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Abstract

In this study, a multistage neural network ensemble learning model is proposed to evaluate credit risk at the measurement level. The
proposed model consists of six stages. In the first stage, a bagging sampling approach is used to generate different training data subsets
especially for data shortage. In the second stage, the different neural network models are created with different training subsets obtained
from the previous stage. In the third stage, the generated neural network models are trained with different training datasets and accord-
ingly the classification score and reliability value of neural classifier can be obtained. In the fourth stage, a decorrelation maximization
algorithm is used to select the appropriate ensemble members. In the fifth stage, the reliability values of the selected neural network
models (i.e., ensemble members) are scaled into a unit interval by logistic transformation. In the final stage, the selected neural network
ensemble members are fused to obtain final classification result by means of reliability measurement. For illustration, two publicly avail-
able credit datasets are used to verify the effectiveness of the proposed multistage neural network ensemble model.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Without doubt credit risk assessment and modeling is
one of the most important topics in the field of financial
risk management (Lai, Yu, Wang, & Zhou, 2006a,
2006b). Due to recent financial crises and regulatory con-
cern of Basel II, credit risk assessment has been the major
focus of financial and banking industry. Especially for any
credit-granting institution, such as commercial banks and
certain retailers, the ability to discriminate good customers
from bad ones is crucial. The need for reliable models that
predict defaults accurately is imperative so that the inter-
ested parties can take either preventive or corrective action
(Lai et al., 2006a, Lai, Yu, Wang, & Zhou, 2006b, 2006c;
0957-4174/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Wang, Wang, & Lai, 2005). Therefore, credit risk evalua-
tion becomes very important for sustainability and profit
of enterprises. Furthermore, an accurate prediction of
credit risk could be transformed into a more efficient use
of economic capital in business.

Usually, the generic approach of credit risk assessment
is to apply some classification techniques on similar data
of previous customers – both faithful and delinquent cus-
tomers – in order to find a relation between the character-
istics and potential failure. One important ingredient
needed to accomplish this goal is to seek an accurate
classifier in order to categorize new applicants or existing
customers as good or bad. Due to its importance of credit
risk assessment, there is a growing research stream about
credit risk evaluation. First of all, many statistical models
and optimization techniques, such as linear discriminant
analysis (Fisher, 1936) logit analysis (Wiginton, 1980), pro-
bit analysis (Grablowsky & Talley, 1981), linear program-
ming (Glover, 1990), integer programming (Mangasarian,
1965), k-nearest neighbor (KNN) (Henley & Hand, 1996)
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and classification tree (Makowski, 1985) are widely applied
to credit risk assessment and modeling tasks. Although
these methods can be used to assess credit risk, the ability
to discriminate good customers from bad ones is still worth
improving further. Recent studies have revealed that emerg-
ing artificial intelligent (AI) techniques, such as artificial
neural networks (ANN) (Lai et al., 2006b; Malhotra &
Malhotra, 2003; Smalz & Conrad, 1994), genetic algorithm
(GA) (Chen & Huang, 2003; Varetto, 1998) and support
vector machine (SVM) (Huang, Chen, Hsu, Chen, & Wu,
2004; Van Gestel, Baesens, Garcia, & Van Dijcke, 2003)
are advantageous to statistical models and optimization
techniques for credit risk evaluation.

Although almost all classification methods can be used
to assess credit risk, some combined classifiers, which inte-
grate two or more single classification methods, have
shown higher correctness of predictability than any indi-
vidual methods. Combined classifier research is currently
flourishing in credit risk assessment. Recent examples are
Neural Discriminant Technique (Lee, Chiu, Lu, & Chen,
2002), neuro-fuzzy (Malhotra & Malhotra, 2002; Piramu-
thu, 1999) and fuzzy SVM (Wang et al., 2005). Some com-
prehensive literature review about credit risk assessment
and modeling can be referred to two recent surveys (Tho-
mas, 2002; Thomas, Oliver, & Hand, 2005) for more
details.

Motivated by the combined or hybrid classifiers, inte-
grating multiple classifiers into an aggregated output, i.e.,
ensemble technique has been turned out to be an efficient
strategy for achieving high classification performance, espe-
cially in fields where the development of a powerful single
classifier system requires considerable efforts. In this study,
ANN is selected as the generic instrument to construct an
ensemble classifier. The main reason of selecting ANN
reflects the following two aspects. First of all, a neural net-
work is often viewed as a ‘‘universal approximator’’ (Hor-
nik, Stinchocombe, & White, 1989). Usually, a three-layer
back propagation neural network (BPNN) with an identity
transfer function in the output unit and logistic functions in
the middle-layer units can approximate any continuous
function arbitrarily well given a sufficient amount of mid-
dle-layer units (Hornik et al., 1989; White, 1990). That is,
neural networks have the ability to provide flexible mapping
between inputs and outputs. Secondly, neural networks are
far from being optimal classifier (Yang & Browne, 2004).
Many experimental results have shown the generalization
of individual neural networks is not unique. Even for some
simple problems, different neural networks with different
settings (e.g., different network architecture and different
initial conditions) may result in different generalization
results. This characteristic makes neural networks have
large improvement space in performance.

To achieve high classification performance, there are
some essential requirements to the ensemble members
and the ensemble strategy. First of all, a basic condition
is that the individual neural network classifiers must have
enough training data. Secondly, the ensemble members
are diverse or complementary, i.e., classifiers must show
different classification properties. Thirdly, a wise ensemble
strategy is also required on a set of complementary classi-
fiers in order to obtain high classification performance.

For the first requirement, some sampling approaches,
such as bagging (Breiman, 1996), have been used for creat-
ing different training samples by varying the data subsets
selected or perturbing training sets (Yang & Browne,
2004). In credit risk assessment, the available data samples
are often limited (Lai et al., 2006c). Due to the features
of its random sampling with replacement, the bagging
approach can rightly remedy the shortcoming.

For the second requirement, diverse ensemble members
can be obtained by varying the initial conditions or using
different training data. Because neural network is an unsta-
ble learner, it is sensitive to the initial conditions and differ-
ent train data. Furthermore, the architecture of the neural
network itself is determined by trial and error. Thus, con-
structing different neural ensemble members is rather easy.

In the ensemble model, the most important point is to
select an appropriate ensemble strategy, which mentioned
in the third requirement. Generally, the variety of ensemble
methods can be grouped into three categories according to
the level of classifier outputs: abstract level (crisp class),
rank level (rank order) and measurement level (class score)
(Suen & Lam, 2000; Xu, Krzyzak, & Suen, 1992). In the
existing studies, many ensemble systems still use empirical
heuristics and ad hoc ensemble schemes at the abstract
level. Typically, majority voting (Xu et al., 1992; Yang &
Browne, 2004) uses the abstract level of output of ensemble
members. An important drawback of this ensemble strat-
egy is that it does not take confidence degree of neural net-
work output into account. Actually, ensemble at the
measurement level is advantageous in that the output mea-
surements contain richer information of class measures. In
a sense, an appropriate ensemble strategy is more crucial,
especially for integrating the classifiers that output diverse
measurements. Furthermore, the intensive investigation of
neural network ensemble for credit risk evaluation has not
formulated a convincing theoretical foundation and overall
process model yet.

In such situations, we propose a novel multistage reli-
ability-based neural network ensemble learning approach
that differs in that the final ensemble strategy is determined
the reliability of neural network output at the measurement
level. In this study, the proposed neural network ensemble
learning model consists of six stages. In the first stage, a
bagging sampling approach is used to generate different
training data subsets especially for data shortage. In the
second stage, the different neural network models are cre-
ated with different training subsets obtained from the pre-
vious stage. In the third stage, the generated neural
network models are trained with different training datasets
and accordingly the classification score and reliability value
of neural classifier can be obtained. In the fourth stage, a
decorrelation maximization algorithm is used to select the
appropriate ensemble members. In the fifth stage, the
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reliability values of the selected neural network models
(i.e., ensemble members) are scaled into a unit interval by
logistic transformation. In the final stage, the selected neu-
ral network ensemble members are fused to obtain final
classification result by means of reliability measurement.
For testing and illustration purposes, two publicly avail-
able credit datasets are used to verify the effectiveness of
the proposed neural network ensemble model.

The motivation of this study is to formulate a multistage
reliability-based neural network ensemble learning model
for credit risk evaluation and compare its performance
with other existing credit risk assessment techniques. The
rest of the study is organized as follows. The next section
presents a formulation process of the multistage neural net-
work ensemble learning model in detail. To verify the effec-
tiveness of the proposed method, two real examples are
performed and accordingly the experiment results are
reported in Section 3. And Section 4 concludes the study.
2. The formulation process of neural network ensemble

model

In this section, a six-stage reliability-based neural net-
work ensemble learning model is proposed for classifica-
tion purpose. The basic idea of neural network ensemble
originated from using all the valuable information hidden
in neural network classifiers, where each can contribute
to the improvement of generalization. In our proposed
multistage neural network ensemble model, a bagging sam-
pling approach is first used to generate different training
sets for guaranteeing enough training data. In terms of dif-
ferent training datasets, multiple individual neural classifi-
ers are trained. Accordingly some classification results and
reliability values of each neural classifier are also obtained.
Then a decorrelation maximization algorithm is used to
select the appropriate ensemble members from the multiple
trained neural classifiers. Subsequently the reliability values
are transformed into a unit interval for avoiding the situa-
tion that member classifier with large absolute value often
dominates the final decisions of the ensemble. Finally the
ensemble members are aggregated in terms of some criteria,
and their generated results are output based upon reliabil-
ity measure. The final result is called the ensemble output.
The general architecture of the multistage reliability-based
neural network ensemble learning model is illustrated in
Fig. 1.
2.1. Partitioning original data set

Due to data shortage in some data analysis problems,
some approaches, such as bagging (Breiman, 1996) have
been used for creating samples by varying the data subsets
selected or perturbing training sets (Yang & Browne, 2004).
Bagging (Breiman, 1996) is a widely used data sampling
method in the machine learning field. Given that the size
of the original data set DS is P, the size of new training
data is N, and the number of new training data items is
m, the bagging sampling algorithm can be shown in Fig. 2.

The bagging algorithm (Breiman, 1996) is very efficient
in constructing a reasonable size of training set due to
the feature of its random sampling with replacement.
Therefore, bagging is a useful data preparation method
for machine learning. In this study, we use the bagging
algorithm to generate different training data subsets when
the original data is scarcity.

2.2. Creating diverse neural network classifiers

According to the definition of effective ensemble classifi-
ers by Hansen and Salamon (1990), ‘a necessary and suffi-
cient condition for an ensemble of classifiers to be more
accurate than any of its individual members is if the classi-
fiers are accurate and diverse’. Generally, an effective
ensemble classifier consisting of diverse models with much
disagreement is more likely to have a good generalization
performance in terms of the principle of bias-variance
trade-off (Yu, Lai, Wang, & Huang, 2006). Therefore,
how to generate the diverse model is a crucial factor. For
neural network model, several methods have been investi-
gated for the generation of ensemble members making dif-
ferent errors (Sharkey, 1996). Such methods basically rely
on varying the parameters related to the design and to
the training of neural networks. In particular, the main
methods include the following four aspects:

(1) Different initial conditions: diverse ensemble mem-
bers can be created by varying the initial conditions,
such as initial random weights, learning rate and
momentum rate, from which each network is trained.

(2) Different network architecture: by changing the num-
ber of hidden layers and the number of nodes in every
layer, different neural networks with different archi-
tectures can be created.

(3) Different training data: by re-sampling and prepro-
cessing data, we can obtain different training sets,
thus making different network generations. There
are six techniques that can be used to obtain diverse
training data sets (Yang & Browne, 2004): bagging
(Breiman, 1996), noise injection (Raviv & Intrator,
1996), cross-validation (Krogh & Vedelsby, 1995),
stacking (Wolpert, 1992), boosting (Schapire, 1990)
and input decimation (Tumer & Ghosh, 1996).

(4) Different training algorithm: diverse ensemble mem-
ber can also be generated by selecting different core
learning algorithms. For example, a multilayer feed-
forward network can use the steep-descent algorithm
(Hornik et al., 1989; White, 1990), Levenberg–Mar-
quardt algorithm (Tumer & Ghosh, 1996) and other
training algorithms.

In our study, the third way is selected because the previ-
ous phase has created many different training data sub-
sets. In addition, the three-layer back-propagation neural



Fig. 1. The general formulation process of multistage neural network ensemble learning model.
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networks (BPNN) (Hornik et al., 1989; White, 1990) are
selected because a three-layer BPNN with an identity trans-
fer function in the output unit and logistic transfer func-
tions in the middle-layer units can approximate any
continuous function arbitrarily well given a sufficient
amount of middle-layer units (Hornik et al., 1989; White,
1990). With these different training datasets, diverse neural
network classifiers will be generated.
2.3. Neural network learning and confidence value generation

After creating diverse neural network classifiers, the next
step is to train the neural network with different training
datasets. In our study, the selected BPNN is a class of
supervised error back-propagation learning mechanism in
the form of the neural network associative memory. Usu-
ally, the back-propagation learning mechanism consists



Fig. 2. The bagging algorithm.
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of two phases: forward-propagation and back-propagation
phase. Suppose we have s samples. Each is described by
Xi = (xi1,xi2, . . .,xim) and Ti = (ti1, ti2, . . . , tin) where Xi is
an input vector, Ti is a target output vector and 1 6 i 6 s.

In the first phase (forward-propagation phase), Xi is fed
into the input layer, and an output Y i = (yi1,yi2, . . .,yin) is
generated based on the current weight vector W. The objec-
tive is to minimize an error function E defined as

E ¼
Xs

i¼1

Xn

j¼1

ðyij � tijÞ2

2
; ð1Þ

by changing W so that all input vectors are correctly
mapped to their corresponding output vectors.

In the second phase (back-propagation phase), a gradi-
ent descent in the weight space, W, is performed to locate
the optimal solution. The direction and magnitude change
Dwij can be computed as

Dwij ¼ �
oE
owij

e; ð2Þ

where 0 < e < 1 is a learning parameter controlling the
algorithm’s convergence rate.

The total squared error calculated by Eq. (1) is propa-
gated back, layer by layer, from the output units to
the input units in the second phase. Weight adjustments
are determined on the way of propagation at each level.
The two phases are executed during each iteration of the
back-propagation algorithm until E converges.

For classification task, a neural network can usually be
trained by the in-sample dataset and applied to out-of-
sample dataset for verification. The model parameters
(connection weights and node biases) will be adjusted
iteratively by a process of minimizing the error function
E. Basically, the final output of the FNN model can be
represented as

y ¼ f ðxÞ ¼ a0 þ
Xq

j¼1

wju aj þ
Xp

i¼1

wijxi

 !
; ð3Þ

where aj(j = 0,1,2, . . .,q) is a bias on the jth unit, and
wij(i = 1,2, . . .,p; j = 1,2, . . .,q) is the connection weight
between layers of the model, /(Æ) is the transfer function
of the hidden layer, p is the number of input nodes and q

is the number of hidden nodes.
By training neural network, model parameters in Eq. (3)

can be determined and accordingly the neural network
classifier can be shown as

F ðxÞ ¼ sign a0 þ
Xq

j¼1

wju aj þ
Xp

i¼1

wijxi

 ! !
: ð4Þ

In our study, we mainly use neural network output value
f(x) as its classification score at the measurement level, in-
stead of the classification results F(x) directly. For credit
risk classification problem, a credit analyst can adjust the
parameter a0 to modify the cutoff to change the percent
of accepted. Only when the applicant’s credit score is larger
than the cutoff, his application will be accepted.

In addition, the neural network output value f(x) is a
good indicator for the reliability degree of ensemble classi-
fiers. The larger the f(x), the higher the neural network clas-
sifier for positive class is. Therefore the neural network
output value f(x) as a reliability measure is used to inte-
grate the ensemble members. By means of this treatment,
we can realize the decision fusion at the measurement level.
2.4. Selecting appropriate ensemble members

After training, each individual neural classifier has gen-
erated its own result. However, if there are a great number
of individual members, we need to select a subset of repre-
sentatives in order to improve ensemble efficiency. Further-
more, in the neural network ensemble model, it does not
follow the rule of ‘‘the more, the better’’, as mentioned
by Yu, Wang, and Lai (2005). In addition, this is the nec-
essary requirement of diverse neural network classifier for
ensemble learning. In this study, a decorrelation maximiza-
tion method (Lai et al., 2006b) is used to select the appro-
priate number of neural network ensemble members.

As earlier noted, the basic starting point of the decorre-
lation maximization algorithm is the principle of ensemble
model diversity. That is, the correlations between the
selected classifiers should be as small as possible, i.e., dec-
orrelation maximization. Supposed that there are p neural
classifiers (f1, f2, . . ., fp) with n forecast values. Then the
error matrix (e1,e2, . . .,ep) of p predictors can be repre-
sented by

E ¼

e11 e12 � � � e1p

e21 e22 � � � e2p

..

. ..
. ..

.

en1 en2 � � � enp

2
66664

3
77775

n�p

: ð5Þ

From the matrix, the mean, variance and covariance of E

can be calculated as

Mean : �ei ¼
1

n

Xn

k¼1

eki ði ¼ 1; 2; . . . ; pÞ: ð6Þ
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Variance : V ii ¼
1

n

Xn

k¼1

eki � �eið Þ2 ði ¼ 1; 2; . . . ; pÞ: ð7Þ

Covariance : V ij ¼
1

n

Xn

k¼1

eki��eið Þ ekj��ej

� �
ði; j¼ 1;2; . . . ;pÞ:

ð8Þ
Considering Eqs. (7) and (8), we can obtain a variance–
covariance matrix:

V p�p ¼ ðV ijÞ: ð9Þ
Based upon the variance–covariance matrix, correlation
matrix R can be calculated using the following equations:

R ¼ ðrijÞ; ð10Þ

rij ¼
V ijffiffiffiffiffiffiffiffiffiffiffiffi
V iiV jj

p ; ð11Þ

where rij is correlation coefficient, representing the degree
of correlation classifier fi and classifier fj.

Subsequently, the plural-correlation coefficient qfij(f1,

f2, . . ., fi � 1, fi + 1, . . ., fp) between classifier fi and other p � 1
classifiers can be computed based on the results of Eqs.
(10) and (11). For convenience, qfij(f1, f2, . . ., fi � 1, fi + 1, . . ., fp)

is abbreviated as qi, representing the degree of correlation
between fi and (f1, f2, . . ., fi� 1, fi + 1, . . ., fp). In order to calcu-
late the plural-correlation coefficient, the correlation
matrix R can be represented with block matrix, i.e.,

R �!after transformation R�i ri

rT
i 1

� �
; ð12Þ

where R�i denotes the deleted correlation matrix. It should
be noted that rii = 1(i = 1,2, . . .,p). Then the plural-correla-
tion coefficient can be calculated by

q2
i ¼ rT

i RT
�iri ði ¼ 1; 2; . . . ; pÞ: ð13Þ

For a pre-specified threshold h, if q2
i > h, then the classifier

fi should be taken out from the p classifiers. On the
contrary, the classifier fi should be retained. Generally,
the decorrelation maximization algorithm can be summa-
rized into the following steps:

(1) Computing the variance–covariance matrix Vij and
correlation matrix R with Eqs. (9) and (10).

(2) For the ith classifier (i = 1,2, . . .,p), the plural-corre-
lation coefficient qi can be calculated with Eq. (13).

(3) For a pre-specified threshold h, if qi < h, then the ith
classifier should be deleted from the p classifiers. Con-
versely, if qi > h, then the ith classifier should be
retained.

(4) For the retained classifiers, we can also perform the
procedure Eqs. (1)–(3) iteratively until satisfactory
results are obtained.
2.5. Reliability value transformation

In the previous phase, the neural classifier outputs are
used as reliability measure. It is worth noting that the
reliability value falls into the interval (�1,+1). The main
drawback of this confidence value is that ensemble classi-
fier with large absolute value often dominate the final deci-
sion of the ensemble model.

In order to overcome this weakness, one simple strategy
is to re-scale the output values into zero mean and unit
standard deviation, i.e.,

gþi ðxÞ ¼
fiðxÞ � l

r
; ð14Þ

where l and r are the mean and standard deviation of the
pooled classifier outputs, respectively. However, for classifi-
ers that output dissimilarity measures, the sign of the origi-
nal outputs should be reversed before this transformation.

For convenience, transforming the confidence value into
the unit interval [0,1] is a good solution (Lai et al., 2006b).
In neural network, the logistic function behaves well in
squashing neural output to approximate probability mea-
sures. Therefore we can take it as a scaling function for reli-
ability transformation, i.e.,

gþi ðxÞ ¼
1

1þ e�fiðxÞ
: ð15Þ

In a binary classification problem, if the reliability degree
for positive class is gþi ðxÞ, the reliability degree for negative
class can be represented as

g�i ðxÞ ¼ 1� gþi ðxÞ: ð16Þ

According to the transformed reliability values, multiple
classifiers can also be fused into an ensemble output, as
illustrated in the following section.

2.6. Integrating multiple classifiers into an ensemble output

Depended upon the work done in previous several
stages, a set of appropriate number of ensemble members
can be collected. The subsequent task is to combine these
selected members into an aggregated classifier in an appro-
priate ensemble strategy. Generally, there are some ensem-
ble strategy in the literature at the abstract level and the
rank level. Typically, majority voting, ranking and weighted
averaging are three popular ensemble approaches. Majority
voting is the most widely used ensemble strategy for classi-
fication problems due to its easy implementation. Ensemble
members’ voting determines the final decision. Usually, it
takes over half the ensemble to agree a result for it to be
accepted as the final output of the ensemble regardless of
the diversity and accuracy of each network’s generalization.
Majority voting ignores the fact some neural network that
lie in a minority sometimes do produce the correct results.
At the ensemble stage, it ignores the existence of diversity
that is the motivation for ensembles (Yang & Browne,
2004). In addition, majority voting is only a class of ensem-
ble strategy at the abstract level.

Ranking is where the members of an ensemble are called
low level classifiers and they produce not only a single result
but a list of choices ranked in terms of their likelihood. Then
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the high level classifier chooses from this set of classes using
additional information that is not usually available to or
well represented in a single low level classifier (Yang &
Browne, 2004). However, ranking strategy is a class of
fusion strategy at the rank level, as earlier mentioned.

Weighted averaging is where the final ensemble decision
is calculated in terms of individual ensemble members’ per-
formances and a weight attached to each member’s output.
The gross weight is one and each ensemble member is enti-
tled to a portion of this gross weight based on their perfor-
mances or diversity (Yang & Browne, 2004). Although this
approach is a class of ensemble strategy at the measure-
ment level, but it is difficult for classification problem to
obtain the appropriate weights for each ensemble member.

In such situations, this study proposes a reliability-based
ensemble strategy to make the final decision of the ensem-
ble at the measurement level. The following five strategies
can be used to integrate the individual ensemble members
(Lai et al., 2006b):

(1) Maximum strategy:(

F ðxÞ ¼

1; if max
i¼1;...;m

gþi ðxÞP max
i¼1;...;m

g�i ðxÞ;

�1; otherwise:
ð17Þ
(2) Minimum strategy:(

F ðxÞ ¼

1; if min
i¼1;...;m

gþi ðxÞP min
i¼1;...;m

g�i ðxÞ;

�1; otherwise:
ð18Þ
(3) Median strategy:

�

F ðxÞ ¼

1; if mediani¼1;...;mðgþi ðxÞÞP mediani¼1;...;mðg�i ðxÞÞ;
�1; otherwise:

ð19Þ
(4) Mean strategy:8

F ðxÞ ¼

1; if
Pm
i¼1

gþi ðxÞP
Pm
i¼1

g�i ðxÞ;

�1; otherwise:

<
: ð20Þ
(5) Product strategy: Q Q(

F ðxÞ ¼

1; if
i¼1;...;m

gþi ðxÞP
i¼1;...;m

g�i ðxÞ;

�1; otherwise:
ð21Þ
To summarize, the multistage reliability-based neural
network ensemble learning model can be concluded in
the following steps:

(1) Partitioning original dataset into n training datasets,
TR1,TR2, . . .,TRn.

(2) Training n individual neural network models with the
different training dataset TR1,TR2, . . .,TRn and
obtaining n individual neural network classifiers,
i.e., ensemble members.
(3) Selecting m decorrelated neural network classifiers
from n neural classifiers using decorrelation maximi-
zation algorithm.

(4) Using Eq. (3) to obtain the m neural classifiers’ out-
put values of new unlabeled sample x, f1(x), f2(x), . . .,
fm(x), as in Fig. 1 illustrated.

(5) Using Eqs. (15) and (16) to transform output value to
reliability degrees for positive class gþ1 ðxÞ; . . . ; gþmðxÞ
and for negative class g�1 ðxÞ; . . . ; g�mðxÞ.

(6) Fusing the multiple neural classifiers into an aggre-
gated output in terms of reliability value using Eqs.
(17)–(21).
3. Experiments

In this section, two published credit datasets from real
world are used to test the performance of the proposed
approach. For comparison purposes, three individual clas-
sification models: logit regression (LogR) (Wiginton,
1980), artificial neural network (ANN) (Henley & Hand,
1996; Makowski, 1985) and support vector machine
(SVM) (Huang et al., 2004; Lai et al., 2006a; Van Gestel
et al., 2003), two hybrid classification models: neuro-fuzzy
system (Malhotra & Malhotra, 2002; Piramuthu, 1999) and
fuzzy SVM (Wang et al., 2005) are also conducted the
experiments. In addition, the classification accuracy in
testing set is used as performance evaluation criterion.
Typically, three evaluation criteria are used to measure
the classification results.

Type I accuracy ¼ number of both observed bad and classified as bad

number of observed bad
:

ð22Þ

Type II accuracy¼ number of both observed good and classified as good

number of observed good
:

ð23Þ

Total accuracy¼ number of correct classification

the number of evaluation sample
: ð24Þ
3.1. Consumer credit risk assessment

This experimental dataset in this subsection is about
Japanese consumer credit card application approval
obtained from UCI Machine Learning Repository
(http://www.ics.uci.edu/�mlearn/databases/credit-screen-
ing). For confidentiality all attribute names and values
have been changed to meaningless symbols. After deleting
the data with missing attribute values, we obtain 653 data,
with 357 cases were granted credit and 296 cases were
refused. To delete the burden of resolving multicategory,
we use the 13 attributes A1–A5, A8–A15. Because we gen-
erally should substitute k-class attribute with k � 1 binary
attribute, which will greatly increase the dimensions of
input space, we do not use two attributes: A6 and A7.

In this empirical analysis, we randomly draw 400 data
from the 653 data as the initial training set, 100 data as

http://www.ics.uci.edu
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the validation set and the else as the testing set. For single
ANN model, a three-layer back-propagation neural net-
work with 25 TANSIG neurons in the hidden layer and
one PURELIN neuron in the output layer is used. That
is, the neural network with architecture of 13-25-1 is used.
Besides, the learning rate and momentum rate is set to 0.1
and 0.15. The accepted average squared error is 0.05 and
the training epochs are 2000. In the single SVM model,
the kernel function is Gaussian function with regulariza-
tion parameter C = 50 and r2 = 5. Similarly, the above
parameters are obtained by trial and error. For the pro-
posed neural ensemble model, 40 different neural network
models with different initial weights are generated to
increase model accuracy for credit risk evaluation. Using
the decorrelation maximization algorithm, 18 diverse neu-
ral network classifiers are selected. The basic setting of
the ensemble members is similar to the single ANN model,
as previously mentioned. For two hybrid model, we use the
reported results in the literature.

To reflect model robustness, each class of experiment is
repeated 10 times and the final Type I, Type II and total
accuracy is the average of the results of the 10 individual
tests. According to the experiment design, the final results
are presented in Table 1. Note that the results of two
hybrid classification models are from the original literature
(Piramuthu, 1999; Wang et al., 2005). Because the results of
type I and type II in (Piramuthu, 1999) are not reported,
the result of neuro-fuzzy system is kept to be blank in
Table 1. Based on the similar reason, the standard devia-
tions of the fuzzy SVM model are not shown in Table 1.

As can be seen in Table 1, we can find the following sev-
eral conclusions.

(1) Of the three single models, neural network model per-
forms the best, followed by single SVM and logit
regression. Using two tailed t-test, we find that the
difference between performance of ANN and SVM
is insignificant at five percent level of significance,
while the difference between logit regression and
ANN is significant at ten percent level of significance.

(2) In the two listed hybrid models, the neuro-fuzzy
system performs worse than that of two single AI
Table 1
Consumer credit risk evaluation results with different methodsa

Category Model Rule

Single LogR
ANN
SVM

Hybrid Neuro-fuzzy (Piramuthu, 1999)
Fuzzy SVM (Wang et al., 2005)

Ensemble Voting-based Majority
Reliability-based Maximum

Minimum
Median
Mean
Product

a Standard deviations appear in brackets.
models, i.e., ANN and SVM. The main reason
reflects the following aspects. First of all, the neuro-
fuzzy system used the approximations of both the
inputs as well as the output, as it fuzzified the inputs
and defuzzified the output. Comparatively, the ANN
and SVM did not use any such approximations.
Secondly, the classification accuracies using neuro-
fuzzy system is also influenced by the overlap in the
way the range of values of a given attribute is split
into its various categories (e.g., range of values for
small, medium, and large). Again, these are pitfalls
associated with the mechanisms used for both fuzzifi-
cation and defuzzification of input and output data,
respectively (Piramuthu, 1999). However, the fuzzy
SVM obtain good performance relative to single clas-
sification models. The main reason is that the fuzzy
SVM can reduce the effect of outliers and yield higher
classification rate than single SVM and ANN do.

(3) In the ensemble model, five reliability-based neural
network ensemble models consistently outperform
the majority voting based ensemble model, implying
that the proposed reliability-based neural network
ensemble model is a class of promising approach to
handle credit risk analysis. Among the five reliabil-
ity-based neural network ensemble models, the neural
network ensemble model with minimum ensemble
rule perform the best, followed by maximization
ensemble rule and mean ensemble rule. Although
there is no significant difference in performance of
the five reliability-based neural network ensemble
models, the main reason resulting in such a small dif-
ference is still unknown, which is worth further
exploring in the future.

3.2. Corporation credit risk assessment

In this subsection, the used dataset are about UK corpo-
ration credit from the Financial Analysis Made Easy
(FAME) CD-ROM database which can be found in the
Appendix of (Beynon & Peel, 2001). It contains the detailed
information of 60 corporations, in which including 30
Type I (%) Type II (%) Total (%)

74.58 [6.47] 76.36 [5.81] 75.82 [6.14]
80.08 [7.23] 82.26 [6.25] 80.77 [6.86]
78.41 [5.71] 81.43 [6.13] 79.91 [5.87]

77.91 [5.10]
82.70 85.43 83.94 [4.75]
84.37 [5.73] 86.58 [6.11] 85.22 [6.01]
88.43 [4.34] 86.54 [5.25] 87.24 [4.89]
88.86 [4.41] 87.44 [4.74] 88.08 [4.63]
86.52 [4.96] 85.63 [5.03] 86.03 [4.99]
86.17 [5.28] 87.85 [5.43] 86.89 [5.35]
85.75 [5.11] 86.46 [6.08] 85.96 [5.73]
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failed and 30 non-failed firms. Twelve variables are used as
the firms’ characteristics:

(01) Sales;
(02) ROCE: profit before tax/capital employed;
(03) FFTL: funds flow (earnings before tax and deprecia-

tion)/total liabilities;
(04) GEAR: (current liabilities + long-term debt)/total

assets;
(05) CLTA: current liabilities/total assets;
(06) CACL: current assets/current liabilities;
(07) QACL: (current assets � stock)/current liabilities;
(08) WCTA: (current assets � current liabilities)/total

assets;
(09) LAG: number of days between account year end and

the date the annual report and accounts were failed at
company registry;

(10) AGE: number of years the company has been operat-
ing since incorporation date;

(11) CHAUD: coded 1 if changed auditor in previous
three years, 0 otherwise;

(12) BIG6: coded 1 if company auditor is a Big6 auditor, 0
otherwise.

In our experiments, all samples are randomly splitted
into three parts: 30 training dataset, 10 validation dataset
and 20 testing dataset. Fifty different training subset are
randomly generated by bagging algorithm due to the scar-
city of data samples. In addition, we make the number of
good firms equal to the number of bad firms in both the
training and testing samples, so as to avoid the embarrass-
ing situations that just two or three good (or bad, equally
likely) inputs in the test sample. Thus the training sample
includes 15 data of each class. This way of composing
the sample of firms was also used by several researchers
in the past, e.g., (Dimitras, Slowinski, Sunsmaga, & Zopo-
unidis, 1999; Zavgren, 1985), among others. Its aim is to
minimize the effect of such factors as industry or size that
in some cases can be very important. Except from the
above training sample, the validation sample and testing
sample are also collected using a similar approach. The val-
idation dataset is composed of 5 failed and 5 non-failed
Table 2
Corporation credit risk evaluation results with different methodsa

Category Model Rule

Single Log R
ANN
SVM

Hybrid Fuzzy SVM [3]
Ensemble Voting-based Majority

Reliability-based Maximum
Minimum
Median
Mean
Product

a Standard deviations appear in brackets.
firms and the testing set consists of 10 failed and 10 non-
failed firms.

In the ANN model, a three-layer BPNN with the archi-
tecture of 12-21-1 is used. That is, it has 12 input neurons,
21 TANSIG neurons in the hidden layer and one PURE-
LIN neuron in the output layer. The network training func-
tion is the TRAINLM. Besides, the learning rate and
momentum rate is set to 0.15 and 0.35. The accepted aver-
age squared error is 0.05 and the training epochs are 2000.
The above parameters are obtained by trial and error. In the
single SVM model, the kernel function is Gaussian function
with regularization parameter C = 10 and r2 = 1. Similarly,
the above parameters are obtained by trial and error. For
the proposed neural ensemble model, 50 different neural
network models with different initial weights are generated
to increase model accuracy for credit risk evaluation. Using
the decorrelation maximization algorithm, 22 diverse neural
network classifiers are selected. The basic setting of the
ensemble members is similar to the single ANN model, as
previously mentioned. For two hybrid model, the results
of the neuro-fuzzy system are not reported at all and this
model is excluded here. That is, we only use one hybrid
model – fuzzy SVM (Wang et al., 2005) and shown their
experiment results reported in the literature.

To reflect model robustness, each class of experiment is
repeated 20 times and the final Type I accuracy, Type II
accuracy and total accuracy are the average of the results
of the 20 individual tests. According to the previous exper-
iment design, the final computational results are shown in
Table 2.

From Table 2, several important conclusions can be
found in the following:

(1) For three evaluation criteria, the proposed reliability-
based ensemble learning model performs the best, fol-
lowed by the majority voting ensemble model, fuzzy
SVM, SVM and ANN, the logit regression is the
worst, indicating that the ensemble and hybrid models
can consistently outperform other individual classifi-
cation models in credit risk assessment and meantime
implying the strong capability of the multistage
reliability-based neural network ensemble learning
Type I (%) Type II (%) Total (%)

70.51 [5.47] 71.36 [6.44] 70.77 [5.96]
72.14 [7.85] 74.07 [7.03] 73.63 [7.29]
76.54 [6.22] 78.85 [5.51] 77.84 [5.82]
79.00 79.00 79.00 [5.65]
80.15 [7.57] 82.06 [7.18] 81.63 [7.33]
83.48 [5.64] 85.42 [5.75] 84.14 [5.69]
82.89 [6.28] 86.36 [5.51] 85.01 [5.73]
82.17 [5.89] 85.63 [5.37] 84.25 [5.86]
83.05 [6.33] 86.24 [6.23] 85.09 [5.68]
84.34 [6.06] 87.23 [7.15] 85.87 [6.59]



L. Yu et al. / Expert Systems with Applications 34 (2008) 1434–1444 1443
model in credit risk classification. The main reason is
that integrating multiple diverse models can remedy
the shortcomings of any individual methods thus
increasing the classification accuracy.

(2) For three single models, the accuracy of the SVM
model is better than that of the other two single mod-
els. This conclusion is different from that of the pre-
vious experiment. The possible reason has two
aspects. First of all, different methods may have dif-
ferent classification capability for different datasets.
Second, different datasets may have different classifi-
cation property. The two possible reasons lead to this
interesting result.

(3) For the reliability-based neural ensemble learning
model, the performance of the product strategy is
the best of the five ensemble strategy, followed by
mean strategy. The main reason leading to this con-
clusion is unknown and is worth exploring further.
However, through two-tail paired t-test, the average
performance difference of the five ensemble strategies
is insignificant at 10% significant level. This finding is
consistent with the results of previous experiment. It
is also obvious that the performances of the five
ensemble strategies are quite close.

From two experiments in this study, the proposed mul-
tistage reliability-based neural network ensemble learning
model generally performs the best in terms of Type I accu-
racy, Type II accuracy, and total accuracy, revealing that
the proposed reliability-based neural network ensemble
learning technique is a feasible solution to improve the
accuracy of credit risk evaluation.

4. Conclusions

Due to the huge outstanding amount and increasing
speed of bankruptcy filings, credit risk assessment has
attracted much research interests from both academic
and industrial communities. A more accurate, consistent,
and robust credit evaluation technique can significantly
reduce future costs for the credit industry.

In this study, a multistage neural network ensemble
learning model is proposed for credit risk assessment. Dif-
ferent from commonly used ‘‘one-member-one-vote’’ or
‘‘majority-rule’’ ensemble, the novel neural network ensem-
ble aggregates the decision values from the different neural
ensemble members, instead of their classification results
directly. The new ensemble strategy consists of two critical
steps: scaling, which transforms decision values to degrees
of reliability, and fusion, which aggregates degrees of reli-
ability to generate final classification results.

For verification two publicly available credit dataset
have been used to test the effectiveness and classification
power of the proposed neural network ensemble learning
approach. All results reported in the experiment clearly
show that the proposed neural network ensemble model
can consistently outperform the other comparable models
including three single models, two hybrid models and
majority-voting-based ensemble model. These results
obtained reveal that the proposed neural network ensemble
learning model can provide a promising solution to credit
risk analysis and meantime implying that the proposed mul-
tistage neural network ensemble learning technique has a
great potential to other binary-class classification problems.
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