, its value will

depend on the particular threshold adopted. When the costs are not known (or they are

dynamically varying) the operating point is not univocally determined and thus the value

of the diversity measure is consequently indefinite.

In this context, we try to extend the concept of diversity measure to a ranker, i.e. to

a learning algorithm which is able to provide for each object a numerical value estimating

the confidence degree about the membership to a particular class. In fact, in our case it is

not possible to use the accuracy-based diversity of the output of two classifiers since we are

interested at the diversity of the score differences between outputs of samples belonging

to positive and negative classes for the maximization of the AUC.

This means that the diversity indices proposed in literature are not directly applicable.

However, we can still define a diversity index between the dichotomizers on the basis of the

results obtained in sec. 4.4. In particular, from eq. (4.13) we can extract of the diversity

between the two dichotomizers, where the diversity we are looking at is not related to

the classification capability but to the ranking capability of the dichotomizer. For this

reason, we denote the maximum of ν(α) as a ranking disagreement (RD) index between

two generic classifiers fh and fk:

RDhk =
card(Xh̄k) + card(Xhk̄)

mP mN
. (4.38)

Such index is 0 when the two dichotomizers rank in the same way all the pairs (pi, nj)

while it is 1 when all the pairs are ranked in a different way by the dichotomizers. The

expression of the ranking disagreement index is similar to the disagreement measure for

classifiers proposed by Skalak (1996) (see also Kuncheva & Whitaker (2003)), but, in that

case, the index refers to the number of samples incorrectly classified by fh and correctly

classified by fk (and vice versa). In other words, the RDhk index can be thought as the

counterpart of the Skalak index for the rankers.

The ranking disagreement index has some noteworthy features. Since we have found

that RDhk is the upper bound for the improvement of the AUC, the ranking disagreement

index is directly related to the performance improvement in terms of AUC attainable
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from the combination of the dichotomizers, at least for the linear combination scheme.

This represents an important difference point with respect to the accuracy based diversity

indices, for which there is not any similar clear relationship. Moreover, the RD index is

independent of any operating point since it looks at the dichotomizer as a ranker.

However, this is a quite loose relation since the actual improvement depends on how

are separated the two distributions of the difference ratio evaluated on Xhk̄ and Xh̄k:

if they are completely separated, the total improvement is equivalent to the RD index

while it is null if the distributions totally overlap. In order to have a tighter bound of

the improvement of the AUC for the linear combination of dichotomizers, let us take into

account that the degree of separation between the distributions can be provided by the

probability Phk̄>h̄k or, better, by the area under the relative DROC, AUDChk. In this

way, a more accurate estimate of the attainable improvement R∆hk will be given by:

R∆hk = RDhkAUDChk. (4.39)

4.7 A Greedy Approach for the Combination of Several

Classifiers

Once we have introduced the DROC curve and a ranking diversity measure, we can now

extend to K classifiers the approach proposed in section 4.4.

To this aim, let us now consider the linear combination of K classifiers:

flc = α1f1 + α2f2 + . . . + αKfK =
K
∑

i=1

αifi. (4.40)

In order to find the optimal weight vector:

αopt = (α1 . . . αK) , (4.41)

that maximizes the AUC associated with flc, the algorithm proposed in sec. 4.4 cannot be

generalized to K > 2 dichotomizers in such a way that the maximization of the resulting

AUC is computationally feasible.

Therefore, to avoid an high computational cost we adopt a suboptimal algorithm that

approximates the solution using a greedy approach. Rather than considering every possible

combination in its entirety, we iteratively find the optimal weight of the linear combination

of two dichotomizers so as to evaluate all the combination weights in K−1 steps, producing

in each step the largest immediate gain, i.e. the largest AUC.
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Table 4.1: An example of diversity tables for the combination of four classifiers in the first
step (a) and the second step (b) of the greedy approach

f1 f2 f3 f4

f1 0.0 0.3 0.2 0.5

f2 0.3 0.0 0.6 0.2

f3 0.2 0.6 0.0 0.4

f4 0.5 0.2 0.4 0.0

(a)

flc1 f1 f4

flc1 0.0 0.2 0.3

f1 0.2 0.0 0.4

f4 0.3 0.4 0.0

(b)

In this context an important role is played by the order of combination, i.e. to correctly

choose which pair of classifiers should be combined in each step. From the previous sections

we know that the greater the diversity among the classifiers to be combined the greater

the improvement to the performance of the base classifiers which could be gained (see eq.

(4.21) and the following discussion in sec. 4.4). Therefore, we choose to combine in each

step the pair that exhibits the maximum disagreement coefficient in terms of ranking.

Once the weight has been computed, the two dichotomizers are replaced by their

combination and thus the dichotomizers to be combined decrease from K to K − 1. At

this point, we have to evaluate the disagreement between the new classifier and the other

classifiers. It is worth noting that, for this step, it is not necessary to compute the output

of the combined classifier, since its score differences (SD) can be directly evaluated as the

weighted sum (with the same weight estimated for the combination) of the score differences

of the combined classifiers. To this aim, let us consider the r-th step of the algorithm where

the pair (h, k) has been combined, we can evaluate the SD of the combined classifier as:

SDlcr
= xlcr

i − ylcr

j =
(

xh
i + αlcr

xk
i

)

−
(

yh
j + αlcr

yk
j

)

=
(

xh
i − yh

j

)

+ αlcr

(

xk
j − yk

j

)

= SDh + αlcr
SDk. (4.42)

These steps are repeated until all the dichotomizers have been combined: in each iteration

it is chosen the pair of dichotomizers with the highest disagreement coefficient. It is worth

noting that applying the greedy approach one of the weights of the vector is always equal

to 1 (say αp) because step by step we evaluate only one weight. This means that the final

weight vector is defined up to a normalizing constant. However, since the decision rule is

based on a comparison with a threshold τ , this is equivalent to a decision rule where the

comparison is made with a threshold τ/αp (see footnote 1 in sec. 4.4).

As an example let us consider the combination of four classifiers f1, f2, f3, f4 and let us
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Figure 4.9: The construction of the combination tree along the various steps of the algo-
rithm according the diversity tables in table 4.1.

consider the diversity table reported in table 4.1.(a). At the first step we combine f2 and

f3 (since they have the highest diversity index) and obtain a classifier flc1 = f2+αlc1f3. In

the second step we have to consider the updated diversity table reported in table 4.1.(b)

and we obtain a new classifier flc2 = f1+αlc2f4. Finally, we combine flc1 and flc2 obtaining

the final classifier:

flc = flc1 + αlc3flc2 = f2 + αlc1f3 + αlc3 (f1 + αlc2f4) = αlc3f1 + f2 + αlc1f3 + αlc3αlc2f4,

and the final weight vector:

αopt =
(

αlc3 1 αlc1 αlc2αlc3

)

.

In order to recover the weight for each of the classifiers to be combined, a combination

tree is built during the evaluation of the αopt. The original classifiers constitute the leaves

of the tree and, each time a pair of classifiers is combined, a parent node is added which is

connected to the nodes associated to the two combined classifiers. The edges are labelled

with the weights assigned to each classifier. In fig. 4.9 an example of the construction of

the combination tree is reported.

At the end of the computation, the weight of each classifier can be easily recovered by

traversing the tree from the leaf up to the root and multiplying all the values found on

the edges.

To better explain the proposed algorithm a pseudo code of the method is reported in

algorithm 4.2.
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Algorithm 4.2 A method for the application of the greedy approach in the combination
rule
Input: K, the number of classifiers to be combined; mP > 0 and mN > 0, the number

of positive and negative samples; (xh
i , yh

j ), the output of the h-th classifiers on the
i-th positive sample and the j-th negative sample ∀h = 1 . . .K,∀i = 1 . . .mP ,∀j =
1 . . .mN .

Output: α, the weight vector of the linear combination.

1: SD
(0)
h ← ( xh

1 − yh
1 xh

1 − yh
2 . . . xh

1 − yh
mN

xh
2 − yh

1 . . . xh
mP
− yh

mN
)T /*the

SD for each classifier at step 0*/

2: S(0) ← SD
(0)
h

3: for h = 1 to K − 1 do

4: for k = h + 1 to K do

5: build Xh̄k and Xhk̄

6: δh̄k ← δh̄k
r with r = 1, . . . , card(Xh̄k)

7: δhk̄ ← δhk̄
s with s = 1, . . . , card(Xhk̄)

8: R∆
(0)
h,k ←

card(Xh̄k)+card(Xhk̄)
mP mN

AUDC(δhk̄, δh̄k) /*evaluate the diversity matrix at
step 0*/

9: end for

10: end for

11: for m = 1 to K − 1 do

12: (u, v)← arg maxh,k R∆
(m−1)
h,k /*find the pair of classifiers with the highest diversity*/

13: evaluate the αopt on DROC((δuv̄, δūv)
14: update the combination tree

15: put S
(m−1)
u +αoptS

(m−1)
v in the 1st column of S(m) eliminating the u-th and the v-th

column of S(m−1)

16: n← 2
17: while (m < K − 1 and n < K −m) do

18: build X1̄n and X1n̄

19: δ1̄n ← δ1̄n
r with r = 1, . . . , card(X1̄n)

20: δ1n̄ ← δ1n̄
s with s = 1, . . . , card(X1n̄)

21: R∆1,n ← card(X1̄n)+card(X1n̄)
mP mN

AUDC(δ1n̄, δ1̄n)
22: n← n + 1
23: end while

24: update the diversity matrix, i.e. put R∆1,n in the 1st row of the matrix R∆(m)

eliminating the row and the column corresponding to the u-th and the v-th classifier
25: end for

26: evaluate α by multiplying the values on the edges of the tree
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4.8 Experiments and Discussion

In this section we give some results on the quality of the performance of the proposed

method in order to show its effectiveness. To this aim, two different comparisons have

been performed. The former consists in an evaluation of the reliability of the weight

search, i.e. we want to show that our algorithm is able to maximize the AUC, while in the

second subsection we want to put in evidence the behavior of our method with respect to

other combining rules described in literature.

In order to evaluate the performance of the proposed method, it has been tested on

several data sets publicly available at the UCI Machine Learning Repository (Blake et al.,

1998). All of them have two classes and a variable number of numerical input features.

The features were previously scaled so as to have zero mean and unit standard deviation.

To avoid any bias in the comparison, 10 runs of a multiple hold out procedure (Duda

et al., 2001) have been performed on all data sets. In each run, the data set has been

parted into three sets: two training sets, one to train the classifier and one to estimate

the optimal weight (i.e. to train the combiner and a test set to assess the reliability of the

proposed method. More details for each data set are given in appendix A.

It is worth recalling that the comparison has been performed in terms of AUC since

we are aiming at the maximization of the ranking quality of the combination rule and not

at the evaluation of the error rate (or other measures depending on a threshold value).

Hence, in our experiments only the value of the AUC has been evaluated using the WMW

statistic according to eq. (2.23).

4.8.1 Validation of the Estimated Weight Vector

The first part of our experiments focuses on the analysis of the weight vector estimated by

the proposed method. To this aim, the employed base dichotomizers are SVM and Multi-

Layer Perceptrons (MLP) (see appendix 3.1.1 for the characteristic of the classifiers).

The SV-based classifiers have been implemented by means of SV M light tool (Joachims,

1999) while for the MLPs we have employed the NODElib library (Flake & Pearlmuter,

2000). Three different kernels have been used for the SVMs while for the MLPs we have

considered three classifiers with different numbers of units in the hidden layer, all trained

for 10,000 epochs using the back propagation algorithm with a learning rate of 0.01.

The characteristics of the nine employed dichotomizers are reported in table 4.2 with the

relative acronyms used in the following tables. Our experiments focus on the validation

of the proposed method for two classifiers. To this aim, five data sets (Breast, CMC,

Diabetes, German and Heart) have been used.
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Table 4.2: Acronyms of the classifiers used in the experiments.

Type of Classifier Type of Kernel or Number of Hidden Nodes Acronym

SVM Linear SL
SVM Polynomial of degree 2 SP2
SVM Polynomial of degree 3 SP3
SVM RBF with r = 1 SR1
SVM RBF with r = 2 SR2
SVM RBF with r = 5 SR5
MLP 2 M2
MLP 4 M4
MLP 6 M6

Let us analyze the behavior of our rule for two classifiers. In the performed experiments

all the 15 combinations which can be accomplished with the employed dichotomizers have

been considered. For each combination, we have evaluated the weight αopt by means of the

proposed method on the training set of the combiner and then the achieved AUC through

the WMW statistic on both this set and the test set.

For the sake of comparison, we have also considered another method which trivially

chooses the weight maximizing the AUC through an exhaustive search. In particular, this

method considers the set of values for α varying in the range [0, 50] with a step of 0.01; for

each of them, the outputs of the two classifiers on the second training set are combined

according to eq. (4.11) and the relative AUC is computed through the WMW statistic.

Finally the value of α corresponding to the maximum AUC is picked out. The aim here is

not to provide another algorithm to construct the optimal combination, but to obtain a

reliable estimate of the weight maximizing the AUC on the training set of the combiner,

which can be compared with the αopt provided by the proposed method3.

In this way, for each data set, the hold out procedure provides 10 AUC values for

each method. This allows us to employ the Wilcoxon rank-sum test (Wilcoxon, 1945),

(Walpole et al., 1998) (see appendix B for more details), so as to verify if the differences in

the means of the two populations are statistically significant. All the results were provided

with a significance level equal to 0.05.

Let us firstly analyze the results obtained on the training set of the combiner of the five

employed data sets which are reported in tables 4.3-4.7. Each entry of the tables contains

the mean (and the standard deviation in parentheses) of the AUC values obtained in the

10 runs of the hold out procedure. A bold value means that such value is significantly

better than the other one. If the compared methods have undistinguishable means the

3It is worth noting that the involved computational complexity of the exhaustive search is very high:
O(NpmP mN ) where Np is the number of points considered for α.
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Table 4.3: Results on the training set of
the combiner for Breast data set.

DROC Exh. Search

SL-M2 0.995 (0.003) 0.995 (0.003)
SL-M4 0.995 (0.003) 0.996 (0.003)
SL-M6 0.995 (0.004) 0.996 (0.004)
SP2-M2 0.995 (0.004) 0.995 (0.004)
SP2-M4 0.995 (0.004) 0.996 (0.003)
SP2-M6 0.995 (0.004) 0.996 (0.004)
SR1-M2 0.986 (0.009) 0.986 (0.009)
SR1-M4 0.990 (0.005) 0.990 (0.005)
SR1-M6 0.987 (0.009) 0.987 (0.009)
SL-SP2 0.996 (0.003) 0.996 (0.003)
SL-SR1 0.995 (0.004) 0.995 (0.003)
SP2-SR1 0.996 (0.004) 0.996 (0.004)
M2-M4 0.980 (0.016) 0.980 (0.016)
M2-M6 0.980 (0.017) 0.980 (0.017)
M4-M6 0.973 (0.027) 0.976 (0.027)

Table 4.4: Results on the training set of
the combiner for CMC data set.

DROC Exh. Search

SL-M2 0.757 (0.037) 0.757 (0.037)
SL-M4 0.753 (0.030) 0.753 (0.030)
SL-M6 0.746 (0.038) 0.746 (0.038)
SP2-M2 0.765 (0.035) 0.765 (0.035)
SP2-M4 0.763 (0.032) 0.763 (0.032)
SP2-M6 0.764 (0.032) 0.764 (0.032)
SR1-M2 0.756 (0.034) 0.755 (0.034)
SR1-M4 0.746 (0.027) 0.747 (0.027)
SR1-M6 0.742 (0.033) 0.742 (0.034)
SL-SP2 0.761 (0.037) 0.761 (0.037)
SL-SR1 0.743 (0.033) 0.743 (0.033)
SP2-SR1 0.757 (0.036) 0.757 (0.036)
M2-M4 0.758 (0.029) 0.758 (0.029)
M2-M6 0.758 (0.035) 0.758 (0.035)
M4-M6 0.750 (0.028) 0.750 (0.028)

values are in normal style.

From these results we can see the good performance of the proposed method since the

AUC values obtained are quite indistinguishable from those provided by the exhaustive

search and thus the evaluated weight is actually able to maximize the AUC of the resulting

classifier.

It is worth noting that, in the case of Breast data set, we have frequently obtained

an extreme value for αopt which excludes one dichotomizer from the combination. This is

due to the very good performance reached by the best single dichotomizer which leads to

two possible situations: one of the sets X1̄2 or X12̄ is empty (i.e. the samples erroneously

classified by a classifier are not correctly classified by the other) or there is a very low

number of samples in one of the two sets. In the former case, one of the two dichotomizers

is useless (as explained in sec. 4.4) because it cannot recover any error made by the other

classifier. In the latter case, the distributions of the SDR Γ1
2(pi,nj) evaluated on the two

sets X1̄2 or X12̄ can be very imbalanced as shown in fig. 4.10, where the distributions

for the linear combination of an SL and an M4 on the Breast data set are reported. In

this case, each value of α greater than zero leads to a lower value for F1̄2(α) + F12̄(α)

because the minimum value of α which allows some errors of f1 to be recovered produces

a higher number of errors of f2 which can be no longer recovered. This can be clearly seen

in fig. 4.11 where is shown that in this case F1̄2(α)+F12̄(α) is a monotonically decreasing

function whose maximum is reached for α = 0, i.e. when the combination reduces to the

dichotomizer f1.

Let us now analyze the results obtained on the test sets in terms of the AUC calculated
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(a) (b)

Figure 4.10: The distributions of the SDRs Γ1
2(pi,nj) evaluated on X12̄ (a) and X1̄2 (b)

for the linear combination of an SL with an M4 on Breast data set.

Figure 4.11: The trend of the function ν(α) = F12̄(α) + F1̄2(α) obtained by the two
distributions shown in fig. 4.10 for the linear combination of an SL with an M4 on Breast
data set.
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Table 4.5: Results on the training set of
the combiner for Diabetes data set.

DROC Exh. Search

SL-M2 0.838 (0.029) 0.838 (0.029)
SL-M4 0.841 (0.028) 0.841 (0.028)
SL-M6 0.838 (0.027) 0.838 (0.027)
SP2-M2 0.833 (0.029) 0.832 (0.030)
SP2-M4 0.831 (0.034) 0.832 (0.034)
SP2-M6 0.832 (0.032) 0.832 (0.032)
SR1-M2 0.809 (0.031) 0.809 (0.031)
SR1-M4 0.803 (0.037) 0.803 (0.037)
SR1-M6 0.795 (0.028) 0.795 (0.028)
SL-SP2 0.842 (0.029) 0.843 (0.029)
SL-SR1 0.846 (0.027) 0.847 (0.027)
SP2-SR1 0.833 (0.041) 0.833 (0.041)
M2-M4 0.815 (0.031) 0.815 (0.030)
M2-M6 0.807 (0.033) 0.806 (0.032)
M4-M6 0.798 (0.034) 0.798 (0.034)

Table 4.6: Results on the training set of
the combiner for German data set.

DROC Exh. Search

SL-M2 0.803 (0.040) 0.803 (0.040)
SL-M4 0.801 (0.038) 0.802 (0.037)
SL-M6 0.808 (0.043) 0.808 (0.043)
SP2-M2 0.791 (0.038) 0.791 (0.038)
SP2-M4 0.782 (0.034) 0.782 (0.034)
SP2-M6 0.789 (0.048) 0.789 (0.048)
SR1-M2 0.764 (0.029) 0.764 (0.029)
SR1-M4 0.740 (0.017) 0.738 (0.019)
SR1-M6 0.742 (0.050) 0.741 (0.050)
SL-SP2 0.809 (0.040) 0.810 (0.040)
SL-SR1 0.803 (0.038) 0.803 (0.038)
SP2-SR1 0.771 (0.043) 0.771 (0.043)
M2-M4 0.762 (0.029) 0.762 (0.029)
M2-M6 0.776 (0.040) 0.777 (0.040)
M4-M6 0.764 (0.037) 0.764 (0.037)

Table 4.7: Results on the training set of
the combiner for Heart data set.

DROC Exh. Search

SL-M2 0.921 (0.022) 0.922 (0.022)
SL-M4 0.915 (0.025) 0.916 (0.025)
SL-M6 0.923 (0.023) 0.924 (0.024)
SP2-M2 0.895 (0.037) 0.896 (0.037)
SP2-M4 0.887 (0.033) 0.888 (0.033)
SP2-M6 0.893 (0.038) 0.893 (0.037)
SR1-M2 0.886 (0.051) 0.887 (0.049)
SR1-M4 0.871 (0.042) 0.872 (0.041)
SR1-M6 0.869 (0.057) 0.867 (0.058)
SL-SP2 0.912 (0.026) 0.912 (0.026)
SL-SR1 0.915 (0.023) 0.916 (0.023)
SP2-SR1 0.874 (0.037) 0.875 (0.037)
M2-M4 0.895 (0.047) 0.895 (0.047)
M2-M6 0.884 (0.059) 0.885 (0.059)
M4-M6 0.883 (0.045) 0.884 (0.045)

Table 4.8: Results on the test set for
Breast data set.

DROC Exh. Search

SL-M2 0.988 (0.024) 0.988 (0.024)
SL-M4 0.991 (0.011) 0.992 (0.009)
SL-M6 0.980 (0.049) 0.980 (0.049)
SP2-M2 0.988 (0.023) 0.990 (0.023)
SP2-M4 0.995 (0.004) 0.995 (0.004)
SP2-M6 0.981 (0.049) 0.981 (0.049)
SR1-M2 0.975 (0.025) 0.977 (0.025)
SR1-M4 0.982 (0.010) 0.982 (0.010)
SR1-M6 0.970 (0.046) 0.970 (0.045)
SL-SP2 0.995 (0.004) 0.995 (0.005)
SL-SR1 0.994 (0.005) 0.994 (0.005)
SP2-SR1 0.995 (0.004) 0.993 (0.007)
M2-M4 0.960 (0.046) 0.960 (0.046)
M2-M6 0.950 (0.051) 0.950 (0.051)
M4-M6 0.950 (0.055) 0.950 (0.055)
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Table 4.9: Results on the test set for CMC
data set.

DROC Exh. Search

SL-M2 0.756 (0.029) 0.755 (0.030)
SL-M4 0.735 (0.033) 0.736 (0.033)
SL-M6 0.745 (0.034) 0.745 (0.035)
SP2-M2 0.752 (0.024) 0.753 (0.025)
SP2-M4 0.746 (0.027) 0.746 (0.027)
SP2-M6 0.750 (0.035) 0.751 (0.036)
SR1-M2 0.757 (0.021) 0.756 (0.021)
SR1-M4 0.732 (0.022) 0.733 (0.022)
SR1-M6 0.740 (0.027) 0.740 (0.027)
SL-SP2 0.758 (0.032) 0.758 (0.031)
SL-SR1 0.737 (0.034) 0.737 (0.034)
SP2-SR1 0.753 (0.029) 0.753 (0.029)
M2-M4 0.746 (0.023) 0.746 (0.023)
M2-M6 0.756 (0.025) 0.755 (0.025)
M4-M6 0.756 (0.025) 0.755 (0.025)

Table 4.10: Results on the test set for Di-
abetes data set.

DROC Exh. Search

SL-M2 0.837 (0.036) 0.836 (0.036)
SL-M4 0.831 (0.026) 0.831 (0.027)
SL-M6 0.834 (0.036) 0.835 (0.033)
SP2-M2 0.831 (0.032) 0.831 (0.031)
SP2-M4 0.826 (0.031) 0.827 (0.031)
SP2-M6 0.831 (0.031) 0.831 (0.031)
SR1-M2 0.796 (0.032) 0.797 (0.032)
SR1-M4 0.796 (0.021) 0.793 (0.022)
SR1-M6 0.773 (0.033) 0.773 (0.033)
SL-SP2 0.835 (0.031) 0.835 (0.031)
SL-SR1 0.829 (0.024) 0.829 (0.025)
SP2-SR1 0.825 (0.022) 0.826 (0.022)
M2-M4 0.811 (0.037) 0.812 (0.037)
M2-M6 0.798 (0.045) 0.798 (0.045)
M4-M6 0.790 (0.045) 0.790 (0.046)

combining the two dichotomizers with the weights estimated on the training set of the

combiner. The results reported in tables 4.8-4.12 are structured in the same way as

before. Even in this case the proposed method provides practically the same results as the

exhaustive search, thus proving that αopt is a good estimate of the optimal combination

weight also on the test sets.

4.8.2 Comparison with Other Combination Methods

Since we have shown that the proposed method has satisfactory results in estimating

the weight for the combination of two classifiers, let us proceed with the analysis of the

greedy approach to combine K classifiers. In this case, the exhaustive search has too

high complexity to be performed; therefore, we focus on the comparison of the proposed

combination rule with other common rules present in literature.

Since in these experiments we want to put in evidence the good behavior of the com-

bination method we employ low correlated classifiers. In fact, weakening the individual

classifiers appears to be an excellent ensemble building strategy, unequivocally demon-

strated by AdaBoost in Freund & Schapire (1997).

However, using the classification models proposed in the previous experiments it is not

possible to build an ensemble of K > 2 classifiers sufficiently different. To this aim, a

linear classifier based on a random evaluation of the weights for the linear combination

of the features has been considered. The only constrain on the model of this classifier is

that an AUC greater than 0.5 has to be guaranteed. This classifier (that we called AUC-
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Table 4.11: Results on the test set for Ger-
man data set.

DROC Exh. Search

SL-M2 0.793 (0.045) 0.793 (0.046)
SL-M4 0.790 (0.041) 0.790 (0.041)
SL-M6 0.790 (0.042) 0.789 (0.042)
SP2-M2 0.755 (0.049) 0.755 (0.049)
SP2-M4 0.720 (0.038) 0.719 (0.042)
SP2-M6 0.705 (0.049) 0.711 (0.043)
SR1-M2 0.764 (0.029) 0.764 (0.029)
SR1-M4 0.740 (0.017) 0.738 (0.019)
SR1-M6 0.742 (0.050) 0.741 (0.050)
SL-SP2 0.796 (0.045) 0.796 (0.045)
SL-SR1 0.788 (0.044) 0.790 (0.042)
SP2-SR1 0.744 (0.049) 0.746 (0.049)
M2-M4 0.750 (0.040) 0.751 (0.038)
M2-M6 0.753 (0.057) 0.753 (0.058)
M4-M6 0.731 (0.042) 0.732 (0.041)

Table 4.12: Results on the test set for
Heart data set.

DROC Exh. Search

SL-M2 0.899 (0.028) 0.900 (0.027)
SL-M4 0.902 (0.025) 0.901 (0.026)
SL-M6 0.888 (0.051) 0.891 (0.049)
SP2-M2 0.877 (0.033) 0.876 (0.032)
SP2-M4 0.874 (0.045) 0.874 (0.047)
SP2-M6 0.846 (0.052) 0.847 (0.053)
SR1-M2 0.869 (0.056) 0.870 (0.055)
SR1-M4 0.827 (0.070) 0.835 (0.060)
SR1-M6 0.806 (0.075) 0.808 (0.074)
SL-SP2 0.901 (0.027) 0.902 (0.028)
SL-SR1 0.900 (0.030) 0.901 (0.027)
SP2-SR1 0.839 (0.045) 0.850 (0.055)
M2-M4 0.871 (0.044) 0.867 (0.050)
M2-M6 0.856 (0.065) 0.850 (0.066)
M4-M6 0.835 (0.058) 0.836 (0.060)

Algorithm 4.3 A method to generate AUC-based random linear classifiers (ARLC)

Input: Xtr = {x1 . . . xQ}, a Q-dimensional training set;
Output: w, the parameters of the ARLC;

w← randQ /*initialize w with a Q-dimensional random vector*/
w← w

∑Q
i=1

wi

/*normalize the weight vector*/

fARLC =
∑Q

i=1
xiwi

evaluate the AUC of fARLC

if AUC < 0.5 then

w = −w

end if

based Random Linear Classifiers (ARLC), see the pseudo code in algorithm 4.3) is not a

a dichotomizer with outstanding performance but let us easily build a certain number of

classifiers with low correlation. For the sake of comparison in our experiments also MLP

were used to employ a classifier well known in literature. Also in this case the MLP were

built with a low complexity to guarantee a low correlation among the base classifiers. In

particular, MLPs with 100 nodes in the hidden layer, all trained for 300 epochs using the

back propagation algorithm with a learning rate of 0.01 were implemented.

To avoid any bias in the comparison several classifiers have been generated and 30

random combinations of them have been realized varying the number of base classifiers

from 2 to 7 for both the ARLC and the MLP. In this comparison twelve data sets based

on real data have been employed (see appendix A for more details).

Different linear and non linear combination rules both trainable and non trainable
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have been employed. In particular, 7 combination rules (all presented in sect. 4.2 and 4.3)

have been employed: maximum (MAX in the following tables), minimum (MIN), median

(MED), SA, WA (with the weights chosen as in eq. (4.9) but related to the AUC of the

base classifier and not to its accuracy), trimmed mean (TRIM) and product (PROD).

For the sake of comparison the performance obtained by the best base classifier (BEST

in the following tables) employed in each combination have been reported together with

the results obtained using a a bound constrained global optimization algorithm, called

Multilevel Coordinate Search (MCS, see appendix C for more details)(Huyer & Neumaier,

1999).

This algorithm is based on a multilevel coordinate search that balances global and

local search; the local search is done via sequential quadratic programming and it is

not exhaustive. Beyond its computational complexity lower than the exhaustive search

(that in this case should have been performed with a K-dimensional grid approach),

MCS has been used since it does not require any differentiation of the objective function

and, as a consequence, it is possible to perform the maximization avoiding the use of an

approximation of the WMW statistic. The aim here is not to provide another algorithm

to construct the optimal combination, but to obtain a reliable estimate of the weight

vector maximizing the AUC (even though with a computationally expensive algorithm)

to compare the proposed method.

For each combination rule the mean and the standard deviation of the AUC on the

10 multiple hold out procedure has been evaluated and to assess a statistically significant

difference between the employed rules the Friedman test (Friedman, 1937) on each data

set has been performed with 9 (number of algorithms −1 = 10− 1) and 261 ((number of

algorithms −1) ∗ (number of performed combination −1) = (10 − 1) ∗ (30 − 1)) degrees

of freedom (see appendix B for more details) and a level of significance equal to 0.05 (see

sec. 3.5.2 for more explanations).

In all the performed experiments, for every data set and every number of employed

classifiers in the combination, the null hypothesis (i.e. no statistical difference between

the employed combination rules) of the Friedman test has been rejected. Therefore, a

post-hoc test has been applied. As in the experiments of the previous chapter also in this

case we do not want to make pairwise comparisons between the different methods but to

test if the DROC method is better than the existing ones Therefore, the Holm’s step-down

procedure (Holm, 1979) can be used to find which combination rule exhibits a statistically

different behavior from the DROC approach.

The obtained results are reported in tables 4.13-4.18 for the ARLC and in tables 4.19-

4.24 for the MLPs. Each table corresponds to the combination of a certain number of
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classifiers. In this case, it is not correct to compare the AUC values of the combination,

since the classifiers used in each combination are not the same. The proper way to make

such comparison is to consider the mean rank on the thirty considered combination for each

method on each data set. Therefore, each cell of the table contains the mean rank obtained

by the corresponding combination rule on the relative data set. A bold value in the table

indicates that the corresponding method on that data set has lower statistically significant

performance with respect to the proposed approach according to the Holm procedure. If

the value is underlined the DROC rule exhibits lower performance compared to that

method while if the value is in normal style it means that the corresponding method has

undistinguishable performance from our method. Also the Holm test has been performed

with a level of significance equal to 0.05.

Let us firstly analyze the obtained results without considering the MCS algorithm. If

we consider the ARLC (in tables 4.13-4.18) the DROC rule performs statistically better

than all the other methods in the majority of cases for every number of employed classifiers.

There are only few exceptions on Diabetes data set. In this case the minimum rule exhibits

equal performance than the DROC method in almost all cases and better performance

when using six or seven classifiers. Moreover, for seven classifiers also the WA, the SA

and the best base classifiers has the same performance than our method.

Using the MLPs the results (see tables 4.19-4.24) are slightly different but our method

always exhibits better performance in almost the all cases. When the number of classifiers

varies between three and six DROC is better in all cases; for two classifiers the WA is better

on Balance data set while the performance are almost equivalent among all methods for

Breast data set that is a very simple problem (i.e., the performance of the base classifiers

are very high). For seven classifiers WA is again better in Hayes and Diabetes data sets

(and equal on Australian) while the median and the trimmed mean are the best methods

on Breast data set.

Finally, we can assess that our method performs better of well known combination rule

on all the employed data sets for the considered classifiers.

Let us now focus on the MCS rule. In the comparison with this method the Holm

test assesses that the DROC method performs worse than the MCS in almost all cases

(except for Liver data set) of the ARLC combination and in all cases when using the

MLP. However, as said before, MCS is not a real combination method since, due to its

high computational complexity, it is not applicable in a real case.

To this aim, let us analyze the computational complexity of this algorithm: the com-

plexity of the global search depends on the parameters of the algorithm (dimensionality

of the problem (i.e. K in our case), number of the boxes in which the space is partitioned
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and number of iteration of the search in each box (see appendix C for more details)) while

the local search is quadratic in the optimization problem that depends from the dimen-

sionality of the problem (equal to the number of classifiers K in our case). Moreover,

since for each run of the optimization we have to evaluate the WMW statistic (that has a

quadratic complexity in the number of samples), the estimation of the combination weight

using MCS is dependent on the square of the number of samples multiplied for the number

of classifiers and the product of the parameters described before.

Finally, let us make some reasoning about the computational complexity of the pro-

posed method. The first step estimates the distributions of the SDRs δ1̄2 and δ12̄: the

complexity is O(n2) in the number of samples since it depends on the number of pairs

(pi, nj) to be considered, that are mP ·mN . The second step is the evaluation of the DROC

curve and its convex hull that is O(nlogn) as shown using the algorithm 4.1 and, then, the

evaluation of the optimal weight that is linear in the number of points of the convex hull.

Therefore, for two classifiers the complexity is O(n2). When applying to K classifiers we

have to compute the diversity matrix that is always dependent on the number of pairs

(again a quadratic problem) and then perform K−1 times the previous procedure. At the

end, the final computational complexity is K times O(n2). Since K << L the proposed

method has a quadratic computational complexity.

Hence, we can say that the complexity of the DROC approach is significantly lower than

the MCS complexity that therefore, represents only a useful instrument for the comparison

of our algorithm (it can be seen as an upper bound of the performance reachable by our

method). Hence, we can conclude that MCS is not a suitable method in real applications

and the proposed combiner exhibits better performance than other common rules in the

maximization of the ranking for the combination of dichotomizers.

Table 4.13: The results in terms of mean rank obtained on all the data sets for thirty
random combination of two ARLC.

Data Sets
Combination Rules

DROC MCS WA SA MIN MAX MED TRIM PROD BEST

Australian 1.833 1.167 3.367 5.367 8.300 7.467 5.367 5.367 10.000 6.767

Balance 1.400 1.600 4.500 4.500 7.867 7.400 4.500 4.500 10.000 8.733

Breast 2.000 1.067 5.283 5.483 8.033 6.167 5.483 5.483 10.000 6.000

Heart 1.883 1.117 3.800 5.617 8.300 5.217 5.617 5.617 10.000 7.833

CMC 1.300 1.700 3.900 6.100 8.967 3.800 6.100 6.100 10.000 7.033

German 1.633 1.367 4.100 6.500 5.433 8.433 6.500 6.500 10.000 4.533

Hayes 2.000 1.000 4.167 6.733 8.867 4.133 6.733 6.733 10.000 4.633

Housing 1.933 1.067 3.967 6.367 5.100 8.700 6.367 6.367 10.000 5.133

Ionosphere 2.000 1.067 4.767 6.667 9.000 3.067 6.667 6.667 10.000 5.100

Liver 1.867 1.133 4.033 5.400 6.200 8.767 5.400 5.400 9.400 7.400

Diabetes 2.500 1.000 3.733 5.900 4.033 8.800 5.900 5.900 10.000 7.233

Sonar 2.000 1.000 4.817 6.600 7.700 5.383 6.600 6.600 10.000 4.300
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Table 4.14: The results in terms of mean rank obtained on all the data sets for thirty
random combination of three ARLC.

Data Sets
Combination Rules

DROC MCS WA SA MIN MAX MED TRIM PROD BEST

Australian 1.967 1.033 3.333 4.800 8.100 7.000 6.550 6.550 10.000 5.667

Balance 1.933 1.067 3.033 3.967 5.933 5.500 7.500 7.500 10.000 8.567

Breast 2.000 1.000 5.033 5.200 7.233 6.200 6.617 6.617 10.000 5.100

Heart 2.000 1.000 3.583 4.967 7.867 4.050 7.000 7.000 10.000 7.533

CMC 1.700 1.300 4.267 5.467 9.000 3.367 6.600 6.600 10.000 6.700

German 1.850 1.150 4.667 6.567 4.733 8.700 6.700 6.700 10.000 3.933

Hayes 2.000 1.000 4.300 7.267 8.833 4.800 5.917 5.917 10.000 4.967

Housing 1.917 1.083 3.900 5.967 4.867 8.867 6.967 6.967 10.000 4.467

Ionosphere 1.950 1.117 5.200 6.367 9.000 2.933 6.933 6.933 10.000 4.567

Liver 1.600 1.400 3.900 5.433 3.733 9.333 8.083 8.083 7.433 6.000

Diabetes 2.733 1.000 4.000 5.467 3.233 8.933 7.033 7.033 10.000 5.567

Sonar 1.967 1.033 4.983 6.267 7.683 5.033 7.350 7.350 10.000 3.333

Table 4.15: The results in terms of mean rank obtained on all the data sets for thirty
random combination of four ARLC.

Data Sets
Combination Rules

DROC MCS WA SA MIN MAX MED TRIM PROD BEST

Australian 1.967 1.033 3.433 5.167 8.500 7.600 6.317 6.317 10.000 4.667

Balance 1.733 1.267 3.133 3.900 7.833 6.967 5.633 5.633 10.000 8.900

Breast 2.000 1.000 4.950 5.083 8.100 6.267 6.333 6.333 10.000 4.933

Heart 2.000 1.000 3.717 5.250 8.500 3.567 6.567 6.567 10.000 7.833

CMC 1.700 1.300 4.133 5.433 9.000 3.000 6.567 6.567 10.000 7.300

German 1.967 1.033 4.967 7.100 4.533 9.000 6.333 6.333 10.000 3.733

Hayes 1.917 1.083 4.967 7.233 9.000 4.600 6.100 6.100 10.000 4.000

Housing 1.933 1.067 4.133 6.333 5.567 9.000 6.500 6.500 10.000 3.967

Ionosphere 1.817 1.183 5.067 6.300 9.000 3.000 7.283 7.283 10.000 4.067

Liver 1.067 1.933 3.933 5.067 3.867 9.967 7.033 7.033 8.267 6.833

Diabetes 2.600 1.000 3.933 5.400 3.067 9.000 6.900 6.900 10.000 6.200

Sonar 1.967 1.033 5.533 6.950 8.150 4.100 7.033 7.033 10.000 3.200

Table 4.16: The results in terms of mean rank obtained on all the data sets for thirty
random combination of five ARLC.

Data Sets
Combination Rules

DROC MCS WA SA MIN MAX MED TRIM PROD BEST

Australian 2.000 1.000 3.267 5.167 8.600 8.200 6.733 5.300 10.000 4.733

Balance 1.667 1.333 3.033 4.000 7.167 5.833 8.133 5.267 10.000 8.567

Breast 1.967 1.033 5.317 5.617 8.367 5.950 5.933 6.750 10.000 4.067

Heart 1.850 1.150 3.800 4.983 8.483 3.283 7.233 6.383 10.000 7.833

CMC 1.800 1.200 4.100 5.100 9.000 3.000 6.900 6.367 10.000 7.533

German 2.000 1.000 5.167 7.200 4.900 9.000 6.150 6.150 10.000 3.433

Hayes 1.967 1.033 5.417 7.733 9.000 4.100 5.700 6.350 10.000 3.700

Housing 1.967 1.033 4.300 6.567 5.700 9.000 6.833 6.467 10.000 3.133

Ionosphere 1.767 1.233 5.233 6.333 9.000 3.000 7.383 7.050 10.000 4.000

Liver 1.000 2.000 3.900 5.283 3.100 10.000 8.800 7.150 7.167 6.600

Diabetes 2.700 1.000 4.333 5.433 2.367 9.000 7.233 6.800 10.000 6.133

Sonar 1.967 1.033 5.533 6.983 8.433 4.033 6.867 6.950 10.000 3.200
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Table 4.17: The results in terms of mean rank obtained on all the data sets for thirty
random combination of six ARLC.

Data Sets
Combination Rules

DROC MCS WA SA MIN MAX MED TRIM PROD BEST

Australian 2.000 1.000 3.133 5.167 8.650 8.317 6.267 4.800 10.000 5.667

Balance 1.767 1.233 3.167 3.833 7.900 6.867 6.233 5.000 10.000 9.000

Breast 2.000 1.000 5.600 5.717 8.733 5.983 6.033 6.167 10.000 3.767

Heart 1.900 1.100 3.900 5.133 8.767 3.100 7.067 6.333 10.000 7.700

CMC 1.967 1.033 4.000 5.267 9.000 3.000 6.767 6.333 10.000 7.633

German 2.000 1.000 5.100 7.600 4.600 9.000 5.833 6.733 10.000 3.133

Hayes 1.950 1.050 5.217 7.617 9.000 4.133 5.633 6.900 10.000 3.500

Housing 2.000 1.000 4.333 6.483 5.400 9.000 6.950 6.733 10.000 3.100

Ionosphere 1.700 1.300 5.067 6.133 9.000 3.000 7.467 7.333 10.000 4.000

Liver 1.000 2.000 4.133 5.733 3.000 10.000 7.533 7.400 7.333 6.867

Diabetes 3.367 1.000 4.000 5.367 2.033 9.000 7.267 6.833 10.000 6.133

Sonar 1.933 1.067 5.433 7.067 8.050 3.667 7.533 6.883 10.000 3.367

Table 4.18: The results in terms of mean rank obtained on all the data sets for thirty
random combination of seven ARLC.

Data Sets
Combination Rules

DROC MCS WA SA MIN MAX MED TRIM PROD BEST

Australian 2.000 1.000 3.100 5.000 8.700 8.300 6.283 4.283 10.000 6.333

Balance 1.800 1.200 3.133 3.867 7.267 6.200 7.733 5.000 10.000 8.800

Breast 2.000 1.000 6.083 6.417 9.000 5.317 5.783 6.000 10.000 3.400

Heart 1.733 1.267 4.000 5.000 8.867 3.000 7.333 6.167 10.000 7.633

CMC 1.967 1.033 4.000 5.067 9.000 3.000 7.233 6.300 10.000 7.400

German 2.000 1.000 4.833 7.467 4.367 9.000 6.433 6.867 10.000 3.033

Hayes 1.933 1.067 5.267 7.750 9.000 4.017 5.967 6.667 10.000 3.333

Housing 2.000 1.000 4.233 6.533 5.033 9.000 6.800 7.133 10.000 3.267

Ionosphere 1.567 1.433 5.200 6.400 9.000 3.000 6.933 7.467 10.000 4.000

Liver 1.433 1.567 4.033 5.600 3.000 10.000 8.667 7.100 7.267 6.333

Diabetes 4.733 1.000 3.667 5.267 2.000 9.000 7.667 6.900 10.000 4.767
Sonar 1.933 1.067 5.367 6.917 8.133 3.567 7.083 7.500 10.000 3.433

Table 4.19: The results in terms of mean rank obtained on all the data sets for thirty
random combination of two MLP classifiers.

Data Sets
Combination Rules

DROC MCS WA SA MIN MAX MED TRIM PROD BEST

Australian 2.167 1.000 2.833 5.133 7.333 8.033 5.133 5.133 10.000 8.233

Balance 3.533 1.000 2.400 4.800 7.700 8.067 4.800 4.800 10.000 7.900

Breast 3.833 1.000 3.467 4.733 8.433 5.900 4.733 4.733 10.000 8.167

Heart 2.300 1.000 3.000 4.967 7.000 8.367 4.967 4.967 10.000 8.433

CMC 2.000 1.000 3.133 5.333 8.567 6.900 5.333 5.333 10.000 7.400

German 2.000 1.000 3.067 5.133 7.433 8.367 5.133 5.133 10.000 7.733

Hayes 2.433 1.000 3.133 5.933 7.300 6.633 5.933 5.933 10.000 6.700

Housing 2.167 1.000 3.050 5.217 7.900 8.167 5.217 5.217 10.000 7.067

Ionosphere 3.017 1.000 3.183 5.033 8.900 6.267 5.033 5.033 10.000 7.533

Liver 2.033 1.000 3.633 5.867 7.733 7.367 5.867 5.867 9.967 5.667

Diabetes 2.100 1.000 2.933 5.067 6.967 8.700 5.067 5.067 10.000 8.100

Sonar 2.100 1.000 3.283 5.050 7.267 8.033 5.050 5.050 10.000 8.167
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Table 4.20: The results in terms of mean rank obtained on all the data sets for thirty
random combination of three MLP classifiers.

Data Sets
Combination Rules

DROC MCS WA SA MIN MAX MED TRIM PROD BEST

Australian 2.000 1.000 3.000 4.200 7.967 8.300 5.500 5.500 10.000 7.533

Balance 2.100 1.000 3.067 5.100 7.967 8.367 4.967 4.967 10.000 7.467

Breast 2.000 1.000 3.967 4.767 8.667 6.467 4.967 4.967 10.000 8.200

Heart 2.000 1.000 3.067 4.133 6.800 8.233 5.733 5.733 10.000 8.300

CMC 2.000 1.000 3.433 5.133 8.933 7.233 5.100 5.100 10.000 7.067

German 2.000 1.000 3.333 4.867 7.233 9.000 5.100 5.100 10.000 7.367

Hayes 2.200 1.000 2.933 5.033 8.067 6.100 6.267 6.267 10.000 7.133

Housing 2.000 1.000 3.367 4.400 7.967 8.300 5.633 5.633 10.000 6.700

Ionosphere 2.000 1.000 3.300 4.367 8.933 6.600 5.867 5.867 10.000 7.067

Liver 2.000 1.000 3.500 5.467 8.333 7.833 5.733 5.733 10.000 5.400

Diabetes 2.000 1.000 3.000 4.133 6.167 8.867 5.867 5.867 10.000 8.100

Sonar 2.000 1.000 3.067 4.133 7.717 7.683 5.800 5.800 10.000 7.800

Table 4.21: The results in terms of mean rank obtained on all the data sets for thirty
random combination of four MLP classifiers.

Data Sets
Combination Rules

DROC MCS WA SA MIN MAX MED TRIM PROD BEST

Australian 2.000 1.000 3.067 4.367 7.700 8.400 5.600 5.133 10.000 7.733

Balance 2.000 1.000 3.567 5.933 8.233 8.267 4.650 3.850 10.000 7.500

Breast 2.000 1.000 4.367 5.400 8.933 6.833 4.617 3.883 10.000 7.967

Heart 2.000 1.000 3.133 4.267 7.033 8.633 5.300 5.300 10.000 8.333

CMC 2.000 1.000 3.200 5.367 8.967 7.400 4.733 4.733 10.000 7.600

German 2.000 1.000 3.933 5.733 7.533 8.967 4.200 4.200 10.000 7.433

Hayes 2.000 1.000 3.067 5.167 7.950 7.633 5.550 5.733 10.000 6.900

Housing 2.000 1.000 3.267 4.633 8.217 8.350 5.433 5.167 10.000 6.933

Ionosphere 2.000 1.000 3.383 4.700 9.000 6.800 5.167 5.350 10.000 7.600

Liver 2.000 1.000 3.300 6.100 8.567 8.400 5.033 4.967 10.000 5.633

Diabetes 2.000 1.000 3.000 4.267 6.900 8.967 5.150 5.683 10.000 8.033

Sonar 2.000 1.000 3.067 4.567 7.967 7.900 5.283 5.183 10.000 8.033

Table 4.22: The results in terms of mean rank obtained on all the data sets for thirty
random combination of five MLP classifiers.

Data Sets
Combination Rules

DROC MCS WA SA MIN MAX MED TRIM PROD BEST

Australian 2.000 1.000 3.133 4.633 7.467 8.600 6.000 4.333 10.000 7.833

Balance 2.000 1.000 3.300 5.967 8.233 8.633 4.167 4.567 10.000 7.133

Breast 2.000 1.000 4.817 5.650 9.000 7.033 3.967 3.567 10.000 7.967

Heart 2.000 1.000 3.250 4.333 6.900 8.633 5.883 4.633 10.000 8.367

CMC 2.000 1.000 3.033 5.300 9.000 7.667 5.233 4.433 10.000 7.333

German 2.000 1.000 3.700 5.433 7.700 9.000 5.100 3.767 10.000 7.300

Hayes 2.000 1.000 3.067 4.800 8.033 7.333 5.667 5.700 10.000 7.400

Housing 2.000 1.000 3.133 4.433 8.633 8.167 5.933 4.867 10.000 6.833

Ionosphere 2.000 1.000 3.200 4.533 8.967 7.167 5.833 4.767 10.000 7.533

Liver 2.000 1.000 3.250 6.167 8.600 8.400 5.083 5.233 10.000 5.267

Diabetes 2.000 1.000 3.000 4.067 6.967 8.967 6.000 4.967 10.000 8.033

Sonar 2.000 1.000 3.033 4.333 8.633 7.733 5.500 5.133 10.000 7.633
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Table 4.23: The results in terms of mean rank obtained on all the data sets for thirty
random combination of six MLP classifiers.

Data Sets
Combination Rules

DROC MCS WA SA MIN MAX MED TRIM PROD BEST

Australian 2.000 1.000 3.333 5.100 7.400 8.767 5.767 3.800 10.000 7.833

Balance 2.000 1.000 3.767 6.000 8.233 8.767 3.333 4.900 10.000 7.000

Breast 2.133 1.000 4.867 5.867 9.000 7.000 3.200 3.933 10.000 8.000

Heart 2.000 1.000 3.267 4.483 7.000 8.867 5.583 4.667 10.000 8.133

CMC 2.000 1.000 3.267 5.900 9.000 7.867 4.233 4.600 10.000 7.133

German 2.000 1.000 3.833 5.900 7.900 9.000 4.367 3.900 10.000 7.100

Hayes 2.300 1.000 2.700 5.083 8.367 7.567 5.450 5.167 10.000 7.367

Housing 2.000 1.000 3.033 4.400 8.633 8.333 5.767 4.867 10.000 6.967

Ionosphere 2.000 1.000 3.300 4.900 9.000 7.300 5.367 4.600 10.000 7.533

Liver 2.000 1.000 3.300 6.500 8.633 8.367 4.600 5.500 10.000 5.100

Diabetes 2.000 1.000 3.000 4.100 7.000 8.933 5.933 4.967 10.000 8.067

Sonar 2.000 1.000 3.017 4.467 8.467 7.800 5.250 5.267 10.000 7.733

Table 4.24: The results in terms of mean rank obtained on all the data sets for thirty
random combination of seven MLP classifiers.

Data Sets
Combination Rules

DROC MCS WA SA MIN MAX MED TRIM PROD BEST

Australian 2.600 1.000 2.750 5.067 7.300 8.933 5.900 3.683 10.000 7.767

Balance 2.000 1.000 3.833 6.000 8.133 8.867 3.300 4.867 10.000 7.000

Breast 3.367 1.000 4.850 5.850 9.000 7.000 2.433 3.500 10.000 8.000

Heart 2.117 1.000 3.083 4.867 6.967 8.967 5.767 4.200 10.000 8.033

CMC 2.233 1.000 3.000 5.733 9.000 8.000 4.667 4.367 10.000 7.000

German 2.367 1.000 3.433 5.600 7.967 9.000 5.100 3.500 10.000 7.033

Hayes 3.433 1.000 2.433 4.700 8.767 7.267 5.200 5.067 10.000 7.133

Housing 2.000 1.000 3.000 4.400 8.533 8.467 6.100 4.667 10.000 6.833

Ionosphere 2.300 1.000 3.017 4.567 9.000 7.267 6.000 4.250 10.000 7.600

Liver 2.300 1.000 3.333 6.800 8.567 8.433 4.367 5.800 10.000 4.400

Diabetes 2.100 1.000 2.900 4.200 7.000 8.967 5.933 4.867 10.000 8.033

Sonar 3.067 1.000 2.500 4.050 8.800 7.633 5.550 4.833 10.000 7.567

92



Chapter 5

Conclusions

In this thesis an application of the ROC methodology to construct classifiers and combi-

nation rule has been presented and in particular the AUC has been used as performance

measure to be optimized in classification problems.

The ROC analysis has been introduced in the context of pattern recognition in which

the aim is to build a rule to assign an object to one of a finite set of classes starting

from known measurements of the features of the objects. In this work focusing on two

class problems we considered a particular aspect of the classification. In particular, the

difference between classification and ranking has been discussed and an analysis of the

performance measure has been shown to assess the effectiveness of building a classification

system using the AUC. In literature, AUC is known as a good measure to evaluate the

classification performance since it is independent on the prior distributions of the classes

and on misclassification costs. Recently, it has been also proposed as a measure of ranking.

In fact, it has been shown that the AUC derived from an empirical ROC curve is equivalent

to the WMW statistic that represents a statistical measure of ranking. Therefore, AUC

can be used to build a good ranker.

Following this approach, in this thesis we have focused on the analysis of new techniques

to improve the performance of a classification system in terms of AUC. In particular,

two methods have been proposed to build a linear classifier and a combination rule for

dichotomizers. In the former case a linear combination of features has been proposed

and a greedy approach has been introduced to perform a pairwise combination estimating

at each step the optimal weights in terms of ranking. In the latter a technique for the

optimal linear combination between already trained dichotomizers has been investigated.

Also in this case the dependence of the AUC on the weights of the combination has been

analyzed and a method to find the optimal weight between two dichotomizers has been
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shown. In particular, a new curve (the DROC curve) has been introduced to estimate

the ranking separation of the dichotomizers output and a measure of ranking diversity

has been proposed to better the performance of the combination rule. In this context we

showed with extensive experiments that the proposed rules exhibit good performance in

comparison with other well known methods of the literature using both artificial and real

data. In particular, an important result has been obtained by our ranker in comparison

with the RankBoost that is currently considered the best algorithm in literature.

The results obtained in this thesis are quite helpful in two different situations. Since

AUC is independent on priors and misclassification costs it is often a more suitable mea-

sure than the classification error when dealing with medical detection problems or other

screening applications where imbalanced class priors or misclassification costs are often

present. The second aspect is the relation with ranking that becomes useful when the or-

dering is more important than the classification, e.g. when a ranking of customers in terms

of their likelihoods of buying is needed or when the order of relevance of some documents

in a database has to be estimated.

There are also numerous directions for future works. A first thing to be considered is to

extend the approach to multiclass problems. When expressed in the form of the area under

a curve, the AUC measure has no obvious generalization to multiple classes. However,

when expressed in its equivalent probabilistic form, it has a straightforward generalization

obtained by aggregation over all pairs of classes. Recently new papers focusing on the

study of three dimensional ROC curves and on the meaning of the volume under this

curve have been proposed and they can become useful in our context.

Another aspect that is marginal in this thesis but that can be usefully extended is the

diversity problem applied to the combination approach in ranking problems. In fact, in

literature the proposed diversity measures are all based on the accuracy of the classifier and

the study and comparison of ranking diversity measures is missing. The recent increasing

interest in building effective rankers clearly requires a deeper insight into this topic.

Finally, we would like to note that this work is part of a general research effort on

learning algorithms on ranking problems. In the end, we can consider that if enough is

known about the classes distributions and the costs of the problem the classical approach

can be followed. However, if insufficient information is known about these characteristics

then the ranking model can be more useful. In this case, we hope that our work will give

further interest in problems which are becoming challenging in the pattern recognition

community to explore new ways of designing learning algorithms.
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Notes on Data Sets

This appendix is intended to present the principal characteristics of the data sets employed

in the performed experiments. A brief description of each data set, both artificial and real

one, is reported. The goal is both to render the work self-contained and to provide some

useful notes for a deeper analysis of the behavior of the proposed methods. For the

description of the real data the appendix is almost based on the notes found in the UCI

website (Blake et al., 1998) for each data set.

The appendix is organized as follows. The first section describes the artificial data sets

employed in the experiments of chapter 3 while the second section focuses on the real data

employed in both chapter 3 and 4. Each subsection describes a different data set and the

title contains in parentheses the corresponding name used throughout the book. Finally,

a table summarizing the principal characteristics of real data sets is reported.

A.1 Artificial Data Sets

To illustrate and compare the performance of the method proposed in chapter 3 several

artificial data sets have been used in our experimental investigations. In particular, Gaus-

sian data sets with different dimensionality have been employed since this is helpful to

understand which factors affect the proposed technique. To this aim six different values

for the dimensionality have been employed and the number of features has been chosen

equal to 5, 10, 30, 50, 75 and 100. For each dimensionality different data sets have been

generated to contemplate both correlated and uncorrelated data with different overlapping

class distributions. All these data sets have been generated employing the PRTools (Duin,

2000) toolbox.
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Figure A.1: Scatter plot of a two-dimensional projection of the 30-dimensional Gaussian
spherical data.

A.1.1 Gaussian Spherical Data

The first set consists of two Gaussian spherical distributed data classes with equal covari-

ance matrices. Each data set contains 500 samples with equal prior probabilities. The

first class is Gaussian distributed with identity covariance matrix and zero mean. The

covariance matrix of the second class is also an identity matrix while the mean has been

chosen equal to 0.3, 0.5 and 1 so as to generate three different data sets (for each consid-

ered dimensionality) with different overlapping for the two distributions. A plot of a two

dimensional projection of the features is presented in fig. A.1.

A.1.2 Gaussian Correlated Data

The second set is a correlated Gaussian data set consisting of two classes with equal

covariances matrices. Each class consists of 250 samples. The mean of the first class is

equal to zero for all features. The mean of the second class has been chosen equal to 1, 2

and 3 (so as to generate three different data sets for each considered dimensionality) for

the first feature and equal to 0 for all the other features. The two covariance matrices are

equal diagonal matrices with a variance of 40 for the second feature and a unit variance

for all the other features. The data set is rotated in the subspace spanned by the first two
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Figure A.2: Scatter plot of a two-dimensional projection of the 10-dimensional Gaussian
correlated data.

features using a matrix equal to

(

1 −1

1 1

)

that corresponds to a rotation of 45 degrees

to construct a strong correlation. The first two features for this data set are reported in

fig. A.2.

A.2 Real Data Sets

In our experiments also real data sets are needed to show that the proposed techniques

may be effective when solving real world problems. To this aim several data sets from

UCI Machine Learning Repository (Blake et al., 1998) commonly used by researchers in

literature have been employed to evaluate the performance of our approaches with respect

to the state of the art. The principal characteristics of the data are reported in table A.1.

A.2.1 Cardiac Arrhythmia Database (Arrhythmia)

The aim of this data set is to determine the type of arrhythmia from the electrocardiogram

recordings and to classify it in one of the 16 groups. In particular, in our case we have

to distinguish between the presence and absence of a cardiac arrhythmia so reducing the

problem to a binary one. This database contains 278 attributes, 206 of which are linear
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Table A.1: Principal characteristics of the employed real data sets.

Data Number of Number of % of Samples % of Samples

Sets Samples Features in the P Class in the N Class

Arrhythmia 420 278 43.57 56.43
Australian 690 14 44.49 55.51
Balance 625 4 54.01 45.99
Biomed 194 5 34.54 65.46
Breast 699 16 65.01 34.99

Cancer wpbc 198 32 23.74 76.26
CMC 1473 9 42.70 57.30

Diabetes 768 8 65.10 34.90
German 1000 24 70.00 30.00
Glass1 214 9 66.36 33.64
Glass2 214 9 64.49 35.51
Glass3 214 9 92.06 7.94
Glass4 214 9 93.93 6.07
Glass5 214 9 86.45 13.55
Hayes 132 4 50.39 49.61
Heart 303 13 54.13 45.87

Hepatitis 155 19 20.65 79.35
Housing 506 12 49.21 50.79

Ionosphere 351 34 64.10 35.90
Liver 345 6 57.97 42.03
Sonar 260 60 53.37 46.63

Thyroidsub 3772 21 7.53 92.47
Waveform1 900 21 66.67 33.33
Waveform2 900 21 66.67 33.33
Waveform3 900 21 66.67 33.33

Wine1 178 13 66.85 33.15
Wine2 178 13 60.11 39.89
Wine3 178 13 73.03 26.97

valued and the rest are nominal. The number of instances are 452 but the entries with

missing values are removed so reducing the samples to 420, 237 belonging to the positive

class and 183 to the negative class.

A.2.2 Australian Credit Approval (Australian)

This data set concerns credit card applications. All attribute names and values have

been changed to meaningless symbols to protect confidentiality of the data. The data are

interesting because there is a good mix of attributes, i.e. we have continuous, nominal

with small numbers of values, and nominal with larger numbers of values attributes. In

particular, we have 14 attributes, six of which are numerical and eight categorical. There

are also few missing values that have been discarded. The number of instances are 690

(307 for the positive class and 383 for the negative class).
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A.2.3 Balance Scale Weight and Distance Database (Balance)

This data set was generated to model psychological experimental results. Each example is

classified as having the balance scale tip to the right, tip to the left, or be balanced. The

attributes are the left weight, the left distance, the right weight, and the right distance all

numeric. The samples are 625 (49 for the balanced class, 288 for the left and 288 for the

right). In our experiments the balanced class is the positive one and the other two classes

are joined together as negative class.

A.2.4 Biomed Data Set (Biomed)

The aim of this data set is to develop screening methods to identify carriers of a rare

genetic disorder. Because the disease is rare, there are only a few carriers of the disease

from whom data are available. The data consists of 194 objects with 5 features categorized

in 2 classes (67 samples for the positive class and 127 for the negative class). Entries with

missing values have been removed.

A.2.5 Wisconsin Breast Cancer Database (Breast)

This database is concerned to diagnose the presence of a breast cancer. It was obtained

from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. Each

instance has 9 attributes and one of 2 possible classes: benign or malignant. There are

16 instances that contain a single missing attribute value that have been removed. The

objects are 699, 458 for the benign class and 241 for the malignant.

A.2.6 Wisconsin Prognostic Breast Cancer (Cancer wpbc)

Each record represents follow-up data for one breast cancer case. These are consecutive

patients seen by Dr. Wolberg since 1984, and include only those cases exhibiting invasive

breast cancer and no evidence of distant metastases at the time of diagnosis. There are

198 instances (151 non recur (negative class), 47 recur (positive class)) with 32 real valued

input features. The first 30 features are computed from a digitized image of a fine needle

aspirate of a breast mass. They describe characteristics of the cell nuclei present in the

image. The mean, standard error, and “worst” or largest (mean of the three largest values)

of these features were computed for each image, resulting in 30 features.
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A.2.7 Contraceptive Method Choice (CMC)

This data set is a subset of the 1987 National Indonesia Contraceptive Prevalence Survey.

The samples are married women who were either not pregnant or do not know if they

were at the time of interview. The problem is to predict the current contraceptive method

choice (between no use, long-term methods, or short-term methods) of a woman based

on her demographic and social-economic characteristics. The instances are 1473 with 9

features. In our experiments the classes for long-term and short-term methods are joined

in a negative class with 844 samples.

A.2.8 Pima Indians Diabetes Database (Diabetes)

The database is from the National Institute of Diabetes and Digestive and Kidney Diseases.

The diagnostic, binary-valued variable investigated is whether the patient shows signs of

diabetes according to World Health Organization criteria (i.e. if the 2 hour post-load

plasma glucose was at least 200 mg/dl at any survey examination or if found during

routine medical care). In particular, all patients here are females at least 21 years old

of Pima Indian heritage. The objects are 768 (500 for the negative class and 268 for the

positive class) with 8 features.

A.2.9 German Credit Data (German)

The original data set has been provided by Prof. Hofmann and contains both categorical

and symbolic attributes. In our experiments we used the modified data set provided by

the Strathclyde University in which different categorical attributes have been coded as

integer. The aim of the data set is to evaluate the reliability of a client for the grant of a

bank loan. The instances are 1000 (700 of bad clients and 300 for good clients) with 24

numerical features.

A.2.10 Glass Identification Database (Glass)

The study of classification of types of glass is motivated by criminological investigation

since at the crime scene, correctly identified glass left can be used as evidence. The in-

stances are 214 with 9 continuously valued features and 6 different possible classes (building

float, building non float, vehicle float, containers, headlamps and tableware). To reduce

it to several binary problems a One versus All approach has been considered, i.e. in each

binary data set one class has been chosen as positive and all the others as negative so as

to obtain a number of data sets equal to the class number. In our case we considered just

100



A.2 Real Data Sets

five data sets since the class tableware has only the 4% of the samples. Therefore, in the

experiments the 5 data sets, Glass1, Glass2, Glass3, Glass4 and Glass5 consider respec-

tively the classes building float, building non float, vehicle float, containers and headlamps

as positive class with 70, 17, 76, 13 and 29 samples.

A.2.11 Hayes-Roth & Hayes-Roth Database (Hayes)

This data set has been developed for the human subjects classification and recognition

performance according to four features: hobby, age, education and marital status. All

features are nominal and numerically converted. The possible categories are three but

some of the instances can be classified in both the first two classes and therefore, these

classes have been joined. The number of instances is 132 with equal priors.

A.2.12 Heart Disease Cleveland Database (Heart)

The database has been provided by the Cleveland Clinic Foundation. This database

contains 75 attributes, but all published experiments refer to a subset of 13 of them. The

goal is to diagnose the presence of heart disease in the patient that can be of 5 different

types. Experiments with the Cleveland database have concentrated on simply attempting

to distinguish presence from absence of disease. Hence, the objects are 303 with 13 features

in 2 classes (164 samples for the positive and 139 for the negative class).

A.2.13 Hepatitis Domain (Hepatitis)

This database has been used to predict if a patient will live or die for a hepatitis disease.

Nineteen attributes (13 symbolic and 6 continuous) are considered for the samples belong-

ing to two possible classes (“live” or “die”). The instances are 155 with priors equal to

20.65% and 79.35% for the positive and negative class respectively. Missing values have

been substituted with the mean of the corresponding feature.

A.2.14 Boston Housing Data (Housing)

This data set was taken from the StatLib library which is maintained at Carnegie Mellon

University. The aim is to evaluate the housing values in suburbs of Boston. In particular,

12 continuous features have been measured to evaluate the distribution around a median

value of owner-occupied houses of 1000 dollars. The instances are 506, 249 for values

greater than 1000 dollars and 257 for values lower than the median.
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A.2.15 Johns Hopkins University Ionosphere Database (Ionosphere)

This radar data was collected by a system in Goose Bay, Labrador. This system consists of

a phased array of 16 high-frequency antennas with a total transmitted power on the order

of 6.4 kilowatts. The targets were free electrons in the ionosphere. “Good” radar returns

are those showing evidence of some type of structure in the ionosphere. “Bad” returns are

those that do not, i.e. their signals pass through the ionosphere. Received signals were

processed using an autocorrelation function whose arguments are the time of a pulse and

the pulse number (there were 17 pulse numbers for the Goose Bay system). The instances

(that are 351, 225 of which belonging to the positive class) in this database are described

by 2 attributes per pulse number (34 continuous features in total), corresponding to the

complex values returned by the function resulting from the complex electromagnetic signal.

A.2.16 BUPA Liver Disorders (Liver)

This data set has been provided by the BUPA Medical Research Ltd. and it is used to

diagnose a liver disorder. The features are six in total. The first 5 are all blood tests

which are thought to be sensitive to liver disorders that might arise from excessive alcohol

consumption while the last one is the number of drinks (drinks > 5 is some sort of a

selector on this database). Each sample constitutes the record of a single male individual.

The instances are 345 with priors equal to 57.97% and 42.03% for the positive and the

negative class respectively.

A.2.17 Sonar: Mines versus Rocks (Sonar)

This data set has been used in the study of the classification of sonar signals using a neural

network. The task is to train a network to discriminate between sonar signals bounced off a

metal cylinder and those bounced off a roughly cylindrical rock. The data set contains 111

patterns obtained by bouncing sonar signals off a metal cylinder (positive class) at various

angles and under various conditions and 97 patterns obtained from rocks (negative class)

under similar conditions. The transmitted sonar signal is a frequency-modulated chirp,

rising in frequency. The data set contains signals obtained from a variety of different

aspect angles, spanning 90 degrees for the cylinder and 180 degrees for the rock. The

instances are 260 described by 60 numerical features.
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A.2.18 Thyroid Gland Data (Thyroidsub)

The scope of this data set is to try to predict whether a patient has or not a disfunction

of the thyroid. In particular, three classes can be defined according to euthyroidism, hy-

pothyroidism or hyperthyroidism. The diagnosis (the class label) is based on a complete

medical record, including anamnesis and scan. In our experiments the class hypothy-

roidism has been chosen as target class (positive class) and the others as negative class.

The instances are 3772 (284 for the positive class) with 21 features.

A.2.19 Waveform Database Generator (Waveform)

The database has been provided by Breiman et al. (1984) in his book on the decision trees.

Three different classes of waves have been considered with 21 attributes with continuous

values between 0 and 6, all of which include gaussian additive noise with zero mean and

unit standard deviation. The instances are 5000 and the classes are equally distributed.

Since we are facing with two class problems, a One versus All approach has been applied

(see subsection A.2.10) on a subset of 900 instances so as to obtain three different data

sets: Waveform1, Waveform2 and Waveform3 all with 600 samples for the positive class

and 300 for the negative class.

A.2.20 Wine Recognition Data (Wine)

These data are the results of a chemical analysis of wines grown in the same region in Italy

but derived from three different cultivars. The analysis determines the quantities of 13

constituents found in each of the three types of wines. In a classification context, this is a

well posed problem with “well behaved” class structures. Therefore, it is a good data set

for first testing of a new classifier, but not very challenging. The instances are 178 with 59,

71 and 48 samples per class. Also in this case a One versus All approach (see subsection

A.2.10) has been applied and three different data sets have been generated Wine1, Wine2

and Wine3 with respectively 119, 107 and 130 samples for the positive class.
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Appendix B

Notes on Statistical Tests

In this appendix a brief introduction to the characteristics of the statistical tests employed

in he performed experiments is presented. The goal is to provide useful information for

the analysis of the performed comparison and to justify the use of such procedures. For

the description of the statistical test, we strictly follow the analysis proposed in Demšar

(2006) adapting it to the performed experiments.

The appendix is organized into two sections. The former describes the Wilcoxon rank

sum test used in chapter 4 for the comparison of the two methods employed to estimate

the weight of the combination of two dichotomizers. The latter focuses on the test used

for the comparison of different rankers (in chapter 3) or different combination rules (in

chapter 4), i.e. the Friedman test and its post hoc tests. Tables for the critical values of

each described statistic can be found in any statistical book, e.g. Sheskin (2000).

B.1 The Wilcoxon Rank Sum Test

The Wilcoxon signed-ranks test (Wilcoxon, 1945) is a non parametric test which ranks

the differences in performances of two classifiers for each data set, ignoring the signs, and

compares the ranks for the positive and the negative differences.

Let di be the difference between the performance scores (i.e. AUC in our case) of the

two methods on the i-th run of the n cross validation procedure and let us rank these

differences according to their absolute values (average ranks are assigned in case of ties).

Let RP be the sum of ranks for the runs of the cross validation on which the second

algorithm outperformed the first, and RN the sum of ranks for the opposite. Since ranks

of d = 0 are split evenly among the sums (if there is an odd number of them, one is
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ignored), we get:

RP =
∑

di>0

rank(di) +
1

2

∑

di=0

rank(di),

RN =
∑

di<0

rank(di) +
1

2

∑

di=0

rank(di).

Let T be the smaller of the sums, T = min(RP , RN ). For a larger number of data, the

statistics:

z =
T − 1

2n(n + 1)
√

1
24n(n + 1)(2n + 1)

is distributed approximately normally.

The Wilcoxon signed ranks test assumes commensurability of differences, but only

qualitatively: greater differences still count more but the absolute magnitudes are ig-

nored. From the statistical point of view, the test is safer since it does not assume normal

distributions. Moreover, the outliers (exceptionally good/bad performances on a few runs)

have less effect on the this test.

B.2 The Friedman Test

The Friedman test (Friedman, 1937), (Friedman, 1940) is a non parametric test that ranks

the algorithms separately for each set1, the best performing algorithm getting the rank of

1, the second best rank 2, etc. In case of ties average ranks are assigned (see table 3.8 for

more clarity).

Let rj
i be the rank of the j-th of k algorithm on the i-th of n sets. The Friedman test

compares the average ranks of algorithms:

Rj =
1

n

n
∑

i=1

rj
i .

Under the null hypothesis, which states that all the algorithms are equivalent and so their

1in our case, a set can be a single run of a cross validation procedure (as in chapter 3) or one of the
performed combinations (as in the experiment in chapter 4)
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ranks Rj should be equal, the Friedman statistic:

χ2
F =

12n

k(k + 1)





k
∑

j=1

R2
j −

k(k + 1)2

4





is distributed according to a χ2 distribution with k − 1 degrees of freedom when n and k

are big enough.

Iman & Davenport (1980) showed that the Friedman χ2
F is undesirably conservative

and derived a better statistic:

FF =
(n− 1)χ2

F

n(k − 1)− χ2
F

which is distributed according to the F-distribution with k− 1 and (k− 1)(n− 1) degrees

of freedom.

If the null hypothesis is rejected, it is possible to proceed with a post hoc test. The

Nemenyi test (Nemenyi, 1963) is used when all methods are compared to each other. The

performance of two methods is significantly different if the corresponding average ranks

differ by at least the critical difference:

CD = qαls

√

k(k + 1)

6n

where critical values qαls
for a level of significance equal to αls are based on the Studentized

range statistic divided by
√

2.

When all methods are compared with a control one, instead of the Nemenyi test we can

use one of the general procedures to control the family-wise error in multiple hypothesis

testing, such as the Bonferroni-Dunn (Dunn, 1961) correction or similar procedures. The

test statistics for comparing the u-th and v-th method using these methods is:

z = (Ru −Rv)

/
√

k(k + 1)

6n
.

The z value is used to find the corresponding probability from the table of normal dis-

tribution, which is then compared with an appropriate αls. The comparison between the

Nemenyi and Dunn test shows that the power of the post hoc test is much greater when

all classifiers are compared only to a control classifier and not between themselves. There-

fore, it should not be made any pairwise comparisons when we only want to test whether

a newly proposed method is better than the existing ones.

For a contrast from the single step Bonferroni-Dunn procedure, step up and step down
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procedures sequentially test the hypotheses ordered by their significance. Let us denote the

ordered r values by r1 ≤ r2 ≤ . . . ≤ rk−1. The simplest of these procedures are presented

in Holm (1979) and Hochberg (1988). They both compare each ri with αls/(k − i), but

differ in the order of the tests. Holm step down procedure starts with the most significant

r value. If r1 is below αls/(k − 1) (where αls is the level of significance of the test), the

corresponding hypothesis is rejected and we are allowed to compare r2 with αls/(k − 2).

If also the second hypothesis is rejected, the test proceeds with the third, and so on. As

soon as a certain null hypothesis can not be rejected, all the remaining hypotheses are

retained as well. Hochberg step up procedure works in the opposite direction, comparing

the largest r value with αls, the next largest with αls/2 and so on until it encounters a

hypothesis it can reject. All hypotheses with smaller r values are then rejected as well.

Another procedure is the Hommel procedure (Hommel, 1988) that is more complicated

to compute; first, we need to find the largest j for which rn−j+k > kαls/j ∀k = 1, . . . , j. If

no such j exists, we can reject all hypotheses, otherwise we reject all for which ri ≤ αls/j.

Holm procedure is more powerful than the Bonferroni-Dunn and makes no additional

assumptions about the hypotheses tested. In turn, Hochberg and Hommel methods reject

more hypotheses than Holms, therefore, under some circumstances they may exceed the

family-wise error. More details for these procedures can be found in Shaffer (1995) or in

different statistical books, e.g. Walpole et al. (1998), Sheskin (2000).
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Appendix C

The Multilevel Coordinate Search

Algorithm

In chapter 4 for the comparison of the DROC method we evaluated the weights of ht elinear

combination of dichotomizers through an optimization algorithm called Multilevel Coor-

dinate Search (MCS). Following the description in the original paper (Huyer & Neumaier,

1999), we propose a brief introduction to the algorithm with the only goal of rendering

our work self-contained.

Let us consider a bound constrained optimization problem:

min f(x)s.t.x ∈ [u, v]

with finite or infinite bounds, where we indicate a rectangular box with:

[u, v] =
{

x ∈ Rn
∣

∣ui ≤ xi ≤ vi, i = 1, . . . , n
}

,

with u and v being ndimensional vectors with components in R̄ = R ∪ {−∞, +∞} and

ui < vi for i = 1, . . . , n, i.e. only points with finite components are regarded as elements of

a box [u, v] whereas its bounds can be infinite. If all bounds are infinite an unconstrained

optimization problem is obtained.

In MCS, the minimizer is found by splitting the search space into smaller boxes. Each

box contains a distinguished point, the so called base point, whose function value is known.

The partitioning procedure is not uniform but parts where low function values are expected

to be found are preferred. The algorithm combines global search (splitting boxes with large

unexplored territory) and local search (splitting boxes with good function values). The

key to balancing global and local search is the multilevel approach. As measure of the
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number of times a box has been processed, a level s ∈ {0, 1, . . . , smax} is assigned to each

box. Boxes with level smax are considered too small for further splitting; a level s = 0

indicates that a box has already been split and can be ignored. Whenever a box of level

s (0 < s < smax) is split, its level is set to zero, and its descendants get level s + 1 or

min(s + 2, smax).

After an initialization procedure, the algorithm proceeds by a series of sweeps through

the levels starting with the boxes at the lowest levels in each sweep constitutes the global

part of the algorithm, and at each level the box with lowest function value is selected,

which forms the local part of the algorithm.

The split is made along a single coordinate in each step: the base points of the descen-

dants of a box are chosen such that they differ from the base point of the parent box in

(at most) one coordinate. To split a box a single new function evaluation is needed and

to determine the splitting coordinate and the position of the split the information gained

from already sampled points is used.

MCS without local search puts the base points and function values of boxes of level s

max into the socalled shopping basket (containing “useful” points). MCS with local search

tries to accelerate convergence of the algorithm by starting local searches from these points

before putting them into the shopping basket. The local search is performed only if the

base point of a new box of level smax is not in the basin of attraction of a local minimizer

in the shopping basket. The local search algorithm used in our implementation of MCS

essentially consists of building a local quadratic model by triple searches, then defining

a promising search direction by minimizing the quadratic model on a suitable box and

finally making a line search along this direction.

For more details on the implementation of the algorithm and more particular on the

theoretical aspects we remand again at Huyer & Neumaier (1999).
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