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Abstract

A genetic algorithm-based clustering technique, called GA-clustering, is proposed in this article. The searching
capability of genetic algorithms is exploited in order to search for appropriate cluster centres in the feature space such
that a similarity metric of the resulting clusters is optimized. The chromosomes, which are represented as strings of real
numbers, encode the centres of a "xed number of clusters. The superiority of the GA-clustering algorithm over the
commonly used K-means algorithm is extensively demonstrated for four arti"cial and three real-life data sets. ( 2000
Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Genetic algorithms; Clustering metric; K-means algorithm; Real encoding; Euclidean distance

1. Introduction

Genetic algorithms (GAs) [1}4] are randomized
search and optimization techniques guided by the prin-
ciples of evolution and natural genetics, having a large
amount of implicit parallelism. GAs perform search in
complex, large and multimodal landscapes, and provide
near-optimal solutions for objective or "tness function of
an optimization problem.

In GAs, the parameters of the search space are en-
coded in the form of strings (called chromosomes). A col-
lection of such strings is called a population. Initially,
a random population is created, which represents di!er-
ent points in the search space. An objective and xtness
funtion is associated with each string that represents the
degree of goodness of the string. Based on the principle of
survival of the "ttest, a few of the strings are selected and
each is assigned a number of copies that go into the
mating pool. Biologically inspired operators like cross-
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over and mutation are applied on these strings to yield
a new generation of strings. The process of selection,
crossover and mutation continues for a "xed number of
generations or till a termination condition is satis"ed. An
excellent survey of GAs along with the programming
structure used can be found in Ref. [4]. GAs have
applications in "elds as diverse as VLSI design, image
processing, neural networks, machine learning, jobshop
scheduling, etc. [5}10].

In the area of pattern recognition, there are many tasks
involved in the process of analyzing/identifying a pattern
which need appropriate parameter selection and e$cient
search in complex spaces in order to obtain optimum
solutions. Therefore, the application of GAs for solving
certain problems of pattern recognition (which need op-
timization of computation requirements, and robust, fast
and close approximate solution) appears to be appro-
priate and natural. Research articles in this area have
started to come out [11,12]. Recently, an application of
GAs has been reported in the area of (supervised) pattern
classi"cation in RN [13,14] for designing a GA-classixer.
It attempts to approximate the class boundaries of
a given data set with a "xed number (say H) of hyper-
planes in such a manner that the associated misclassi"ca-
tion of data points is minimized during training.

When the only data available are unlabeled, the
classi"cation problems are sometimes referred to as
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unsupervised classixcation. Clustering [15}19] is an im-
portant unsupervised classi"cation technique where a set
of patterns, usually vectors in a multi-dimensional space,
are grouped into clusters in such a way that patterns in
the same cluster are similar in some sense and patterns in
di!erent clusters are dissimilar in the same sense. For this
it is necessary to "rst de"ne a measure of similarity which
will establish a rule for assigning patterns to the domain
of a particular cluster centre. One such measure of sim-
ilarity may be the Euclidean distance D between two
patterns x and z de"ned by D"DDx!zDD. Smaller the
distance between x and z, greater is the similarity be-
tween the two and vice versa.

Several clustering techniques are available in the litera-
ture [19,20]. Some, like the widely used K-means algo-
rithm [19], optimize of the distance criterion either by
minimizing the within cluster spread (as implemented
in this article), or by maximizing the inter-cluster separ-
ation. Other techniques like the graph theoretical ap-
proach, hierarchical approach, etc., are also available
which perform clustering based on other criteria. These
are discussed in brief in Section 2. Extensive studies
dealing with comparative analysis of di!erent clustering
methods [21] suggest that there is no general strategy
which works equally well in di!erent problem domains.
However, it has been found that it is usually bene"cial to
run schemes that are simpler, and execute them several
times, rather than using schemes that are very complex
but need to be run only once [21]. Since our aim is to
propose a clustering technique based on GAs, a criterion
is required whose optimization would provide the "nal
clusters. An intuitively simple criterion is the within clus-
ter spread, which, as in the K-means algorithm, needs to
be minimized for good clustering. However, unlike the
K-means algorithm which may get stuck at values which
are not optimal [22], the proposed technique should be
able to provide good results irrespective of the starting
con"guration. It is towards this goal that we have integ-
rated the simplicity of the K-means algorithm with the
capability of GAs in avoiding local optima for develop-
ing a GA-based clustering technique called GA-cluster-
ing algorithm. It is known that elitist model of GAs
provide the optimal string as the number of iterations
goes to in"nity [23] when the probability of going from
any population to the one containing the optimal string
is greater than zero. Therefore, under limiting conditions,
a GA based clustering technique is also expected to
provide an optimal clustering with respect to the cluster-
ing metric being considered.

Experimental results comparing the GA-clustering
algorithm with the K-means algorithm are provided
for several arti"cial and real-life data sets. Since our
purpose is to demonstrate the e!ectiveness of the pro-
posed technique for a wide variety of data sets, we have
chosen arti"cial and real-life data sets with both overlap-
ping and non-overlapping class boundaries, where the

number of dimensions ranges from two to ten and num-
ber of clusters ranges from two to nine. Note that we are
encoding the centres of the clusters, which will be #oating
point numbers, in the chromosomes. One way in which
this could have been implemented is by performing real
representation with a binary encoding [24]. However, in
order to keep the mapping between the actual cluster
centres and the encoded centres straight forward, for
convenience we have implemented real coded GAs over
here [3]. (In this context one may note the observations
in Ref. [25] after they experimentally compared binary
and #oating point representations in GAs. They found
that #oating point representation was faster, consistent
and provided a higher degree of precision.)

2. Clustering

Clustering in N-dimensional Euclidean space RN is
the process of partitioning a given set of n points into a
number, say K, of groups (or, clusters) based on some
similarity/dissimilarity metric. Let the set of n points
Mx
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Some clustering techniques that are available in the liter-
ature are K-means algorithm [19], branch and bound
procedure [26], maximum likelihood estimate technique
[27] and graph theoretic approaches [28]. The K-means
algorithm, one of the most widely used ones, attempts to
solve the clustering problem by optimizing a given met-
ric. The branch and bound procedure uses a tree search
technique for searching the entire solution space of clas-
sifying a given set of points into a "xed number of
clusters, along with a criterion for eliminating subtrees
which do not contain the optimum result. In this scheme,
the number of nodes to be searched becomes huge when
the size of the data set becomes large. In these cases,
a proper choice of the criterion for eliminating subtrees
becomes crucial [20]. The maximum likelihood estimate
technique performs clustering by computing the poste-
rior probabilities of the classes after assuming a particu-
lar distribution of the data set. In the graph theoretic
approach, a directed tree is formed among the data set by
estimating the density gradient at each point. The cluster-
ing is realized by "nding the valley of the density func-
tion. It is known that the quality of the result depends
wholly on the quality of the estimation technique for the
density gradient, particularly in the low-density area of
the valley.
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Our aim in this article has been to propose a clustering
methodology which will not assume any particular un-
derlying distribution of the data set being considered,
while, as already mentioned in Section 1, it should be
conceptually simple like the K-means algorithm. On the
other hand, it should not su!er from the limitation of the
K-means algorithm which is known to provide sub opti-
mal clusterings depending on the choice of the initial
clusters. Since the principles of the K-means algorithm
are utilized for devising such a technique, along with the
capability of GAs for providing the requisite perturba-
tion to bring it out of the local optima, we have compared
the performance of the former with that of the proposed
technique. The steps of the K-means algorithm are there-
fore "rst described in brief.

Step 1: Choose K initial cluster centres z
1
, z

2
,2, z

K
randomly from the n points Mx

1
, x

2
,2, x

n
N.

Step 2: Assign point x
i
, i"1, 2,2, n to cluster
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Ties are resolved arbitrarily.
Step 3: Compute new cluster centres zH

1
, zH
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K
as

follows:
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where n
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is the number of elements belonging to cluster

C
i
.
Step 4: If zH

i
"z

i
, i"1, 2,2, K then terminate. Other-

wise continue from step 2.

Note that in case the process does not terminate at
Step 4 normally, then it is executed for a maximum "xed
number of iterations.

It has been shown in Ref. [22] that K-means algorithm
may converge to values that are not optimal. Also global
solutions of large problems cannot be found with a rea-
sonable amount of computation e!ort [29]. It is because
of these factors that several approximate methods are
developed to solve the underlying optimization problem.
One such method using GAs is described in the next
section.

3. Clustering using genetic algorithms

3.1. Basic principle

The searching capability of GAs has been used in this
article for the purpose of appropriately determining a
"xed number K of cluster centres in RN; thereby
suitably clustering the set of n unlabelled points. The
clustering metric that has been adopted is the sum of the

Fig. 1. Basic steps in GAs.

Euclidean distances of the points from their respective
cluster centres. Mathematically, the clustering metric M
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The task of the GA is to search for the appropriate cluster
centres z

1
, z

2
,2, z

K
such that the clustering metric M is

minimized.

3.2. GA-clustering algorithm

The basic steps of GAs, which are also followed in the
GA-clustering algorithm, are shown in Fig. 1. These are
now described in detail.

3.2.1. String representation
Each string is a sequence of real numbers representing

the K cluster centres. For an N-dimensional space, the
length of a chromosome is N*K words, where the "rst
N positions (or, genes) represent the N dimensions of the
"rst cluster centre, the next N positions represent those of
the second cluster centre, and so on. As an illustration let
us consider the following example.

Example 1. Let N"2 and K"3, i.e., the space is two-
dimensional and the number of clusters being considered
is three. Then the chromosome

51.6 72.3 18.3 15.7 29.1 32.2

represents the three cluster centres (51.6, 72.3), (18.3, 15.7)
and (29.1, 32.2). Note that each real number in the chro-
mosome is an indivisible gene.

3.2.2. Population initialization
The K cluster centres encoded in each chromosome

are initialized to K randomly chosen points from the
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data set. This process is repeated for each of the P chro-
mosomes in the population, where P is the size of the
population.

3.2.3. Fitness computation
The "tness computation process consists of two

phases. In the "rst phase, the clusters are formed accord-
ing to the centres encoded in the chromosome under
consideration. This is done by assigning each point
x
i
, i"1, 2,2, n, to one of the clusters C

j
with centre

z
j
such that

DDx
i
!z

j
DD(DDx

i
!z

p
DD, p"1, 2,2, K, and pOj.

All ties are resolved arbitrarily. After the clustering is
done, the cluster centres encoded in the chromosome are
replaced by the mean points of the respective clusters. In
other words, for cluster C

i
, the new centre zH

i
is computed

as
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"

1
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, i"1, 2,2, K.

These zH
i
s now replace the previous z

i
s in the chromo-

some. As an illustration, let us consider the following
example.

Example 2. The "rst cluster centre in the chromosome
considered in Example 1 is (51.6, 72.3). With (51.6, 72.3)
as centre, let the resulting cluster contain two more
points, viz., (50.0, 70.0) and (52.0, 74.0) besides itself i.e.,
(51.6, 72.3). Hence the newly computed cluster centre
becomes ((50.0#52.0#51.6)/3, (70.0#74.0#72.3)/
3)"(51.2, 72.1). The new cluster centre (51.2, 72.1) now
replaces the previous value of (51.6, 72.3).

Subsequently, the clustering metric M is computed as
follows:
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The "tness function is de"ned as f"1/M, so that maxi-
mization of the "tness function leads to minimization
of M.

3.2.4. Selection
The selection process selects chromosomes from the

mating pool directed by the survival of the "ttest concept
of natural genetic systems. In the proportional selection
strategy adopted in this article, a chromosome is assigned
a number of copies, which is proportional to its "tness in

the population, that go into the mating pool for further
genetic operations. Roulette wheel selection is one com-
mon technique that implements the proportional selec-
tion strategy.

3.2.5. Crossover
Crossover is a probabilistic process that exchanges

information between two parent chromosomes for gen-
erating two child chromosomes. In this article single-
point crossover with a "xed crossover probability of k

c
is

used. For chromosomes of length l, a random integer,
called the crossover point, is generated in the range
[1, l!1]. The portions of the chromosomes lying to the
right of the crossover point are exchanged to produce
two o!spring.

3.2.6. Mutation
Each chromosome undergoes mutation with a "xed

probability k
m
. For binary representation of chromo-

somes, a bit position (or gene) is mutated by simply
#ipping its value. Since we are considering #oating point
representation in this article, we use the following muta-
tion. A number d in the range [0, 1] is generated with
uniform distribution. If the value at a gene position is v,
after mutation it becomes

v$2 * d * v, vO0,

v$2 * d, v"0.

The &#' or &!' sign occurs with equal probability. Note
that we could have implemented mutation as

v$d * v.

However, one problem with this form is that if the values
at a particular position in all the chromosomes of a
population become positive (or negative), then we will
never be able to generate a new chromosome having
a negative (or positive) value at that position. In order to
overcome this limitation, we have incorporated a factor
of 2 while implementing mutation. Other forms like

v$(d#e) * v,

where 0(e(1 would also have satis"ed our purpose.
One may note in this context that similar sort of muta-
tion operators for real encoding have been used mostly
in the realm of evolutionary strategies (see Ref. [3],
Chapter 8).

3.2.7. Termination criterion
In this article the processes of "tness computation,

selection, crossover, and mutation are executed for a
maximum number of iterations. The best string seen
upto the last generation provides the solution to the
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clustering problem. We have implemented elitism at each
generation by preserving the best string seen upto that
generation in a location outside the population. Thus on
termination, this location contains the centres of the "nal
clusters.

The next section provides the results of implementa-
tion of the GA-clustering algorithm, along with its com-
parison with the performance of the K-means algorithm
for several arti"cial and real-life data sets.

4. Implementation results

The experimental results comparing the GA-clustering
algorithm with the K-means algorithm are provided for
four arti"cial data sets (Data 1, Data 2, Data 3 and Data 4)
and three real-life data sets (Vowel, Iris and Crude Oil),
respectively. These are "rst described below:

4.1. Artixcial data sets

Data 1: This is a nonoverlapping two-dimensional data
set where the number of clusters is two. It has 10 points.
The value of K is chosen to be 2 for this data set.

Data 2: This is a nonoverlapping two-dimensional data
set where the number of clusters is three. It has 76 points.
The clusters are shown in Fig. 2: The value of K is chosen
to be 3 for this data set.

Data 3: This is an overlapping two-dimensional tri-
angular distribution of data points having nine classes
where all the classes are assumed to have equal a priori
probabilities ("1

9
). It has 900 data points. The X!>

ranges for the nine classes are as follows:

Class 1: [!3.3, !0.7] ] [0.7, 3.3],
Class 2: [!1.3, 1.3] ] [0.7, 3.3],
Class 3: [0.7, 3.3] ] [0.7, 3.3],
Class 4: [!3.3, !0.7] ] [!1.3, 1.3],

Fig. 2. Data 2.

Fig. 3. Data 3 (&1'*points from class 1, &2'*points from class
2,2, &9'*points from class 9).

Fig. 4. Triangular distribution along the X-axis.

Class 5: [!1.3, 1.3] ] [!1.3, 1.3],
Class 6: [0.7, 3.3] ] [!1.3, 1.3],
Class 7: [!3.3, !0.7] ] [!3.3, !0.7],
Class 8: [!1.3, 1.3] ] [!3.3, !0.7],
Class 9: [0.7, 3.3] ] [!3.3, !0.7].

Thus the domain for the triangular distribution for
each class and for each axis is 2.6. Consequently, the
height will be 1

1.3
(since 12*2.6*height"1). The data set

is shown in Fig. 3. The value of K is chosen to be 9 for this
data set.

Data 4: This is an overlapping ten-dimensional data set
generated using a triangular distribution of the form
shown in Fig. 4 for two classes, 1 and 2. It has 1000 data
points. The value of K is chosen to be 2 for this data set.
The range for class 1 is [0, 2]][0, 2]][0, 2]210 times,
and that for class 2 is [1, 3]][0, 2]][0, 2]29 times,
with the corresponding peaks at (1, 1) and (2, 1). The
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Fig. 5. Vowel data in the F
1
}F

2
plane.

distribution along the "rst axis (X) for class 1 may be
formally quanti"ed as

f
1
(x)"G

0 for x)0,

x for 0(x)1,

2!x for 1(x)2,

0 for x'2.

for class 1. Similarly for class 2

f
2
(x)"G

0 for x)1,

x!1 for 1(x)2,

3!x for 2(x)3,

0 for x'3.

The distribution along the other nine axes (>
i
,

i"1, 2,2, 9) for both the classes is

f (y
1
)"G

0 for y
i
)0,

y
i

for 0(y
i
)1,

2!y
i

for 1(y
i
)2,

0 for y
i
'2.

4.2. Real-life data sets

Vowel data: This data consists of 871 Indian Telugu
vowel sounds [30]. These were uttered in a consonant}
vowel}consonant context by three male speakers in the
age group of 30}35 years. The data set has three features
F
1
, F

2
and F

3
, corresponding to the "rst, second and

third vowel formant frequencies, and six overlapping

classes Md, a, i, u, e, oN. The value of K is therefore chosen
to be 6 for this data. Fig. 5 shows the distribution of the
six classes in the F

1
}F

2
plane.

Iris data: This data represents di!erent categories of
irises having four feature values. The four feature values
represent the sepal length, sepal width, petal length and
the petal width in centimeters [31]. It has three classes
(with some overlap between classes 2 and 3) with 50
samples per class. The value of K is therefore chosen to
be 3 for this data.

Crude oil data: This overlapping data [32] has 56 data
points, 5 features and 3 classes. Hence the value of K is
chosen to be 3 for this data set.

GA-clustering is implemented with the following para-
meters:

k
c
"0.8 k

m
"0.001. The population size P is taken to

be 10 for Data 1, since it is a very simple data set, while it
is taken to be 100 for the others. Note that it is shown in
Refs. [15,29] if exhaustive enumeration is used to solve
a clustering problem with n points and K clusters, then
one requires to evaluate

1

K

K
+
j/1

(!1)K~jjn

partitions. For a data set of size 10 with 2 clusters, this
value is 29!1("511), while that of size 50 with 2 clusters
is 249!1 (i.e. of the order of 1015).

For K-means algorithm we have "xed a maximum of
1000 iterations in case it does not terminate normally.
However, it was observed that in all the experiments
the K-means algorithm terminated much before 1000
iterations.
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Table 1
M obtained by K-means algorithm for "ve di!erent initial
con"gurations for Data 1 when K"2

Initial con"guration K-means

1 5.383132
2 2.225498
3 2.225498
4 5.383132
5 2.225498

Table 2
M obtained by GA-clustering algorithm for "ve di!erent initial
populations for Data 1 after 100 iterations when K"2

Initial population GA-clustering

1 2.225498
2 2.225498
3 2.225498
4 2.225498
5 2.225498

Table 3
M obtained by K-means algorithm for "ve di!erent initial
con"gurations for Data 2 when K"3

Initial con"guration K-means

1 51.013294
2 64.646739
3 67.166768
4 51.013294
5 64.725676

The results of implementation of the K-means algo-
rithm and GA-clustering algorithm are shown, respec-
tively, in Tables 1 and 2 for Data 1, Tables 3 and 4 for
Data 2, Tables 5 and 6 for Data 3, Tables 7 and 8 for Data
4, Tables 9 and 10 for Vowel, Tables 11 and 12 for Iris and
Tables 13 and 14 for Crude Oil. Both the algorithms were
run for 100 simulations. For the purpose of demonstra-
tion, "ve di!erent initial con"gurations of the K-means
algorithm and "ve di!erent initial populations of the
GA-clustering algorithm are shown in the tables.

For Data 1 (Tables 1 and 2) it is found that the
GA-clustering algorithm provides the optimal value of
2.225498 in all the runs. K-means algorithm also attains
this value most of the times (87% of the total runs).
However in the other cases, it gets stuck at a value of
5.383132. For Data 2 (Tables 3 and 4), GA-clustering
attains the best value of 51.013294 in all the runs. K-
means, on the other hand, attains this value in 51% of the

Table 4
M obtained by GA-clustering algorithm for "ve di!erent initial
populations for Data 2 after 100 iterations when K"3

Initial population GA-clustering

1 51.013294
2 51.013294
3 51.013294
4 51.013294
5 51.013294

Table 5
M obtained by K-means algorithm for "ve di!erent initial
con"gurations for Data 3 when K"9

Initial con"guration K-means

1 976.235607
2 976.378990
3 976.378990
4 976.564189
5 976.378990

Table 6
M obtained by GA-clustering algorithm for "ve di!erent initial
populations for Data 3 after 100 iterations when K"9

Initial population GA-clustering

1 966.350481
2 966.381601
3 966.350485
4 966.312576
5 966.354085

Table 7
M obtained by K-means algorithm for "ve di!erent initial
con"gurations for Data 4 when K"2

Initial con"guration K-means

1 1246.239153
2 1246.239153
3 1246.236680
4 1246.239153
5 1246.237127

total runs, while in other runs it gets stuck at di!erent
sub-optimal values. Similarly, for Data 3 (Tables 5 and 6)
and Data 4 (Tables 7 and 8) the GA-clustering algorithm
attains the best values of 966.312576 and 1246.218355
in 20% and 85% of the total runs, respectively. The best
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Table 8
M obtained by GA-clustering algorithm for "ve di!erent initial
populations for Data 4 after 100 iterations when K"2

Initial population GA-clustering

1 1246.221381
2 1246.218355
3 1246.218355
4 1246.218355
5 1246.218355

Table 9
M obtained by K-means algorithm for "ve di!erent initial
con"gurations for Vowel when K"6

Initial con"guration K-means

1 157460.164831
2 149394.803983
3 161094.118096
4 149373.097180
5 151605.600107

Table 10
M obtained by GA-clustering algorithm for "ve di!erent initial
populations for Vowel after 100 iterations when K"6

Initial population GA-clustering

1 149346.490128
2 149406.851288
3 149346.152189
4 149355.823103
5 149362.780998

Table 11
M obtained by K-means algorithm for "ve di!erent initial
con"gurations for Iris when K"3

Initial con"guration K-means

1 97.224869
2 97.204574
3 122.946353
4 124.022373
5 97.204574

values provided by the K-means algorithm for these data
sets are 976.235607 (obtained in 20% of the total runs)
and 1246.236680 (obtained in 25% of the total runs),
respectively, Notably, even the worst values obtained
by the GA-clustering algorithm are better than the best

Table 12
M obtained by GA-clustering algorithm for "ve di!erent initial
populations for Iris after 100 iterations when K"3

Initial population GA-clustering

1 97.10077
2 97.10077
3 97.10077
4 97.10077
5 97.10077

Table 13
M obtained by K-means algorithm for "ve di!erent initial
con"gurations for Crude Oil when K"3

Initial con"guration K-means

1 279.743216
2 279.743216
3 279.484810
4 279.597091
5 279.743216

Table 14
M obtained by GA-clustering algorithm for "ve di!erent initial
populations for Crude Oil after 100 iterations when K"3

Initial population GA-clustering

1 278.965150
2 278.965150
3 278.965150
4 278.965150
5 278.965150

values provided by the K-means algorithm for these data
sets.

For Vowel Data, (Tables 9 and 10), the K-means algo-
rithm attains the best value of 149373.097180 only once
(out of 100 runs). The best value obtained by GA-cluster-
ing algorithm is 149346.152189 (which is obtained in
18% of the total runs). The best value obtained by the
latter is better than that obtained by K-means algorithm.
Notably, the latter attains values less than 150000 in all
the runs, while the former attains values greater than this
in the majority of its runs.

For Iris (Tables 11 and 12) and Crude Oil (Tables 13
and 14) data sets, the GA-clustering algorithm again
attains the best values of 97.10077 and 278.965150 re-
spectively in all the runs. The K-means algorithm, on the
other hand, fails to attain this value in any of its runs. The
best that K-means algorithm achieved are 97.204574
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Table 15
M obtained by GA-clustering algorithm for "ve di!erent initial
populations for Vowel after 500 iterations when K"6

Initial population GA-clustering

1 149344.229245
2 149370.762900
3 149342.990377
4 149352.289363
5 149362.661869

(reached 60% of the times) and 279.484810 (reached 30%
of the times), respectively.

From Tables 9 and 10 for Vowel, it is found that un-
like the other cases, GA-clustering algorithm attains one
value (149406.851288) that is poorer than the best value
of K-means algorithm (149373.097180). In order to inves-
tigate whether the GA-clustering algorithm can improve
its clustering performance, it was executed upto 500
iterations (rather than 100 iterations as was done pre-
viously). The results are shown in Table 15. As expected,
it is found that the performance of GA-clustering
improves. The best value that it now attains is
149342.990377 and the worst is 149370.762900, both of
which are better than those obtained after 100 iterations.
Moreover, now its performance in all the runs is better
than the performance of K-means algorithm for any of
the 100 runs.

5. Discussion and conclusions

A genetic algorithm-based clustering algorithm, called
GA-clustering, has been developed in this article. Genetic
algorithm has been used to search for the cluster centres
which minimize the clustering metric M. In order to
demonstrate the e!ectiveness of the GA-clustering
algorithm in providing optimal clusters, several arti"cial
and real life data data sets with the number of dimensions
ranging from two to ten and the number of clusters
ranging from two to nine have been considered. The
results show that the GA-clustering algorithm provides
a performance that is signi"cantly superior to that of the
K-means algorithm, a very widely used clustering tech-
nique.

Floating-point representation of chromosomes has
been adopted in this article, since it is conceptually
closest to the problem space and provides a straight
forward way of mapping from the encoded cluster cen-
tres to the actual ones. In this context, a binary repres-
entation may be implemented for the same problem, and
the results may be compared with the present #oating
point form. Such an investigation is currently being per-
formed.

Note that the clustering metric M that the GA attempts
to minimize is given by the sum of the absolute Euclidean
distances of each point from their respective cluster
centres. We have also implemented the same algorithm by
using the sum of the squared Euclidean distances as the
minimizing criterion. The same conclusions as obtained in
this article are still found to hold good.

It has been proved in Ref. [23] that an elitist model of
GAs will de"nitely provide the optimal string as the
number of iterations goes to in"nity, provided the prob-
ability of going from any population to the one contain-
ing the optimal string is greater than zero. Note that this
has been proved for nonzero mutation probability values
and is independent of the probability of crossover. How-
ever, since the rate of convergence to the optimal string
will de"nitely depend on these parameters, a proper
choice of these values is imperative for the good perfor-
mance of the algorithm. Note that the mutation operator
as used in this article also allows nonzero probability of
going from any string to any other string. Therefore, our
GA-clustering algorithm will also provide the optimal
clusters as the number of iterations goes to in"nity. Such
a formal theoretical proof is currently being developed
that will e!ectively serve as a theoretical proof of the
optimality of the clusters provided by the GA-clustering
algorithm. However, it is imperative to once again realize
that for practical purposes a proper choice of the genetic
parameters, which may possibly be kept adaptive, is
crucial for a good performance of the algorithm. In this
context, one may note that although the K-means algo-
rithm got stuck at sub-optimal solutions, even for the
simple data sets, GA-clustering algorithm did not exhibit
any such unwanted behaviour.

6. Summary

Clustering is an important unsupervised classi"cation
technique where a set of patterns, usually vectors in
a multi-dimensional space, are grouped into clusters in
such a way that patterns in the same cluster are similar in
some sense and patterns in di!erent clusters are dis-
similar in the same sense. For this it is necessary to "rst
de"ne a measure of similarity which will establish a rule
for assigning patterns to the domain of a particular
cluster centre. One such measure of similarity may be the
Euclidean distance D between two patterns x and z
by D"DDx!zDD. Smaller the distance between x and z,
greater is the similarity between the two and vice versa.

An intuitively simple and e!ective clustering technique
is the well-known K-means algorithm. However, it is
known that the K-means algorithm may get stuck at
suboptimal solutions, depending on the choice of the
initial cluster centres. In this article, we propose a solu-
tion to the clustering problem where genetic algorithms
(GAs) are used for searching for the appropriate cluster
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centres such that a given metric is optimized. GAs are
randomized search and optimization techniques guided
by the principles of evolution and natural genetics, and
having a large amount of implicit parallelism. GAs per-
form search in complex, large and multimodal land-
scapes, and provide near optimal solutions for objective
or "tness function of an optimization problem. It is
known that elitist model of GAs provide the optimal
string as the number of iterations goes to in"nity when
the probability of going from any population to the one
containing the optimal string is greater than zero. There-
fore, under limiting conditions, a GA-based clustering
technique is also expected to provide an optimal cluster-
ing with respect to the clustering metric being considered.

In order to demonstrate the e!ectiveness of the GA-
based clustering algorithm in providing optimal clusters,
several arti"cial and real-life data sets with the number of
dimensions ranging from two to ten and the number of
clusters ranging from two to nine have been considered.
The results show that the GA-clustering algorithm pro-
vides a performance that is signi"cantly superior to that
of the K-means algorithm for these data sets.
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