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Abstract 

This paper investigates fast Pareto genetic algorithm based on fast fitness identification and external population 
updating scheme (FPGA) for searching Pareto-optimal set, which is based on a new approach of fast fitness 
identification algorithm for individual and a clustering on the basis of external population updating scheme to maintain 
population diversity and even distribution of Pareto solutions. Experiments on a set of multi-objective 0/1 knapsack 
optimization problems strongly shows that FPGA can obtain high-quality, well distributed non-dominated Pareto 
solutions with less computational efforts compared to other state-of art algorithms, and FPGA in convergence speed 
outperforms the representative SPEA. 
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1.1 Introduction 

Many engineering problems involve simultaneous optimization of several incommensurable and often competing 
objectives. Often, there is no single optimal solution, but rather a set of alternative solutions. These solutions are 
optimal in the wider sense that no other solutions in the search space are superior to them when all objectives are 
considered. Just about that, searching Pareto-optimal is an extraordinary complicated task in high-dimensional 
decision-making space. Traditionally, multi-objective optimization methods transforms multi-objective functions into a 
single objective function through the evaluation function, However using single-objective optimization methods to 
searching optimal solution has shortcomings as follows . 

• To constructing single-objective evaluation functions needs decision-makers to provide the profound preference 
knowledge or experience, but it is impossible for many engineering problems to provide such preference 
information; 

• Most single-objective optimization methods are based on local optimal searching algorithm. Although it is 
possible to search a locally or globally optimal solution of single-objective optimization problems, they can not 
obtain Pareto-optimal solution or Pareto-optimal set or more uniform distributed optimal solution, namely 
parallel search is impossible, and it also can not meet the flexibility requirements of multi-objective 
decision-making or the requirements of environmental dynamic changes; 

• When decision needs alternative Pareto-optimal solution, we must construct evaluation function and run search 
algorithm repeatedly.    

Genetic algorithm(GA) achieves individual recombination through genetic reproduction, leads population evolution by 
select operator, which can deal with a set of solutions in a single population on the high efficient part for inherent 
parallelism of GA. References[1,2] hold that multi-objective search and optimization is the most suitable application 
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field of GA. Zitzler [3] put forwards the Strength Pareto EA (SPEA), and had been applied it to the multi-objective 0/1 
knapsack problem successfully. SPEA employs two populations: populations P  with size of N  for the genetic 
reproduction, external populations P ′whose size is N ′ stores non-dominated solutions found so far. According to the 
domination relationship between individual in populations P  and member of P ′ , SPEA determines the individual’s 
Pareto fitness, and clustering analysis algorithm is used to maintain the population diversity. SPEA is said to be the 
significance Pareto-optimal search algorithm in word and deed, however, fitness evaluation and clustering analysis 
requires computational complexity of ))(( 3NNO ′+ . The reference [4] proposes a vicinity crowding algorithm, which is 
different from the clustering algorithm, to delete superfluous solution when current solution size exceed fixed scale of 
population so as to maintain the Pareto-optimal solutions’ distribution uniformity, but only the "mean and variance are 
superior to SPEA in a certain sense ". The reference [5] bring forward a multi-objective evolutionary algorithm based 
on orthogonal design to solve multi-objective optimization problem, but it is just a niching evolution and segmentation 
iterative process materially. Other algorithms to implement niching methods uses fitness sharing method [6,7] to 
maintain populations diversity, which needs profound preference knowledge or experience to resolve the parameter of 
sharing radius, which is badly difficult to implement. 
In fact, there are three main issues which must be solved when the genetic algorithm applied to solve multi-objective 
optimization problems. Firstly, in order to lead search to the perfect Pareto-optimal solution set front, how to assign 
fitness values and select effectively. Secondly, to suppress premature and to get well distributed optimal solution set and 
sustainable solutions, how to maintain population diversity. Thirdly, how to reserve and even improve the current 
Pareto-optimal solution. Based on those considerations, this paper investigates the rapid identification and evaluation of 
fitness algorithm, with its time complexity of ))'(( 2NNmO + , and effective method with time complexity of 

)log( NNNO ′′ to maintain population diversity. 

1.2 Concept of Pareto Optimality 

In essence, Multi-objective optimization is vector optimization; a general multi-objective optimization problem can be 
described as a vector function f that maps a tuple of m parameters (decision variables) to a tuple of n objectives. 

Formally: 

 max/min ))(),...,(()( 1 xfxfxfy n==  
 subject to Xxxxx m ∈= ),...,,( 21 , Yyyyy m ∈= ),...,,( 21  

where x is called the decision vector, X is the parameter space, y is the objective vector, and Y is the objective space. The 
set of solution of a multi-objective optimization problem consists of all decision vectors for which the corresponding 
objective vectors cannot be improved in any dimension without degradation in another—these vectors are known as 
Pareto optimal. Mathematically, the concept of Pareto optimality is as follows: Assume, without loss of generality, a 
maximization problem and consider two decision vectors Xba ∈, . Then a is said to dominate b (also written as ba φ ) 

iff 

 )()(:},...,2,1{)()(:},...,2,1{ bfafnjbfafni jjii >∈∃∧≥∈∀  

Additionally, in this study a is said to cover b ( ba ≥ ) iff ba φ or )()( bfaf = . All decision vectors which are not 

dominated by any other decision vector of a given set are called non-dominated regarding this set. If it is clear from the 
context which set is meant, we simply leave it out. The decision vectors that are non-dominated within the entire search 
space are denoted as Pareto optimal and constitute the so-called Pareto-optimal set or Pareto-optimal front [3]. 
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1.3 Pareto Genetic Algorithms 

1.3.1 Structure and flow of algorithm 

Fast Pareto Genetic Algorithm Based on Fast Fitness Identification and External Population Update (FPGA) employs an 
evolution population P with size of N  and an external population P ′  with size of N ′ . The former is used for crossover 
and mutation operator, and the latter is used for storing the identified non-dominated Pareto solutions so far. In order to 
implement beamed evolution search and elitist reservation strategy, binary tournament selection with replacement is 
used in the tow population. This study compared tow multi-objective EA’s on a multi-objective 0/1 knapsack problem 
with nine different problem settings, each candidate solution represented by binary encode whose extent is m, and each 
binary bit ],1[| mixi ∈ of encode figures variable’s value. Thereby, the flow of FPGA is as Figure1.1, which 

formalization description is as follows. 

1) Generate an initial population P and the empty external non-dominated set P ′ ; 
2) Determine non-dominated members of P ; 
3) Copy non-dominated members of P to P ′ one by one and remove solutions within P ′  which are covered by 

any other member of P ′ using fast update algorithm based on clustering crowding(FUC); 
4) Calculate the fitness of each individual in P as well as in P ′  using fast fitness identification algorithm (FIA);  
5) Select individuals from P + P ′ (multi-set union ), until the mating pool is filled. In this study, binary tournament 

selection with replacement is used.  
6) Apply problem-specific crossover and mutation operators as usual; 
7) If the maximum number of generations is reached then stop, else go to step 2); 

In order to produce symmetrical distributing initial population P , Gauss stochastic generator is used in the beginning. 
Then the comparability analysis of solution vectors has been taken to obtain more schemata so as to create prerequisite 
for population evolution and convergence. Determining non-dominated members of P is to find out the current 
Pareto-optimal curve or surface in step 2. And the FUC is used to update P ′  when the non-dominated individual of 
evolution population P copied to external population P ′ in turn. 

 

Figure 1.1 The flow of FPGA: because of the randomicity of crossover and mutation operator, there is individual, which is infeasible 

solution for disobeying restriction, so constraint processing has been added into the flow, and a simply repair method will be taken 

until all constraints are fulfilled while individual has minimum lose of object values. 
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for each unrepeated individual j =  non-dominated member of P; if  
there is no other non-dominated members of P, j=null

j is null
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Sorting {Dj,i } using quicksort algorithm

Get tow members x and y according to the sorting results, which has 
minimum distance;

If x = j or y = j, replace x or y with j;
If distance  Dj,x  > = distance Dj,y, replace x with j;
If distance  Dj,x <  distance Dj,y, replace y with j;

no
NP ′<′ ||

Calculate the distance Dj,i ;
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Figure 1.2 Flow of the FUC: the original intention of this algorithm is to keep the diversity of population and enlarge the differences 

between individuals. So, this algorithm concerns that the distribution of front edge of non-dominated solution in the objective space, 

we use the Euclid distance to calculate the distance between individuals. 

1.3.2 Fast update algorithm based on clustering crowding (FUC)  

In fact, to implement Fitness Sharing method [6, 7] needs to resolve the parameter of sharing radius. Therefore, Fitness 
Sharing need experiences of objective problem which are hard to obtain for many engineering problems. Meanwhile, 
even the experiences we have got fortunately, the relativity and subjectivity of the experiences maybe restricts the 
success application of Fitness Sharing. Clustering analysis [3] is complex with high computation. FPGA proposes a fast 
update algorithm based on clustering crowding (FUC) as the niching method, which makes the non-dominated 
Pareto-optimal solutions storied in the external population P ′ approach the optimal-optimal curve or surface. The flow 
of FUC is as Figure1.2, and an implementation is described by: 
 for ( ∈∀j {non-dominate individual of population P } ) 

{ 
  1, =Φ= flagS ; 

for ( 1&& ==′∈ flagPk  ) 

{ 
if ( kj =φ  )  }{kSS Υ= ； 
else if ( kjkj ==||π  )   flag=0； 
next k; 

} 
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if ( flag==1 )  
if ( Φ≠S )  }{'' jSPP Υ−= ； 
else if( NP ′<′ ||  ) };{ jPP Υ′=′  

else 
 Calculating the distances between j and each members of P′ ;  

Sorting all distances in QKSORT; 
Finding out one most similar member to j, and replace it with j; 

next j； 
}  

The outer sentence “for” of FUC ransacks population P for N times. The inner “for” ransacks population P′   
for N ′ times. Sentence }{'' jSPP Υ−= loops for N ′ times in worst conditions. In the deepest “else”, the comparability 
replacement only has computational complexity of )log( 'NNO ′ ; so computational complexity of FUC in worst condition 
is )log( 'NNNO ′ , but in the best condition, its magnitude is )(NO , lower than computational complexity of Fitness 
Sharing method and clustering analysis. Mathematically, the distance ijD , between members is given by the equation 

 ∑ −=
=

n

k
kkij ifjfD

1

2
, )]()([  

1.3.3 Fast Fitness Identification Algorithm (FIA) 

The fitness of individual expressed by the index of non-dominated individual’ level in PP ′+ , the fitness of individual in 
level k is k. For arbitrary individual PPi ′+∈ , in is the number of individuals which dominate member i , iS is the 
subset which member is weaker than member i , kF  is the non-dominated subset in level k. Based on those definitions, 

the implementation process of FIA can be described as follows. 
Initialize 1=k ; 
for each solution PPi ′+∈  

 0, =Φ= ii nS ; 
 for each solution PPj ′+∈  

  if ( ij =π )  }{ jSS ii Υ= ; 
  else if ( ij φ ) 1+= ii nn ; 

  next solution j; 
 if ( 0=in )  }{iFF kk Υ= ; 

 next solution i; 
 while ( Φ≠kF ) 

 Φ=H ; 
 for each solution kFi∈  

for each solution iSj∈  
1−= ii nn ; 

if ( 0=in )  }{ jHH Υ= ; 

next solution j; 
       next solution i; 
 1+= kk ; 
 HFk = ;  
The outer sentence “for” determines NN +′ subsets iS and NN +′  values of in , and the non-dominated solutions in level 
one, which computational complexity magnitude is ))(( 2NNO ′+ . Sentence “while” determines the level of rest 
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non-dominated solutions. In worst condition, there is one non-dominated solution in each rank; if so, the computation 
complexity to determine 1−′+ NN ranks is ))(( 2NNO ′+ . So, in worst condition, the computational complexity of 
fitness evaluation is ))(( 2NNO ′+ + ))(( 2NNO ′+ or 2' )(( NNO + . To take FIA as fitness evaluation method, there are many 
individuals in each rank, which are deemed to have same competition ability. In that case, it’s hard to generate an 
individual whose fitness is very high, which restrains the other individuals in lower fitness, and benefit to keep the 
diversity of population potentially in a certain sense. We have verified this conclusion in experiment. 

1.4 Simulation optimization experiment 

1.4.1 Test problems 

Generally, a 0/1 knapsack problem consists of a set of items, weight and profit associated with each item, and an upper 
bound for the capacity of the knapsack. The task is to find a subset of items which maximizes the total of the profits in 
the subset, yet all selected items fit into the knapsack, i.e., the total weight does not exceed the given capacity. This 
single-objective problem can be extended directly to the multi-objective case by allowing an arbitrary number of 
knapsacks. Formally, the multi-objective 0/1 knapsack problem considered here is defined in the following way: Given 
a set of m items and a set of n  knapsacks, with 

 jip , = profit of item j according to knapsack i  
 jiw , = weight of item j according to knapsack i  
 ic = capacity of knapsack i  

find a vector m
mxxxx }1,0{),...,,( 21 ∈= ,such that  

 ∑ ≤⋅∈∀
=

m

j
ijji cxwni

1
,:},...,3,2,1{  

and for which ))(),...,(),(),(()( 321 xfxfxfxfxf n= is maximum, where 

 ∑ ⋅=
=

m

j
jjii xpxf

1
,)(  

and 1=jx iff item j is selected. 

In this paper, in order to obtain reliable and sound results, we used nine deferent test problems where both the number 
of knapsacks and the number of items were varied. Two, three, and four objectives were taken under consideration, in 
combination with 250, 500, and 750 items. Uncorrelated profits and weights were chosen, where jip , and jiw , are 

random integers in the interval [10,100]. Table 1 has shown the detailed information. The knapsack capacities were set 
to half the total weight regarding the corresponding knapsack 

 ∑=
=

m

j
jii wc

1
,5.0  

In particular, a binary string s of length m is used to encode the solution mx }1,0{∈ . Since many coding lead to 
infeasible solutions, a simple repair method is applied to the genotype )(: srxs = . The repair algorithm removes items 
from the solution coded by s step by step until all capacity constraints are fulfilled. The order in which the items are 
deleted is determined by the maximum profit/weight ratio per item; for item j the maximum profit/weight ratio jq is 

given by the equation 

 }{max
,

,

1 ji

ji
n

i
j w

pq
=

=  
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The items are considered in increasing order of the jq , i.e., those achieving the lowest profit per weight unit are 

removed first. This mechanism intends to fulfill the capacity constraints while diminishing the overall profit as little as 
possible. In our testing, the probabilities of crossover (one-point) and mutation were fixed (0.8 and 0.01, respectively). 

Table 1.1 Parameters that were adjusted to the problem complexity: Population P size (N), Population P’ size (N’), knapsacks size 
(m), items number (n) and the coverage (

SPGAFPGAR , , FPGASPEAR , ) of set  

n m N’ N SPGAFPGAR , FPGASPEAR ,  

250 30 120 0.814 95 0.048 56 
500 40 160 0.938 53 0.024 27 2 
750 50 200 0.959 69 0.016 43 
250 40 160 0.996 63 0.002 03 
500 50 200 1.000 00 0 3 
750 75 225 1.000 00 0 
250 50 200 1.000 00 0 
500 60 240 1.000 00 0 4 
750 70 280 1.000 00 0 

1.4.2 Performance criteria  

In order to compare the advantage of FPGA to SPEA, the coverage R of two sets—final Pareto-optimal set of decision 
vectors of running FPGA and final Pareto-optimal set of decision vectors of running SPEA—is used. Mathematically, 
the performance measures define is as follows: 

 ||
|}:,{|

 ,
FPGA

SPEAFPGA
SPEAFPGA P

jiPjPi
R

′
′∈∃′∈

=
φ

, ||
|}:,{|

 ,
SPEA

FPGASPEA
FPGASPEA P

ijPiPj
R

′
′∈∃′∈

=
φ

 

If Let XXX ⊆′′′, be two sets of decision vectors, the function XXR ′′′, maps the ordered pair ( XX ′′′, ) to the interval [0,1]. 
The value XXR ′′′, =1 means that all points in X ′′ are dominated by points in X ′ . The opposite, XXR ′′′, =0, represents the 

situation when none of the points in X ′′ are covered by the set X ′ . 
Let XxxxX k ⊆=′ ),...,,( 21 be a set of k decision vectors. The function )(XD ′ gives the distance enclosed by the union of 
the polytypic kppp ,...,, 21 , where each ip is formed by the intersections of the following hyperplanes arising out of ix , 

along with the axes: for each axis in the objective space, there exists a hyperplane perpendicular to the axis and passing 
through the point ))(),...,(),(( 21 inii xfxfxf . In the two-dimensional (2-D) case, each represents a points defined by the 
points ))(),(( 21 ii xfxf . The )(XD ′ is given by the equation: 

 ∑=′
=

k

j
ij xfXD

1

2))(()(  

1.4.3 Experimental result and analysis 

On all test milt-objective 0/1 knapsacks problems, 10000 generations were simulated per optimization run, and FPGA, 
SPEA runs 40 times independently at the same initial population. After the 40 times optimization run, the arithmetic 
average values SPGAFPGAR , FPGASPEAR , are shown as Table 1.1. As can be seen in Table1.1, FPGA in quality of final 

non-dominated Pareto-optimal solutions outperform the state-of-the-art SPEA on all test 0/1 knapsack problems, and 
the more knapsacks and items involved, the greater the value for SPGAFPGAR , , namely the more nakedness of FPGA’s 

advantage. When the knapsacks n >2, FPGA covers more than 99% of the fronts computed by SPEA. In contrast, SPEA 
covers less than 5% of outcomes of FPGA at the best condition. So, according to the coverage values of two set, we can 
draw a conclusion that FPGA seems to provide the best performance comparing to SPEA. 
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In order to observe the distribution of non-dominated Pareto solutions in the different evolution process, two objectives 
problem was chose under consideration from the 40 times independent running of FPGA and SPEA randomly, in 
combination with 250, 500, and 750 items, and the distribution and evolution trend of non-dominated Pareto-optimal set 
of external populations P is shown as Figure1.3, where the tradeoff fronts obtained in two runs are plotted for the 2-D 
problems. As can be seen clearly in Table1.1, as the increase of evolutionary generations, the non-dominated Pareto 
stored in the population P ′ can uniformly approximate every part of Pareto-optimal front, and FPGA has more uniform 
distribution and more rapid convergence trends comparing to SPEA .  
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30400

27400 28200 29000 29800
f 1(x )

f 2
(x

)

FPGA-5000generations
SPEA-5000generations
FPGA-8000generations
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Figure 1.3 Tradeoff fronts for two knapsacks: here, the distribution and evolution trend of non-dominated Pareto-optimal set of 

extern populations P ′ are described. 

Considering two, three, and four objectives, in combination with 750 items, we respectively run FPGA and SPEA 40 
times respectively, and then calculate the arithmetic average values of )(XD ′ . The increasing trend curve of )(XD ′ , as 

the increase of evolutionary generations, is described as Figure1.4. The trend curve to which correspond FPGA in Fig.4 
has sharper slope ratio-of-rise, which shows that FPGA has advantage in convergence speed at the beginning stage of 
evolutionary searching. When it achieves the relative stable stage, various curves corresponded to FPGA 
correspondingly locate in the top of trend curves to which belong SPEA, which indicates that FPGA can obtain high 
accuracy non-dominated Pareto solutions at the later part stage of evolutionary searching. Thereby, the conclusion is 
that FPGA in convergence speed and quality of non-dominated Pareto solution is superior to SPEA. 
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Figure1.4 The increasing trend curve of the arithmetic average values of )(XD ′ : here, along with the axes: for each axis in the 

objective space, there exists a plane perpendicular to the axis and passing through the point ))(),(( 21 ii xfxf , each represents a point 

defined by the points ))(),(( 21 ii xfxf .So the trends curve are plotted by all points for each combinations 

Reference [8,9] hold that genetic drift in evolutionary algorithms is the major cause of the search for global optima 
getting premature stagnation on single local optimum, but FUC can maintain the diversity of population at any stage of 
evolutionary searching, for which provides various schema for next evolution. Namely, FUC naturally suppress the 
search for global optima getting premature stagnation on single local optimum, and prevents genetic drift. 
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1.5 Conclusions 

In this article, we propose a kind of fast Pareto genetic algorithm based on fast fitness identification and external 
population updating scheme for searching Pareto-optimal set, which supplies alternative Pareto-optimal solution set for 
multi-objective decision-making. FPGA is unique in two respects.Firstly, we put forward fast update algorithm based 
on clustering crowding (FUC) for maintaining population diversity and even uniform distribution of Pareto solutions, 
which realization is based on external population updating scheme by washing out the most similar individuals of 
external population step by step. Secondly,by analyzing the problems such as complex computation and high 
computation cost in the fitness evaluation of Pareto-optimal set, we propose a kind of fast fitness identification 
algorithm with lower computation complexity comparing to other congeneric methods. 
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