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Abstract:-

This paper presents a multi-agent search technique to design an optimal com-

posite box-beam helicopter rotor blade. The search technique is called particle

swarm optimization (‘inspired by the choreography of a bird flock’). The contin-

uous geometry parameters (cross-sectional dimensions) and discrete ply angles of

the box-beams are considered as design variables. The objective of the design prob-

lem is to achieve a) specified stiffness value and b) maximum elastic coupling. The

presence of maximum elastic coupling in the composite box-beam increases the aero-

elastic stability of the helicopter rotor blade. The multi-objective design problem

is formulated as a combinatorial optimization problem and solved collectively using

particle swarm optimization technique. The optimal geometry and ply angles are ob-

tained for a composite box-beam design with ply angle discretizations of 10◦, 15◦ and

45◦. The performance and computational efficiency of the proposed particle swarm

optimization approach is compared with various genetic algorithm based design ap-

proaches. The simulation results clearly show that the particle swarm optimization

algorithm provides better solutions in terms of performance and computational time

than the genetic algorithm based approaches.

Keywords:- Composite laminates, box-beam design, helicopter rotor blades, multi-

objective optimization, particle swarm optimization and genetic algorithm

1 Introduction

Over two decades, the aircraft industries preferred composite structures over metal-

lic structures because of their high strength-to-weight ratio and high specific stiff-

ness. Another advantage of using a composite structure is that the structure can

be tailored by selecting appropriate fiber materials and ply orientations to meet the
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specific design requirements. The composite laminate structures offer many oppor-

tunities for designers to optimize the structure for a specific or even multiple design

criterions. A typical composite structural design problem has large number of dis-

crete design variables such as number of layers, ply orientation, thickness and type of

material. The flexibility in selecting these variables to meet the design requirements

introduces a complexity in the design problem. In most of the design problems,

certain specifications are known a priori, like, laminate thickness, choices for ply

orientations and type of the material. Hence, the design of a composite structure

reduces to search for appropriate discrete ply orientations from a given set of ply ori-

entations and geometry parameters from a given range to achieve specified strength

and stiffness. The presence of discrete and continuous design variables increases the

complexity of the design problem.

In earlier studies, mathematical optimization methods were used to design composite

structures. In [1,2], the design variables are considered as continuous variables and

the optimization problem was solved using conventional optimization algorithms.

The optimal ply angles obtained from these continuous optimization methods were

rounded off to appropriate integer values that resulted in non-optimal designs. The

nonlinear and combinatorial nature of the composite structural design problem in-

duces difficulty in using deterministic approaches for solutions. Recently, an im-

proved hit and run global search algorithm was used to find the discrete ply angles

and continuous geometry variables [3]. In hit and run global search algorithm, the

computational cost to obtain global minimum solution increases exponentially with

increase in number of discrete variables. Hence, designing a better search technique

for composite structure is a challenging problem.

In recent years, evolutionary algorithms have been used to solve nonlinear combi-
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natorial optimization problems. Genetic algorithms (GA), the most popular evo-

lutionary algorithm, mimic the mechanics of natural genetics for artificial systems

based on operation that are the counterparts of natural ones. In the last decade, dif-

ferent GA based approaches for ply orientations or stacking sequence optimization

for different functional purposes have been devised and reported in literature [4–11].

A binary representation is used to code the integer design variables in genetic algo-

rithm framework. In the binary string representation, the length of the chromosome

increases with increase in the number of design variables, that affects the efficiency

and convergence of the GA. An alternative to the binary string representation is

the real value representation of design variables in the GA. GA’s using real value

or floating point representation for solutions are called real-coded genetic algorithm

(RCGA) [21]. A good representation scheme for the design variables with mean-

ingful genetic operators is important in genetic algorithm to obtain optimal design

solutions with minimal computational effort.

In the previous paragraph, we showed that the performance of the genetic algorithm

based composite design can be improved by proper use of solution representation.

Another approach to enhance the performance focuses on discretization of the de-

sign space using decomposition of the actual problems into sub-problems [12, 13].

The composite structural optimization design problem has both real and discrete

variables in the formulation. When these real and discrete variables are represented

using a single string of GA then the cost of the search space increases. There-

fore, decomposition approaches have are used to increase the efficiency [14,15]. The

optimization problem is decomposed into two levels. In the first level, the ply orien-

tations are optimized for maximum material efficiency, while in the second level the

laminate weight is minimized. The two-level optimization is solved using gradient

based optimization in [14] and multi-level genetic algorithm in [15]. The multi-level

4



genetic searches are performed sequentially with different populations and fitness

functions for faster convergence and increased efficiency of the algorithm.

The selection/nature of the objective function is also an interesting problem in a

composite structural design. Most of the research works in composite design prob-

lems address the minimization or maximization of certain structural characteristics

such as weight, buckling load, stiffness and strength using single objective func-

tion [16–19]. However, in some studies, the objective is to design the composite

structure for a specified design requirement rather than maximizing or minimizing

its characteristics. Design of composite structures for a given stiffness/strength spec-

ifications is an interesting problem than maximizing or minimizing the structural

characteristic. Recently, few research works have been carried-out to handle the

multi-objective nature of structural design problem [20,22].

Designing composite structures for given specifications is an approach that is used

in aerospace industries. For example, design of box-beam cross sectional member

of a helicopter rotor blade belongs to this category. In this case, the desired stiff-

ness is specified using the aero-elastic optimization studies. The composite design

problem addressed in this paper has two different objectives: first objective is to at-

tain desired stiffness and the other objective is to maximize the elastic coupling. In

this paper, we present a multi-agent search technique called ‘Particle Swarm Opti-

mization’ (PSO) for solving the multi-objective composite structural design problem.

Like GA’s, PSO is also a population based stochastic optimization technique [23,24],

inspired by social behavior of bird flocking or fish schooling. In PSO, each solution

to the optimization problem is regarded as a ‘particle’ in the search space, which

adjusts its position in the search space according to its own flying experience and

the flying experience of other particle. Hence, PSO has high speed of convergence
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than the other evolutionary search algorithm [23, 24]. To study the performance of

the proposed algorithm, we consider two cases of composite box-beam optimization.

First, a composite box beam is designed to match the specified stiffness values with

the elastic coupling terms being zero. Next, the box beam is optimized to match

the specified stiffness values, and some of the elastic coupling terms are minimized

simultaneously. The optimal geometry and ply angles are obtained for composite

box-beams with 10◦, 15◦ and 45◦ discretizations. The performance and computa-

tional efficiency of the PSO algorithm is compared with GA based approaches.

2 Problem Formulation

In aerospace vehicles the most commonly used beam structures are of type I-sections,

Z-sections and box-beam cross sections. The aero-elastic optimization studies of

these beam-type structures use the 1-D effective elastic stiffness values. Designing

the actual cross section for the optimal 1-D effective elastic stiffness values obtained

from an aero-elastic optimization study is a complicated problem.
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Top wall
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Figure 1: Composite box-beam configuration
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In this paper, a composite box-beam design optimization is presented such that the

optimal box-beam configuration satisfies the desired stiffness requirements with the

maximum elastic coupling. The desired beam stiffness values (S) are obtained from

the aero-elastic optimization study that uses one-dimensional beam stiffness values

as design variables. An analytical composite box-beam formulation presented in [25]

is used for predicting the effective elastic stiffness of the composite box-beam. A

typical composite box-beam geometry and its coordinates are shown in Fig. 1. The

deformation of the box-beam is described by three transverse displacements u, v

and w, and a torsional displacement φ. The cross-sectional stiffness matrix of a

composite box-beam is




Qx

Mx

−My

Mz





=




K11 K12 K13 K14

K12 K22 K23 K24

K13 K23 K33 K34

K14 K24 K34 K44








u
′
e

φ
′

w
′′

v
′′





(1)

The off-diagonal terms in the above stiffness matrix K are referred as elastic cou-

plings that play a role in the dynamic response of the composite box-beam structure.

Now, let S be the desired stiffness value for a box-beam. The stiffness requirement

is derived from an aero-elastic optimization study [26] that is represented as:

S =




KT
11 KT

12 KT
13 KT

14

KT
12 KT

22 KT
23 KT

24

KT
13 KT

23 KT
33 KT

34

KT
14 KT

24 KT
34 KT

44




(2)

where the superscript T represent the target values. The composite box-beam has to

be designed such that the stiffness values of the box-beam matches with the desired

stiffness values S.

One of the main advantages of using composite material is to tailor the structure for

beneficial elastic couplings. These elastic couplings can be introduced by designing
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Figure 2: Balanced and Unbalanced configuration of composite box-beam

the composite box-beam with the unbalanced walls as shown in Fig. 2. In helicopter

aero-elastic optimization studies, the rotor blade is often idealized as a composite

box-beam. The term K24 in the stiffness matrix is responsible for the lag bending

torsion coupling. The lag-bending torsion coupling is beneficial in increasing the

aero-elastic stability of the main rotor. A positive value of K24 increases stability

whereas a negative value decreases stability. This elastic coupling K24 can be intro-

duced by unbalancing the opposite walls of the box-beam as shown in Fig. 2. The

box-beam stiffness matrix for this case can be written as




Qx

Mx

−My

Mz





=




K11 0 0 0
0 K22 0 K24

0 0 K33 0
0 K24 0 K44








u
′
e

φ
′

w”
b

v”
b





(3)

The axial stiffness, i.e., K11, in the above matrix does not play a major role in the

dynamics of the beam structure as its magnitude is very high compared to the other

stiffness values. Thus, the objective of this paper is to design a composite beam

to achieve the desired bending and torsional stiffness values (KT
ii , i = 2, 3, 4) with

maximum elastic coupling K24.
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The stiffness of the box-beam changes with change in geometry of the box-beam

(b and h), and the stacking sequence Θ. The stacking sequence or the ply angle

orientations represent the arrangement of plies in each wall of the box-beam. For

unbalanced configuration, the stacking sequence for horizontal and vertical walls

varies. Hence, the stacking sequence for unbalanced configuration is defined as

Θ =
[(

θBL
1 , θBL

2 , · · · , θBL
n

)
,
(
θPU
1 , θPU

2 , · · · , θPU
n

)]
(4)

where n is the number of plies in each laminate. The geometry and stacking se-

quence of the box-beam are taken as design variables. The design variables can be

represented as

x = [b, h, Θ] (5)

The design variables are subjected to geometric constraints that are represented as

Constraint 1 bl ≤ b ≤ bu

Constraint 2 hl ≤ h ≤ hu

Constraint 3 Θ ∈ {o1, o2, · · · , om}

where l represents lower bound while the upper bound is denoted by u, and o is the

available discretization to laminate.

The multi-objective composite rotor blade design problem is gives as:

Objective 1 Minimize F1 (x) = 100

∣∣∣∣
K22 −KT

22

KT
22

∣∣∣∣ (6)

Objective 2 Minimize F2 (x) = 100

∣∣∣∣
K33 −KT

33

KT
33

∣∣∣∣ (7)

Objective 3 Minimize F3 (x) = 100

∣∣∣∣
K44 −KT

44

KT
44

∣∣∣∣ (8)

Objective 4 Maximize F4 (x) = K24 (9)
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The objectives (1,2, and 3), describe the closeness of the stiffness parameters of

the composite beam with respect to the desired values while objective 4 describes

the stability of the helicopter rotor. Recently, some researchers have used genetic

algorithms [27–30], to solve multi-objective optimization problems. In [30] a survey

on different methods for multi-objective optimization using evolutionary algorithms

is presented.

The multi-objective problems are solved by combining the objective functions into a

single function. For example, a) Min-Max method b) weighted sum method and c)

goal programming are most commonly used for combining objective functions. One

has to select the function such that the minimization of a single function guarantee

simultaneous minimization of other objective functions. In our problem, the desired

values are specified for the first three objectives hence they are combined into a single

function using Min-Max method. Since there is no desired value specified for K24, it

is difficult to embed the objective functions into a single objective function. Also, in

composite design problem, the first objective is to achieve the desired stiffness and

than maximize the coupling. Hence, a single objective function for the optimization

problem is formulated as

Minimize, J(x) =





−K24, if J1 ≤ ε

J1, otherwise
(10)

where J1 = Max (F1, F2, F3). The parameter ε is the maximum allowable tolerance

in the stiffness value.

Using the above defined objective function and geometric constraints the design

problem is formulated as:

Minimize J(x)

Subject to Constraint 1-3

The optimization problem is combinatorial by nature and is NP -hard. To solve
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this combinatorial optimization problem a particle swarm optimization algorithm is

used.

3 Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm belongs to the category of swarm

intelligence techniques. The swarm intelligence concepts are inspired by the social

behavior of flocking animals such as swarms of birds, ants and fish school. PSO was

first developed and introduced as a stochastic optimization algorithm by Eberhart

and Kennedy [23]. PSO is a recently developed heuristic technique, inspired by

the choreography of a bird flock. The approach can be viewed as a distributed

behavioral algorithm that performs a multidimensional search. PSO has been found

to be useful in a wide variety of optimization tasks. Due to its natural ability to

converge faster, PSO algorithm is also used to solve multi-objective optimization

problems [24].

PSO is a population based algorithm that exploits a population of individuals to

probe promising regions of the search space. The individual behavior is affected ei-

ther by the best local or best global individual. The performance of each individual

is measured using fitness function similar to evolutionary algorithms. The popula-

tion is referred as a swarm and individuals are called particles. The particles move

in a multidimensional search space with adaptable velocity. In PSO, the particles

remember the best position in the past and the best position ever attained by the

particles. This property helps the particles to search the multidimensional space

faster.

Let us consider an optimization problem with n-dimensional design space. Assume

that there are M particles in a swarm and ith particle in a swarm is represented as
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a vector Xi, Xi ∈ <n:

Xi = (xi1, xi2, · · · , xin)T , i = 1, 2, · · · ,M (11)

The velocity of the particle moving in the n-dimensional search space is

Vi = (vi1, vi2, · · · , vin)T , i = 1, 2, · · · ,M (12)

and the best position encountered by the particle is

Bi = (bi1, bi2, · · · , bin)T , i = 1, 2, · · · ,M (13)

Let us assume that the particle j attains the best position in the current iteration

(l) then the position and the velocity of the particles are adapted using the following

equations.

Vi (l + 1) = wVi (l) + c1r1 (Bi(l)−Xi(l)) + c2r2 (Bj(l)−Xi(l)) (14)

Xi (l + 1) = Xi (l) + Vi (l + 1) (15)

where w is the inertia weight, c1, c2 represent positive acceleration constants and

r1, r2 are uniformly distributed random numbers r1, r2 ∈ [0, 1]. The first term in

the above equation, relates to the current velocity of the swarm, the second term

represents the local search while the third term represents the global search pointing

towards the optimal solution.

The inertia weight (w) is employed to control the impact of the previous history of

velocities on the current velocity of each particle. Thus, the parameter w regulates

the trade-off between global and local exploration ability of the swarm. A general

rule of thumb suggests that it is better to initially set the inertia to a large value, in

order to make better global exploration of the search space and gradually decrease

the weight to get more refined solutions. Thus, a time decreasing inertia weight

value is used in this paper.
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The algorithm for particle swarm optimization can be summarized as follows:

• Let l=1; Initialize the position and velocity of the particles in a swarm.

• Evaluate the performance of each particle.

• Store the best position of each particle and best position in a swarm.

• WHILE the maximum number of iteration has not been reached DO

– Update the velocity and position using the equations (14) and (15).

– Maintain the particles within the search space in case they go beyond its

boundaries. This condition ensures a valid solution for a given problem.

– Evaluate the performance of each particle in a swarm

– Store the best position of particles and swarm

• Increment the iteration loop by one, i.e., l = l + 1.

• END WHILE

The selection of acceleration constants and random variables affect the convergence

of the PSO algorithm. A detailed study on theoretical investigations of parameter

selection and convergence properties of PSO algorithm is provided in [31,32].

4 Experimental Results

A Simulation study was carried out on two different cases of composite box beam

designs, namely balanced wall condition (no elastic coupling) and unbalanced walls.

The box-beam design problem is solved using PSO and genetic algorithm approaches.
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In genetic algorithm approach, the design space is represented using the real num-

bers and is referred as real-coded genetic algorithm (RCGA). The design problem is

also solved using binary-coded genetic algorithm (BGA) approach. The parameters

used for genetic algorithm approaches are shown in Table. 1.

Table 1: Genetic algorithm parameters

Parameters RCGA

Population 30
Generations 500
Crossover probability 0.6
Mutation probability 0.05

4.1 Box-Beam Configuration

A single celled composite box-beam is optimized to provide the specified stiffness

values. These stiffness values are obtained from an aero-elastic optimization study in

which the 1-D beam stiffness values were used as the design variables [26]. An initial

box-beam configuration which provides reasonable cross sectional properties of the

1-D beam used in the aero-elastic optimization study [25] is selected. The selected

box-beam configuration is optimized to provide the specified structural stiffness.

The initial design has an outer box width of 4.2in. and height of 2.2in. Each wall

of this box-beam have 26 plies, each ply having a thickness of 0.005in. The plies

are made of graphite epoxy (AS413501− 6) and its material properties are given in

Table 2. The target stiffness values are given in Table 3.

In the optimization process, each wall of the box-beam is considered to have 26 plies.

Considering the mid-plane symmetry of the laminate, the maximum number of ply

angle design variables reduces from 26 to 13. Three plies at the outer edge of the

wall are fixed with 0o plies to provide the required axial stiffness. Therefore, out of
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Table 2: Graphite/Epoxy : Material Properties

E1(GPa) 141.5
E2(GPa) 9.8
G12 (GPa) 5.9
ν 0.42
ρ (Kg/m3) 1445.4

13 plies, only five ply angles are considered as design variables for optimizing the

box-beam. The stacking sequence of each wall of the box-beam can be written as

[03,±θ1,±θ2,±θ3,±θ4,±θ5]s (16)

Table 3: Target Stiffness Values

Parameter Stiffness in N −m2

K22 (GJ) 20419.79
K33 (EIy) 38364.46
K44 (EIz) 82916.73

Assume there are N choices for each ply angle design variable, hence there can be

N5 possible laminate designs. The allowable discrete values for ply angle design

variables are given in Table 4. Three cases of discretization are considered for the

experimental study. In discretization I, the allowable ply angles are integer multiples

of 10◦ between 0◦ and 90◦. Similarly, in discretization II and III, the allowable

ply angles are integer multiple of 15◦ and 45◦. The geometry variables, breadth

b and height h, are constrained to have an upper and a lower bound to avoid an

infeasible box-beam configuration. The geometric constrains are: 3 ≤ b ≤ 5in and

2 ≤ h ≤ 3in.

Now, we present the results obtained using the proposed methodology for composite

box-beam design with and without elastic coupling. First, we present the results for

without elastic coupling.
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Table 4: Ply Angle Discretization

Discretization I [0,10,20,30,40,50,60,70,80,90]
Discretization II [0,15,30,45,60,75,90]
Discretization III [0,45,90]

4.2 Case I: Without elastic coupling

For this case, consider a balanced box-beam configuration, i.e., the four walls have

similar configuration. Hence, the elastic coupling term K24 is zero. As mentioned

earlier, from the given discretization only 5 ply angles need to be selected. The ply

angle vector Θ for optimization is given as

Θ = [θ1, θ2, θ3, θ4, θ5] (17)

The two real design variables (b and h) and five integer variables (Θ) are needed to

be optimized. Hence, the particle i in the swarm is represented by a 7-dimensional

vector Xi as:

Xi = (bi1, hi2, θi3, θi4, · · · , θi7) (18)

Let [o1, o2, · · · , om] be m possible ply angles specified by the user (see constraint 3)

while the integer variables (θij, j = 3, 4, · · · , 7) are coded as a real variable but they

are converted into integers using the equation given below:

θ̂ij = o(k) where k = arg min
k=1,2,··· ,m

‖ok − θij‖, j = 1, 2, · · · , 5 (19)

The acceleration constants are selected as c1 = 1, c2 = 2 and random constant is

gradually decreased from 0.8 to 0.1 with a linear decreasing rate. The maximum

velocity Vmax is taken as the dynamic range of the particle in each iteration. The

PSO and RCGA based composite box-beam design methodologies are implemented

in MATLAB on a Pentium IV machine. The simulation was carried out using PSO
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and GA for five times with each discretization and the best results are reported in

Table. 5. The objective function J value, and average error between the target

stiffness values and actual box-beam stiffness values are also reported for the three

different discretization cases.

From the table, one can see that the PSO based approach provides better design

solution than the RCGA approach. The average error for PSO design in discretiza-

tion I is approximately two times less than the average error for RCGA design. The

same can also be observed in other discretization cases. It is also observed from

the table that the box-beam dimensions obtained using PSO for three discretiza-

tion cases are almost same. In case of RCGA approach, the box-beam dimension

increases substantially for discretization II and III. Even with increase in the di-

mension, the RCGA approach was not able to find the best solution. This clearly

shows the ability of PSO algorithm to find best possible solution for a given design

problem.

A common practice in stacking sequence optimization is to avoid the consecutive

appearance of more than four plies in a laminate to overcome matrix cracking. This

restriction is generally used as a constraint in the laminate optimization problems.

From Table. 5, the optimal solution given by PSO always satisfies the ply angle

constraint, where as the RCGA approach does not satisfy the constraint for dis-

cretization III. In discretization III, the design variables θ4 and θ5 have 90o ply

angles which leads to the appearance of eight consecutive plies having the same ply

angle according to the laminate configuration given in Equation 16. Therefore, the

design solution obtained for discretization case III by RCGA is discarded as a invalid

design.

From the average error given in the table, the PSO algorithm is able to find a

17



Table 5: Design solutions for three discretization : No elastic coupling

PSO RCGA
Discretization Discretization

Variables I II III I II III

Breadth (inch) 3.78 3.82 3.82 3.69 4.35 4.36
Depth (inch) 2.32 2.35 2.23 2.27 2.58 2.65
θ1 30 45 45 40 90 90
θ2 50 90 0 50 90 90
θ3 80 15 45 0 45 45
θ4 20 75 90 40 75 90
θ5 70 45 45 90 90 90

Objective function, J 0.15 0.78 4.50 0.25 2.55 5.08
Average error (%) 0.09 0.51 4.13 0.19 1.85 4.60

solution very close to the optimal configuration for the discretizations I and II. Based

on the box-beam dimension and objective function, the optimal solution obtained

for discretization I is the best design solution for the helicopter rotor blade design

problem.

4.3 Case II: With elastic coupling

The box-beam configuration shown in Figure. 2 produces a lag-bending torsion

coupling. In this case, the box-beam is designed for maximum elastic coupling term

K24 while satisfying the desired stiffness values given in Table. 3. In the design

problem, once the error between the desired stiffness values and the actual box-beam

stiffness values are less than the maximum allowable tolerance ε, then the optimizer

maximizes K24. If the error between the actual box-beam and the specified stiffness

value is greater than the ε, then the optimizers’ objective is to achieve the desired

stiffness values. The value of maximum allowable tolerance ε is selected as 2%.

The ply orientations of vertical wall are chosen to be 0o plies on the outside to ensure

the minimum bending stiffness and axial stiffness. The bending stiffness depends on
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the location of plies from mid plane of the composite laminate. The 45o plies are kept

towards the mid plane to ensure the shear stiffness [33]. The stiffness K24 introduces

negative lag bending torsion coupling that increases the aero-elastic stability of the

rotor blade. The stacking sequence of balanced laminate (BL) is written as

[03,±θ1,±θ2,±θ3,±452]s (20)

Similarly, the stacking sequence of the unbalanced laminate (PU) is written as

[03, θ1, θ1, θ2, θ2, θ3, θ3,±452]s (21)

Hence, the ply angle variables θ1, θ2, θ3 of the balanced laminate, ply angle variables

θ1, θ2, θ3 of the unbalanced laminate and geometry configurations (b, h) are chosen

as design variables. The ply angle vector Θ is defined as

Θ = [(θ1, θ2, θ3)
BL, (θ1, θ2, θ3)

PU ] (22)

The simulations were carried out for five times using PSO and RCGA approaches.

The best results are reported in Table. 6. For discretization I, both PSO and RCGA

approaches were able to find the optimal solution, as shown in the table. In case

of discretization II and III, the elastic coupling obtained using RCGA and PSO are

almost similar. From the experimental results for PSO approach, the 20◦ and 15◦

ply angle orientations play a major role in maximizing K24 for discretization I and II.

The magnitude of elastic coupling K24 and mass of the box-beam are almost equal

for discretization I and II. Also, the elastic coupling obtained for discretization III

is less than the other discretization. This is because, the design space for ply angle

variables is less. A similar behavior can also be seen from the simulation results

obtained using RCGA approach. From Table 6, we can see that the design solution

obtained using PSO and RCGA are valid designs, i.e., four plies with same ply angle
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Table 6: Design solutions for three discretization : Elastic coupling

PSO RCGA
Discretization Discretization

Variables I II III I II III

Breadth (inch) 3.43 3.58 3.62 3.43 3.52 3.74
Depth (inch) 2.27 2.32 2.38 2.27 2.17 2.31
θBL
1 20 15 90 20 15 90

θBL
2 20 45 90 20 30 90

θBL
3 70 15 45 70 15 45

θPU
1 10 30 45 10 30 90

θPU
2 20 15 90 20 15 45

θPU
3 20 15 45 20 15 90

K24 7144 6675 2120 7144 6558 2070

never occurs in the best solutions. The most commonly preferred discretization in

the aerospace industry is 45/90◦.

4.4 Discussion

Some of the important characteristics of heuristic search techniques need to be dis-

cussed for solving the multi-objective design problems. For this purpose, a mean

fitness of population/swarm, standard deviation from best solution and computa-

tional time required to find the best solution are considered on the box-beam design

problem without elastic coupling maximization for discretization case I. The perfor-

mance parameters of the proposed PSO approach is compared with the RCGA and

binary coded genetic algorithm (BGA) techniques. The PSO and GA based tech-

niques are implemented in MATLAB on a Pentium IV machine. A population of 20

individuals to search the design space is considered and the search process is termi-

nated when the objective function (J) is less than or equal to 0.25% or maximum

number of generation is equal to 2000.

The mean fitness of the population, standard deviation, number of times the best
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Table 7: Simulation study on performance Evaluation

Method Avg. Std. Avg. Term. R T
fitness deviation gen. ( min)

PSO 0.152 0.0563 356 12 32.34
RCGA 0.296 0.0668 624 14 42.35
BGA 2.014 1.9403 2000 2 101.27

fitness is achieved (R), termination generations and CPU time (T ) are recorded and

given in Table. 7. From the simulation results, we can see that the proposed PSO

algorithm require lesser computational effort and also find best design solutions

than the GA based approaches. It is also observed from simulations that BGA

requires more generations to find the best solution. This fact is reflected in the mean

and standard deviation of the population. Hence, from the convergence study, the

proposed PSO algorithm is more suitable for structural design problems.

5 Conclusion

A multi-agent search technique called particle swarm optimization is presented for

multi-objective composite box-beam design to a helicopter rotor blade. The main

objective of the composite box-beam design problem is to find the optimal geome-

try and stacking sequence of the structure such that it satisfies the desired stiffness

requirements and also has maximum elastic coupling. The multi-objective and com-

binatorial nature of the design problem is solved using particle swarm optimization

approach. In this paper, a min-max strategy is used to convert the three desired

stiffness objectives into a single objective. The min-max strategy and maximiza-

tion of elastic coupling are collectively considered to design a composite box-beam.

The design solutions are presented for different discretization (10◦, 15◦ and 45◦) and

are compared with other genetic algorithm based approaches. The performance in
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terms of closeness to target values and the computational time obtained using PSO

approach is better than the genetic algorithm based approaches. The experimen-

tal results clearly shows that the PSO approach always provides a better and valid

design solution than the genetic algorithm approaches.
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