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ABSTRACT
Modern enterprise systems support Role-Based Access Con-
trol (RBAC). Although RBAC allows restricting access to
privileged operations, a deployer may actually intend to re-
strict access to privileged data. This paper presents a theo-
retical foundation for correlating an operation-based RBAC
policy with a data-based RBAC policy. Relying on a location-
consistency property, this paper shows how to infer whether
an operation-based RBAC policy is equivalent to any data-
based RBAC policy. We have built a static analysis tool for
Java Platform, Enterprise Edition (Java EE) called Static
Analysis for Validation of Enterprise Security (SAVES). Re-
lying on interprocedural pointer analysis and dataflow anal-
ysis, SAVES analyzes Java EE bytecode to determine if the
associated RBAC policy is location consistent, and reports
potential security flaws where location consistency does not
hold. The experimental results obtained by using SAVES on
a number of production-level Java EE codes have identified
several security flaws with no false positive reports.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.2 [Software Engineering]: Design Tools and
Techniques

General Terms
Design, Languages, Reliability, Security, Verification

Keywords
J2EE, Java, Java EE, RBAC, Role-Based Access Control,
Security, Static Analysis

1. INTRODUCTION
Modern enterprise systems, such as Java Platform, Enter-

prise Edition (Java EE)1 [31] and Microsoft .NET Common

1Formerly known as Java 2, Enterprise Edition (J2EE).
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Language Runtime (CLR) [10], have adopted Role-Based
Access Control (RBAC) [8] to restrict access to enterprise
applications and their functionalities. A role is a set of ac-
cess rights that can be assigned to users and groups of a
computer system. A client can access role-restricted func-
tionality only if an administrator has granted the client the
appropriate set of roles.

To configure the RBAC policy for an enterprise system or
application, an administrator must identify the operations
required by the various users and groups. If the administra-
tor fails to correctly identify the data and functionality that
should be available to a role, the system or application can
be vulnerable to unauthorized access.

At present, application developers and deployers define
the roles that make sense for an application and then identify
which methods each role should be allowed to call. There-
fore, access is defined in terms of operations on components.
However, as already emphasized in previous work on RBAC
[26], the security policy intent is often to protect privileged
data, as opposed to operations.

For example, for a Web application that allows profes-
sors to assign grades to the students enrolled in a class and
those students to check their grades, it is natural to specify
that users in role Professor should have write access to the
data representing student grades, while users in role Student
should have only read access to that data. Specifying ac-
cess in terms of methods could be more cumbersome, since
there will likely be multiple methods for writing and reading
grades, and without access to the source code it may not be
clear which methods read and write that security-sensitive
information. In such cases, defining access control on the
basis of data is more straightforward and convenient (and
therefore less error-prone) than defining access on the basis
of operations.

Several factors further complicate RBAC administration,
including:

• In systems in which access control can be specified
both on the functions performed by applications and
the data accessed by those applications, security incon-
sistencies can easily arise. For example, a role may be
denied access to an object but granted the permission
to invoke a function that allows accessing that object.

• A system administrator deploying an enterprise appli-
cation is often not the same person who developed that
application. In fact, the Java EE Specification [41] ex-
plicitly separates these responsibilities. Therefore, a
system administrator may not know precisely which
data is accessed and modified by each method.



In practice, Java EE and CLR currently support only ope-
ration-based RBAC. This paper presents a method to help
administrators reason about an operation-based RBAC in
terms of an equivalent data-based RBAC.

The novel contributions of this paper are:

1. Theoretical Foundation for RBAC Consistency.
This paper defines “location consistency,” a property
indicating whether a given operation-based RBAC pol-
icy is equivalent to any data-based RBAC policy. If so,
the theory provides a straightforward method to con-
struct the equivalent data-based policy.

2. Static Analysis for RBAC Consistency Valida-
tion. This paper describes a whole-program static
analysis technique to determine whether an operation-
based RBAC policy is location consistent and to con-
struct an equivalent data-based RBAC policy, if one
exists. If no such equivalent policy exists, the analysis
reports flaws in the operation-based RBAC policy. A
flaw may indicate a violation of the Principle of Least
Privilege [35] (the policy is too permissive), a possi-
ble authorization run-time failure (the policy is too
restrictive), or an implementation bug.

3. SAVES. This paper presents the design and imple-
mentation of a static analysis tool called Static Anal-
ysis for Validation of Enterprise Security (SAVES),
which implements the RBAC consistency validation
analysis for Java EE applications. SAVES relies on
a flow-insensitive subset-based pointer analysis [1] and
interprocedural mod-ref analysis. This paper discusses
some of the implementation challenges in analyzing
Java EE applications, and presents an empirical study
on a number of production-level applications. The
experimental results uncover a number of flaws with
method-based RBAC policies, with no false positive
reports.

The remainder of this paper proceeds as follows. Section 2
introduces motivating examples. Section 3 presents a formal
model of RBAC consistency. Section 4 describes the Java
EE RBAC model. Section 5 describes the design and im-
plementation of SAVES. Section 6 presents an experimental
evaluation of SAVES. Section 7 reviews related work. Sec-
tion 8 describes future work. Finally, Section 9 summarizes
the results and novel contributions of this paper.

2. MOTIVATING EXAMPLE
This section shows a sample Java EE application for which

access to security-sensitive operations can be restricted with
roles. It then shows a typical RBAC scenario in which access
to operations are not restricted consistently with the data
held and manipulated by those operations. These examples
will be referenced throughout the paper.

As will be explained in Section 4, the Java EE Specifi-
cation [41] allows deployers to restrict access to methods
of Enterprise JavaBeans (EJB) components. The code in
Figure 1 represents a code fragment of an enterprise bean,
StudentBean, with two methods, setGrade and setProfile.
A system administrator configuring StudentBean usually
has no access to the source code of the application. Deploy-
ment tools used to configure Java EE applications employ
introspection on the application bytecode to detect method

// package and import declarations here...
public class StudentBean implements SessionBean {

private String name, address;
private Map grades = new HashMap();
public void setGrade(String c, Character g) {

grades.put(c, g);
}
public void setProfile(String n, String a,

Map m) {
this.name = n;
this.address = a;
this.grades = m;

}
// other code here...

}

Figure 1: StudentBean Fragment

names and parameter types and to allow a system admin-
istrator to map methods to roles. For the StudentBean ap-
plication, it makes sense for setGrade to be restricted with
role Professor, since that method, as its name suggests,
allows write access to the grades field and the data held
by it. It may appear natural to restrict setProfile with
role Student since each student should be allowed to up-
date his or her own profile. What a system administrator
would probably not know is that granting Student access to
setProfile implicitly allows Student to modify the grades

security-sensitive field. It will be shown that this faulty
RBAC policy violates a well-defined consistency property,
indicating a policy flaw that can be automatically detected.
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Figure 2: RBAC Policy Scenario

Inconsistencies can be much more difficult to find out than
in the example of Figure 1. In general, it may be necessary
to examine all the methods of an application, the restric-
tions imposed on them by the RBAC policy, and the data
directly or indirectly referenced or modified by those meth-
ods. For example, in the scenario of Figure 2, role q has been
denied access to EJB method m3, but users in role q can still
access EJB security-sensitive fields f and g (and the data



held by them) directly through methods m1 and m2 or indi-
rectly through method m4. This paper formalizes a concept
of consistency for arbitrarily complex method-based RBAC
policies and defines an algorithm for automatic policy-flaw
detection.

3. RBAC CONSISTENCY MODEL
This section formalizes the different modes in which a pro-

gram can access data, and introduces a lattice based on oper-
ations performed by program methods on program locations.
This allows partitioning the set of methods of a program
into equivalence classes. Furthermore, this section formal-
izes and characterizes the notion of location-based consis-
tency for a method-based RBAC policy.

3.1 Notation
Given a program p, let X be the set of all possible execu-

tions of p and M the set of all methods of p. If x ∈ X, let Ax

be the set of activations which arise during x and Mx ⊆ M
the set of all the methods executed by x. An element of Ax

representing the activation of a method m will be indicated
with am. During a run, x reads or writes from a set of mem-
ory locations, Hx. Let L be a finite set of abstract memory
locations partitioning Hx into disjoint sets. For example, in
Java, for a class C, C.f denotes an abstract location corre-
sponding to the f field of all objects of type C that arise in
an execution x. Intuitively, L represents the granularity by
which an RBAC policy allows control of restricted data.

Definition 3.1. Given an execution x ∈ X, an activa-
tion am ∈ Ax, and a memory location h ∈ Hx:

• am directly reads h if am executes a statement that
reads h.

• am reads h if:

1. am directly reads h, or

2. ∃am′ ∈ Ax such that am calls am′ and am′ reads
h.

The corresponding predicates directly writes and writes are
defined analogously.

Definition 3.1 can be extended to methods and abstract
locations as follows:

Definition 3.2. Given a method m ∈ M and an abstract
location l ∈ L:

• m directly reads l if ∃x ∈ X and ∃h ∈ l such that x
contains an activation am and am directly reads h.

• m reads l if:

1. m directly reads l, or

2. ∃m′ ∈ M such that m calls m′, and m′ reads l.

The corresponding predicates directly writes and writes are
defined analogously.

As an example, setGrade in Figure 1 reads grades, while
setProfile writes name, address, and grades.

It is also important to reason about reads and writes of
abstract locations that may not appear as security-sensitive,
but they are so because they are referenced by other abstract
locations that are security-sensitive. An abstract location

l′ ∈ L is reachable from l ∈ L if l′ can be obtained from
l through a series of zero or more dereferences. Clearly, if
l ∈ L is of a primitive type (not a pointer), the only abstract
location reachable from l is l itself.

Definition 3.3. Given a method m ∈ M and an abstract
location l ∈ L:

• m directly partially reads l if ∃l′ ∈ L such that l′ is
reachable from l and m reads l′.

• m partially reads l if:

1. m directly partially reads l, or

2. ∃m′ ∈ M such that m calls m′ and m′ partially
reads l.

The corresponding predicates directly partially writes and
partially writes are defined analogously.

If l is of a primitive type, the only way l can be partially
read or partially written is for it to be read or written, re-
spectively. By definition, a method that reads or writes an
abstract location also partially reads or partially writes that
abstract location, respectively. The opposite is not neces-
sarily true.

In Figure 1, setGrade partially writes grades. Table 1
shows the EJB fields read, partially read, written, and par-
tially written by the methods in Figure 2.

Methods Fields
Read Partially Written Partially

Read Written

m1 g
m2 f f f
m3 f f f, g
m4 f f f
m5 f g

Table 1: Field Accesses for Application in Figure 2

3.2 Access Lattice
An “access tuple” provides an abstract representation of

the behavior of a method with respect to memory access.
An access tuple is defined in the general form 〈r, r, w, w〉,
where r, r, w, w ⊆ L. Let T = P(L)× P(L)× P(L)× P(L)
be the set of all access tuples, where P(L) indicates the
powerset of L. T, being the Cartesian product of four lat-
tices, is itself a lattice [13]. Its partial order, v, is obtained
by extension from the partial orders of the single Cartesian
product components, as follows: If x = 〈r1, r1, w1, w1〉, y =
〈r2, r2, w2, w2〉 ∈ T, then:

x v y
def⇐⇒ (r1 ⊆ r2) ∧ (r1 ⊆ r2) ∧ (w1 ⊆ w2) ∧ (w1 ⊆ w2)

Similarly, the meet and join lattice operators are induced by
the Cartesian product, respectively, as follows:

x u y := 〈r1 ∩ r2, r1 ∩ r2, w1 ∩ w2, w1 ∩ w2〉
x t y := 〈r1 ∪ r2, r1 ∪ r2, w1 ∪ w2, w1 ∪ w2〉

The difference operator on T is obtained by extension from
the set-difference operators, \, defined on the single Carte-
sian product powerset components, as follows:

x− y := 〈r1 \ r2, r1 \ r2, w1 \ w2, w1 \ w2〉



Being finite, lattice T is complete, contains a top element,
> := 〈L, L, L, L〉, and a bottom element, ⊥ := 〈∅,∅,∅,∅〉,
and has finite height [13]. Specifically, since the height of
P(L) is |L|, the height of T is 4|L|.

The sets of abstract locations read, partially read, writ-
ten, and partially written by a method m ∈ M are indicated
with ρ(m), ρ(m), ω(m), and ω(m), respectively. By defini-
tion, ρ(m) ⊆ ρ(m) and ω(m) ⊆ ω(m). Sets ρ(m), ρ(m),
ω(m), and ω(m) are all bounded by the universe L of all the
abstract locations in p. Therefore, they are all finite sets.

A function α : M → T mapping every method to the ac-
cess tuple of the abstract locations accessed by that method
can be defined as follows:

α(m) := 〈ρ(m), ρ(m), ω(m), ω(m)〉,∀m ∈ M

In the example of Figure 2, α(m1) = 〈∅,∅,∅, {g}〉, α(m2) =
〈∅, {f}, {f}, {f}〉, α(m3) = 〈∅, {f}, {f}, {f, g}〉, α(m4) =
〈∅, {f}, {f}, {f}〉, and α(m5) = 〈∅, {f},∅, {g}〉, as can be
seen from Table 1.

3.3 Location Consistency
This section introduces a notion of “location consistency”

for a method-based RBAC policy.2 The location-consistency
notion formalizes the property that a method-based RBAC
policy embodies a compatible data protection scheme.

3.3.1 Method- and Location-Based RBAC Policies
Given a program p, a function β : X → T mapping each

execution x ∈ X of p to the access tuple of all the abstract
locations read, partially read, written, and partially written
by p while traversing x can be defined as follows:

β(x) :=
⊔

m∈Mx

α(m),∀x ∈ X

Definition 3.4. Given a program p and a set of roles R:

• A method-based RBAC policy for p is a function µ :
R → P(M).

• An execution x ∈ X is valid for a role q ∈ R with
respect to µ, indicated with (x, q, µ), if Mx ⊆ µ(q),
where Mx ⊆ M is the set of methods executed by x.

• A location-based RBAC policy for p is a function Λ :
R → T .

• An execution x ∈ X is valid for a role q ∈ R with
respect to Λ, indicated with (x, q, Λ), if β(x) v Λ(q).

A method-based RBAC policy µ and a location-based RBAC
policy Λ map each role q ∈ R to the set of methods that q is
allowed to execute and to the access tuple representing the
abstract locations that q is allowed to access, respectively.
The notion of validity of an execution x for a role q with
respect to an RBAC policy formalizes the property that q
can execute x without run-time authorization failures.

Every method-based RBAC policy has a corresponding
location-based RBAC policy, naturally defined as follows:

Definition 3.5. If µ is a method-based RBAC policy for
p, the location-based RBAC policy induced with µ is the
function Λµ : R → T defined by:

Λµ(q) :=
⊔

m∈µ(q)

α(m), ∀q ∈ R

2Despite the name, this notion has no relation to the Loca-
tion Consistency memory model [11].

It is also possible to compare method- and/or location-based
RBAC policies as follows:

Definition 3.6. Given two RBAC policies γ and δ for p,
defined on the same set of roles R:

• γ is compatible with δ if (x, q, δ) ⇒ (x, q, γ),∀x ∈
X, ∀q ∈ R.

• γ is equivalent to δ if γ and δ are compatible with each
other.

Function α allows introducing on M an equivalence relation,
∼, which partitions M into equivalence classes:

∀m1, m2 ∈ M, m1 ∼ m2
def⇐⇒ α(m1) = α(m2)

Intuitively, if ∃m1, m2 ∈ M : m1 ∼ m2, it makes sense for a
method-based RBAC policy µ to restrict access to m1, m2

with the same roles, which means µ−1(m1) = µ−1(m2).
Function α allows also comparing the access levels of two

methods by comparing the access tuples corresponding to
those methods. Intuitively, a method-based RBAC policy µ
is “location inconsistent” if ∃m1, m2 ∈ M, ∃q ∈ R : α(m1) v
α(m2) ∧ m1 /∈ µ(q) ∧ m2 ∈ µ(q). This leads to the more
general notion that if µ denies a role q access to a method
m1 to prevent q from accessing certain abstract locations
in certain modes, then µ should deny q access to all the
methods having a level of access grater than or equal to
that of m1; otherwise, q could use those other methods to
bypass the intended data restrictions. More precisely:

Definition 3.7. A method-based RBAC policy µ is said
to be location consistent if:

∀q ∈ R, ∀m ∈ M, m /∈ µ(q) ⇒ α(m) 6v Λµ(q)

As will be shown in Section 3.3.3, for a method-based RBAC
policy, being location consistent represents the existence of
an equivalent location-based RBAC policy.

3.3.2 Inconsistency Classification
If µ is not location consistent, µ embodies a security policy

that does not correspond to any protection scheme based
solely on data protection. If ∃q ∈ R, ∃m ∈ M : m /∈ µ(q) ∧
α(m) v Λµ(q), a location inconsistency exists. For example,
in the scenario of Figure 2, m3 /∈ µ(q) ∧ α(m3) v α(m1) t
α(m2) = Λµ(q). A location inconsistency may indicate one
or more of the following:

A Access to m should have been granted to q, that is too
few permissions are given to q. This can be corrected
by changing the RBAC policy µ so that m ∈ µ(q). In
Figure 2, this would be the case if it could be estab-
lished that it was a mistake to deny q access to m3.

B Access to some of the methods in the set Mm,q := {m′ ∈
µ(q) : α(m′)uα(m) 6= ∅} has been mistakenly granted
to q, causing α(m) v Λµ(q). That is, too many permis-
sions are given to q. This can be corrected by chang-
ing the RBAC policy µ and denying q access to those
methods. The security inconsistency associated with
the code in Figure 1 is of type B. As a further example,
in the scenario of Figure 2, Mm3,q = {m1, m2}, but
perhaps it should have been m1 /∈ µ(q) or m2 /∈ µ(q),
which would have implied α(m3) 6v Λµ(q).



C Some of the methods in Mm,q contain bugs that make
them access unintended security-sensitive abstract lo-
cations, causing α(m) v Λµ(q). In the scenario of
Figure 2, this would be the case if m1 or m2 contain
bugs that mistakenly cause α(m3) v α(m1) t α(m2).
For example, m1 was not intended to partially write
g. By correcting this bug, it will immediately follow
α(m3) 6v α(m1) t α(m2).

D m contains bugs that unintendedly prevent it from ac-
cessing one or more security sensitive abstract loca-
tions, causing α(m) v Λµ(q). Still in the scenario of
Figure 2, this would be the case if it could be estab-
lished that m3 contains bugs preventing it from, for
example, directly reading g.

Situation A is undesirable because users in role q may not
be able to access the required functionality and run-time au-
thorization failures may occur, making the application un-
stable. Situation B is undesirable too because users in q can
access functionality not intended for them, thereby resulting
in a potential violation of the Principle of Least Privilege.
Situations C and D represent bugs in component code or
assembly configuration of the components.

3.3.3 Location-Consistency Characterization
This section proves that a method-based RBAC policy

µ is equivalent to some location-based RBAC policy if and
only if µ is location consistent.

Theorem 3.1. If µ is a location-consistent RBAC policy
on p, then Λµ is equivalent to µ.

Proof. Let x ∈ X and q ∈ R be such that (x, q, µ). By
Definition 3.4, Mx ⊆ µ(q). Therefore:

β(x) =
⊔

m∈Mx

α(m) v
⊔

m∈µ(q)

α(m) = Λµ(q),∀q ∈ R

which implies (x, q, Λµ). Thus, Λµ is compatible with µ.
Now, assume by contradiction that µ is not compatible

with Λµ. This means that ∃x ∈ X, ∃q ∈ R : (x, q, Λµ) ∧
¬(x, q, µ). From ¬(x, q, µ), it follows that ∃m′ ∈ Mx : m′ /∈
µ(q). On the other hand, from (x, q, Λµ), it follows that:

α(m′) v
⊔

m∈Mx

α(m) = β(x) v Λµ(q)

which contradicts the hypothesis that µ is location consis-
tent. Therefore, µ is compatible with Λµ.

Theorem 3.1 proves that if a method-based RBAC policy µ
is location consistent, there exists always a location-based
RBAC policy that is equivalent to µ, and that policy is Λµ.
Next, it will be shown that with one further assumption,
if µ is not location consistent, then it corresponds to no
location-based policy.

Definition 3.8. A method-based RBAC policy µ is said
to be an entrypoint policy if ∀〈m, q〉 ∈ M × R : m 6∈
µ(q),∃x ∈ X such that x begins execution in method m.

Intuitively, given an entrypoint policy restricting access to
a method m, it is always possible to construct an execution
of p starting with m. In other words, m is a potential en-
trypoint to the application. Assuming that a method-based

RBAC policy is an entrypoint policy is actually quite rea-
sonable. For example, both Java EE and CLR support only
entrypoint policies. In particular, Java EE allows an RBAC
policy to restrict access only to servlet HyperText Trans-
fer Protocol (HTTP) methods and EJB interface methods,
which can logically begin a new execution (thread of control)
for a Java EE application in one or more given roles.

Theorem 3.2. If a method-based RBAC entrypoint pol-
icy µ for p is not location consistent, there exists no location-
based RBAC policy Λ for p such that Λ is equivalent to µ.

Proof. Assume by contradiction that a location-based
RBAC policy Λ for p exists such that Λ is equivalent to
µ. Since µ is not location consistent, ∃q ∈ R, ∃m ∈ M :
m /∈ µ(q) ∧ α(m) v Λ(q). Let m1, m2, . . . , mk ∈ M be
the methods traversed by an execution x ∈ X such that
m = m1. An execution x with this property must exist since
µ is an entrypoint policy. Given i ∈ {1, 2, . . . , k}, it must
be ρ(mi) ⊆ ρ(m), ρ(mi) ⊆ ρ(m), ω(mi) ⊆ ω(m), ω(mi) ⊆
ω(m). Therefore, α(mi) v α(m), and since α(m) v Λ(q),
this proves that α(mi) v Λ(q),∀i = 1, 2, . . . , k. This implies
that ∃x ∈ X, ∃q ∈ R : (x, q, Λ) ∧ ¬(x, q, µ), which means
that Λ and µ cannot be equivalent.

Theorems 3.1 and 3.2 provide the foundation for checking
consistency of a method-based RBAC entrypoint policy µ.
By determining whether or not µ is location consistent and
computing Λµ, it is possible to provide a great deal of infor-
mation about how µ controls access to sensitive data. Sec-
tion 5 describes the design and implementation of SAVES,
an automatic tool built on this principle.

4. RBAC IN JAVA EE
This section describes the Java EE RBAC security system

modeled and analyzed by SAVES. The Java EE Specification
[41] dictates that when a restricted resource in a component,
such as a method in an enterprise bean, is accessed from an-
other component, the Java EE container should perform an
authorization check [31]. While users and groups are de-
fined at the system level, roles are application-specific; each
Java EE application defines its own security roles. At run
time, when the program attempts to access a role-restricted
resource, the security system verifies that the user initiating
the access was granted the required role.

4.1 Component Model
Java EE provides access control for EJB components. The

methods of an enterprise bean are implemented in a class
known as the EJB class. For a client program (such as
another enterprise bean, a servlet, or a stand-alone applica-
tion) to access an EJB method, that EJB method must be
declared in a specific EJB interface. There are four types
of EJB interfaces: Remote, RemoteHome, Local, and Local-
Home. Methods implemented in the Remote and Remote-
Home interfaces can be invoked by client programs located
in different containers (for example, different processes or
systems) through Remote Method Invocation (RMI) over In-
ternet Inter-Object Request Broker (ORB) Protocol (IIOP).
Methods implemented in the Local and LocalHome inter-
faces can be invoked by client programs co-located in the
same container (same address space). Helper methods—
those implemented by the enterprise bean classes and not
declared in any EJB interface—are not directly accessible



by clients and can only be invoked from the component to
which they belong.

The Java EE authorization model differs from the for-
mal model of Section 3 in an important detail. Java EE
subjects only intercomponent calls to authorization checks.
Access control restrictions do not apply to helper methods,
or calls within the same EJB component. This exemption,
driven by implementation concerns, complicates reasoning
of Java EE RBAC policies and can cause security holes if
not handled carefully [29]. For clarity of exposition, the for-
mal RBAC consistency model presented in Section 3 does
not deal with the differences between inter- and intracompo-
nent calls, but the model can be easily extended to faithfully
represent those differences as well. The implementation de-
scribed in Section 5 correctly models both inter- and intra-
component calls.

4.2 Declarative Security
Java EE and CLR promote the concept of declarative secu-

rity ; it is not necessary to embed authentication and autho-
rization code within an application. Rather, security infor-
mation appears, along with other deployment information,
in configuration files external to the application code. In
Java EE, one such configuration file is called the deployment
descriptor and is defined using eXtensible Markup Language
(XML). The XML code in Figure 3 shows a deployment de-
scriptor fragment defining the Professor role and restricting
access to the setGrade Remote interface method in enter-
prise bean StudentBean shown in Figure 1. By default, all
roles are allowed access to all methods that are not explicitly
restricted by the application deployment descriptor. Such
methods are called unchecked.

<assembly-descriptor>
<security-role>

<role-name>Professor</role-name>
</security-role>
<method-permission>

<role-name>Professor</role-name>
<method>

<ejb-name>StudentBean</ejb-name>
<method-intf>Remote</method-intf>
<method-name>setGrade</method-name>

</method>
</method-permission>

</assembly-descriptor>

Figure 3: Security-Related Deployment Descriptor
Fragment

In Java EE, an enterprise resource can be marked as inac-
cessible by explicitly configuring the deployment descriptor
of the resource’s component and listing that resource in an
exclude-list. Access to that resource will be denied to any
user, regardless of the user’s roles.

If the purpose of an access policy is to restrict access to an
EJB field to users with a specific role, one might assume it
would be sufficient to restrict access to the field’s getter and
setter accessor methods. After all, the EJB Specification [38]
mandates that reads and writes to EJB fields should always
go through accessor methods. Therefore, to restrict access
to a field, should not it be sufficient to restrict access to its
accessor methods? The answer is no, for three reasons. First
of all, the container does not enforce the EJB Specification
rule above. Second, a field may very well be accessed by a

non-accessor method; for example, setProfile in Figure 1
is not a setter accessor method, and yet it assigns a value
to field grades. Third, as observed in Section 4.1, the con-
tainer may not even perform authorization checks on all the
invocations of an accessor method; the container will not
check intra-component calls. A user lacking the required
role may still be able to write to a security-sensitive field by
simply going through an internal method invocation.

4.3 Principal Delegation
In Java EE, by default, the identity of the principal who

initiates a transaction on the client propagates to the down-
stream calls. However, some enterprise resources may need
to be executed as though called by a principal with spe-
cific roles. For this purpose, Java EE allows associating
“principal-delegation policies” with components. A principal-
delegation policy consists of a run-as entry in the compo-
nent’s deployment descriptor. The entry’s value holds the
name of a role specific for the application to which that com-
ponent belongs. The effect of a principal-delegation policy
is that all the downstream calls from that component on-
ward will be performed as if the caller had been granted
only the role specified in the run-as entry. Detecting the
security inconsistencies that can be generated by principal-
delegation policies falls beyond the scope of this paper. We
described an interprocedural analysis for detection of such
inconsistencies as part of a separate work [29].

5. STATIC ANALYSIS
We have implemented a tool called SAVES that checks

location consistency for a method-based Java EE RBAC
policy. This section describes SAVES and presents some
implementation details.

5.1 Security Analysis
SAVES takes as input a program p, consisting of one or

more Java EE applications. Each application is provided as
a collection of Enterprise Archive (EAR) files, or a set of
Java Archive (JAR) and Web Archive (WAR) files. SAVES
retrieves the method-based RBAC policy µ for p from the
deployment descriptors embedded in the archive files.

SAVES first performs a flow-insensitive pointer analysis
and builds a call graph G = (N, E). SAVES consults the de-
ployment descriptors to determine the EJB interface meth-
ods and other Java EE methods which are possible entry-
points for program execution. For each entrypoint method,
SAVES extracts from the deployment descriptors the set of
roles that are allowed access to that method.

SAVES uses the pointer analysis abstractions to parti-
tion the memory locations into abstract locations; each ab-
stract object in the pointer analysis corresponds to an ab-
stract location described in Section 3.1. With the call graph
and pointer analysis in hand, SAVES performs a context-
insensitive interprocedural mod-ref analysis to determine
the access tuple solution for each method.

Specifically, SAVES computes the solution to a straight-
forward dataflow system [19, 23] induced by the call graph
and pointer analysis solution. For each n ∈ N represent-
ing the invocation of a method mn ∈ M , SAVES deter-
mines the EJB fields that are directly read and directly
written by mn, and uses the points-to graph to determine
the EJB fields that are directly partially read and directly
partially written by mn. GEN(n) is defined as the access



tuple computed from n through this computation, while
KILL(n) := ⊥,∀n ∈ N . Next, to compute an overap-
proximation of the access tuple α(mn) of the EJB fields
that are—directly or indirectly—read, partially read, writ-
ten, and partially written by each method mn ∈ M , SAVES
solves the following dataflow equation system for all n ∈ N :

IN(n) :=
⊔

n′∈Γ+(n)

OUT(n′)

OUT(n) := GEN(n) t (IN(n)−KILL(n))

where Γ+ : N → P(N) is the successor function on the call
graph nodes.

As noted in Section 3.2, the height of lattice T is 4|L|,
so the fixed-point iteration involved in solving the dataflow
equation system converges after at most O(|E||L|) iterations
[13]. Upon convergence, access tuple OUT(n) overapprox-
imates α(mn), for all n ∈ N . This allows determining an
overapproximation of the location-based RBAC policy Λµ

induced by µ. Finally, SAVES detects potential location in-
consistencies for µ by identifying pairs 〈q, m〉 ∈ R×M that
violate the condition of Definition 3.7.3 If so, SAVES out-
puts the set of potential inconsistencies. Otherwise, SAVES
outputs the overapproximation of Λµ.

5.2 Implementation Details
We have developed a general Java bytecode interproce-

dural analysis framework, called DOMO, which supports a
range of object-oriented call graph construction and pointer
analysis algorithms, focusing primarily on flow-insensitive
algorithms. SAVES relies on DOMO’s 0-1 Control Flow
Analysis (CFA) call graph construction algorithm [14], which
provides a context-insensitive, field-sensitive Andersen’s ana-
lysis [1], building the call graph on-the-fly. The pointer anal-
ysis filters by declared type on-the-fly, uses field-sensitive
models, and tracks flow through local variables with flow-
sensitive def-use information from a register-based Static
Single Assignment (SSA) representation [5].

In most cases, the analysis safely models the Java Virtual
Machine (JVM) specification, including exceptional control
flow. We do not consider potential side effects from concur-
rent operations on shared data structures. However, since
enterprise beans are forbidden to manipulate threads, that
should not affect the correctness of the target analysis. The
analysis models a typical Java EE deployment with three
class loaders; one each for application, extension (container
run-time), and primordial (core-library) code.

5.3 Modeling Enterprise Beans
A major challenge was to design the analysis architec-

ture with enough flexibility to effectively analyze higher-
level semantics of Java EE. An immediate design question is
whether to analyze the application before deployment or af-
ter deployment. During deployment, EJB applications pass
through an extensive source-to-source code generation step,
which introduces implementation details of the target EJB
container implementation. We chose to analyze the pro-
gram before deployment.4 Instead of analyzing the deployed

3In practice, since Java EE allows only RBAC entrypoint
policies, it is sufficient to restrict this verification to those
pairs 〈q, m〉 ∈ R ×M in which m is a Java EE entrypoint
method.
4More precisely, SAVES requires the bytecode of the ap-

code, we explicitly model many aspects of how the program
interacts with the EJB container. This choice has three ad-
vantages:

1. Scalability. It reduces the body of code to analyze.

2. Precision. It is likely that a human-generated sum-
mary of container semantics is more precise than could
be inferred practically from the raw container imple-
mentation.5

3. Portability. The analysis results do not vary depend-
ing on the container implementation.

Modeling simple library methods, such as most native meth-
ods in the Java standard libraries, can be done concisely with
a straightforward specification. For simple flow-insensitive
models, we use an XML language to represent a method’s
semantics. This approach also suffices for some Java EE
methods, when the method’s definition is static and the se-
mantics fixed. In many cases, we substitute synthetic models
in place of standard Java Platform, Standard Edition (Java
SE) and Java EE methods that we assert will not have side
effects affecting the properties of interest, such as I/O. These
models improve performance by reducing the scope of the
analysis, and in many cases increase precision by eliminating
opportunities for dataflow pollution. In particular, a model
of native methods is essential when analyzing applications
for security since many security functions are implemented
as native methods [42].

Modeling enterprise beans presents more engineering chal-
lenges, since the set of methods and their behavior is deter-
mined by the application’s deployment descriptor. For these
cases, we have implemented as part of DOMO a simple EJB
pseudo-compiler that takes as input the application code
and the deployment descriptor, and produces analyzable ar-
tifacts that represent method behavior.

java.util.Collection getAccounts() {
AccountEntHome h = ContainerModel.

getPooledAccountHomeInstance();
AccountEnt b = h.findByPrimaryKey(0);
HashSet s = new HashSet();
s.add(b);
if (condition) {

throw new RemoteException();
}
if (condition) {

throw new EJBException();
}
return s;

}

Figure 4: Pseudo-code Showing the Analyzable Ar-
tifact Generated for PersonEnt.getAccounts

plication under analysis to have already undergone deploy-
ment configuration. During this process, the application’s
class files are packaged into archives and each archive is as-
signed a deployment descriptor, which contains information
essential for the analysis, including the RBAC policy con-
figuration.
5For example, the mapping of an EJB remote method to
its actual implementation in an EJB class can be achieved
more precisely and efficiently with a summary as compared
to analysis of a container’s RMI-IIOP implementation from
first principles.



For example, suppose the analysis encounters a call to
a method PersonEnt.getAccounts, where Person is an en-
tity bean using Container-Managed Persistence (CMP), and
accounts is specified to be a Container-Managed Relation
(CMR) with the Account enterprise bean. The Java EE
specification defines the semantics of this call; the container
consults a backing persistence manager (usually a database)
to determine the return value of getAccounts. DOMO does
not analyze the thousands of methods in the container im-
plementation that will perform this function; instead DOMO
bypasses the container and recognizes special semantics for
this call. Before attempting to resolve this call with stan-
dard Java semantics, the analysis checks for registered spe-
cial semantics for this call. A registered EJB pseudo-compiler
consults the deployment descriptor and notices that this
method represents the container-managed relationship of
Person to Accounts. To model these semantics, the sys-
tem will generate an analyzable artifact representing the se-
mantics of a call to getAccounts, and model the call as
dispatching to this artifact. To generate the artifact for
this CMR access, the EJB pseudo-compiler consults the de-
ployment descriptor to deduce bean Account’s primary key
type, remote interface, and home interface. Based on these
types, it generates an artifact similar to that shown in Fig-
ure 4. The simple semantics there suffice to construct a
correct call graph incorporating the call to getAccounts.
Note in particular the call to a class called ContainerModel.
The ContainerModel is a distinguished analyzable artifact
which simulates pooling of bean instances, along with other
global container artifacts. Note also that this model for
getAccounts will not suffice for all possible client analyses.
For example, the returned Collection is modeled as always
containing one element. In reality, it may have zero or many.
We would have to further refine the generated model in or-
der to support a client analysis that were sensitive to this
distinction.

Using a similar logic, we have generated models for other
aspects of the Java EE specification, including functions
for servlets and JavaServer Pages (JSP) applications, most
CMP-related methods, much of Java DataBase Connectiv-
ity (JDBC), some Simple Object Access Protocol (SOAP)
functions, and some Apache Struts functions.

5.4 Dealing with Reflection
Reflection and introspective services arise often in Java

EE applications. In addition to core reflective instantiation
with newInstance, Java EE applications often create objects
via invocations to services such as Java Naming and Di-
rectory Interface (JNDI) lookup, JavaBeans instantiation,
RMI narrow, serialization, return values from objects such
as java.sql.ResultSet, various flavors of servlet and JSP
contexts and sessions, and message arguments to message-
driven beans. It is impractical to expect a tool user to spec-
ify the behavior of calls to each of these services. While it
may be possible to statically divine the behavior of some
opaque services from configuration data, in other cases, we
must fall back to conservative static estimates.

The analysis deals with reflection by tracking objects to
casts [9, 22]. When an object is created by reflective instan-
tiation, the analysis assumes (unsoundly) that the object
will be cast to a declared type before being accessed. So,
the analysis tracks these flows, and infers the type of object
created based on the declared type of relevant casts. While

technically unsound, we believe that this approximation is
accurate for the vast majority of reflective factory methods
in Java EE programs.

6. EMPIRICAL EVALUATION
This section describes the experimental results obtained

by using SAVES on the following publicly-available Java EE
applications: Trade3 [16], ITSOBank [28], DukesBank [39],
Bookstore [7], EnrollerApp [39], SavingsAcc [39], PetStore
[40], and CartApp [39]. Of these applications, only ITSOBank

and DukesBank came with predefined roles and method-based
RBAC policy configurations, the reason being that defining
the RBAC policy of an application is a task that the Java
EE Specification [41] delegates to the deployer, and is sup-
posed to be performed based on the system on which the ap-
plication will run. Before analyzing the other applications,
it was therefore necessary to configure the deployment in-
formation for each of them, define relevant roles, and use
those roles to restrict access to security-sensitive resources.
For each application, roles were defined based on the appli-
cation’s target deployment environment. For example, the
roles defined for an online banking application are different
from those defined for an online store. Access to entrypoint
methods was restricted with roles based on the introspec-
tion performed on the applications by Sun Microsystems’
Deployment Tool for Java 2 Platform Enterprise Edition
1.4, which only reveals the fully qualified signature of each
entrypoint method. The RBAC policy configurations were
not based on any other specific knowledge of the applica-
tions. The same situation is typically faced by any system
administrator who needs to configure the RBAC policy of
an application without any information about the fields ac-
cessed by application’s methods and without knowing the
application’s internal calling structure.

Table 2 reports characteristics of the applications and re-
sults of the analyses performed by SAVES. All experiments
ran on an IBM X40 laptop having a 1.20 GHz Intel Pentium
M processor and 1.5 GB of RAM. The operating system was
Microsoft Windows XP Professional, Version 2002, Service
Pack 2. SAVES is implemented in Java, and ran on the
Sun Microsystems’ Java 2 Runtime Environment, Standard
Edition, V1.4.2 05. The Java SE and Java EE function-
alities were made part of the analysis scope by adding the
Sun Microsystems Java SE V1.4.2 05 and Java EE V1.4 core
libraries to the analysis scope, respectively.

For each application, Table 2 reports:

• The overall size of the EAR files comprised by the
application (which includes JAR and WAR files, de-
ployment descriptors, and other supporting files) and
the size of the EJB bytecode included in the EAR files
being analyzed

• The total number of the methods analyzed (all the
methods reachable from the application’s entrypoints,
including methods in the Java core libraries), the num-
ber of application methods, and the number of the EJB
interface methods

• The wall-clock time to perform the analysis

• The total amount of memory (Java heap size) required
to perform the analysis

• The total number of roles defined in the application



Name Size (KB) Methods Time Mem. Roles Inco. Classification
EAR EJB Total App. Bus. (sec) (MB) A B C D

Trade3 1,076 136 5,438 677 48 152.11 218 3 15 6 9 0 0
ITSOBank 302 205 2,323 191 22 64.97 255 2 2 2 0 0 0
DukesBank 128 34 1,579 188 21 118.67 160 2 2 0 2 0 0
Bookstore 359 33 12,178 256 13 60.00 330 3 3 3 0 0 0
EnrollerApp 15 12 2184 55 12 65.71 252 3 9 5 4 0 0
SavingsAcc 10 7 2154 19 5 64.50 250 3 4 3 1 0 0
PetStore 1,282 133 6,411 339 36 255.22 300 2 0 0 0 0 0
CartApp 7 5 27 9 3 20.66 133 2 2 2 0 0 0

Table 2: SAVES Experimental Results

• The total number of inconsistencies found by SAVES

• A classification of those inconsistencies partitioned in
groups A, B, C, and D as explained in Section 3.3.2

As Table 2 shows, SAVES detected a fair number of policy
inconsistencies across these applications. For Trade3 and
EnrollerApp, two of the inconsistencies of Type B could
have been easily interpreted as bugs of types C and D, re-
spectively. SAVES did not report any false positive incon-
sistencies; the precision of the underlying pointer analysis
and call graph construction proved sufficient to accurately
abstract these applications’ behaviors.

7. RELATED WORK
Mechanisms for role-based access control in the network-

ing environment have been proposed more than a decade
ago [8]. Work on building and analyzing models and imple-
mentations for role-based access control has concentrated on
complex architectures [36]. Surprisingly, few approaches for
analyzing role-based access control mechanisms have been
suggested. Schaad and Moffett [37] used the Alloy specifica-
tion language [17] for modeling the RBAC96 access model,
and the Alloy Constraint Analyzer (Alcoa) [18] to check the
desirable properties, such as separation of duties assigned
to roles, of such models. XML documents are often used
by Web applications. Several mechanisms and frameworks
for specification and enforcement of access policies for XML
documents have been proposed [6, 21]. Such mechanisms
are flexible in the sense that they prohibit or allow access to
specific individual elements in XML documents. Recently,
Murata, Tozawa, Kudo, and Satoshi [24] proposed a static
analysis approach based on finite state automata that allevi-
ates the burden of enforcement of such specifications at run
time. Another positive side effect of this work is faster ex-
ecution of queries over XML documents in some situations.
Naumovich and Centonze [26] first identified the need for
a consistency validation analysis for method-based RBAC
policies. That preliminary work was purely theoretical and
did not introduce a formal model for RBAC policy consis-
tency validation. The algorithm described had not been
implemented and for this reason its usefulness could not be
validated through significant experimental results.

In the area of Web applications, a number of testing and
static analysis techniques have been proposed, but they have
concentrated primarily on the problem of control and infor-
mation flow between static and dynamic HTML pages uti-
lized by Web applications. For example, Ricca and Tonella
[33] introduced a Unified Modeling Language (UML) model

for Web applications that is useful for structural testing.
However, this model concentrates on links between Web
pages and interactive features of Web applications, such as
HTML forms, and does not provide support for distributed
object components.

Several works appeared in the area of quality assurance
of distributed components. Brucker and Wolff [2] describe a
technique for specification based testing of distributed com-
ponents, such as Common Object Request Broker Archi-
tecture (CORBA) [4] and EJB components. This approach
uses the Object Constraint Language (OCL) [27] of the UML
standard to formalize specifications of such components.

Clarke et. al [3] address the confinement problem of EJB
objects. This problem arises in situations where direct refer-
ences to EJB objects or other server-side distributed objects
are returned to clients. Such references allow clients to use
EJB objects directly, without going through the indirection
of EJB interface objects. As a result, the EJB RBAC model
can be circumvented. Clarke et. al define the possible ways
in which confinement of EJB objects can be breached and
define simple programming conventions which, if observed,
support inexpensive static analysis able to detect confine-
ment breaches or verify that no confinement breach is pos-
sible for a given set of enterprise beans.

Cadena [15] is an integrated development environment for
building, modeling, and analyzing distributed components
based on the CORBA standard. The formal underpinnings
of Cadena allow extensive model checking support [34]. As
a result, architectural properties about event-based inter-
component communications can be checked. No analysis of
RBAC policies for CORBA was done in the Cadena work.

In addition to the Java EE role-based security mechanism
considered in this paper, Java also includes lower-level se-
curity mechanisms [32, 12] designed to enable users to run
untrusted code in a restricted environment, which could po-
tentially damage the system or steal sensitive data. A per-
mission signifies the right to perform a security-sensitive
operation, and can be granted to a software components
and users. Koved, Pistoia, and Kershenbaum [20] proposed
an interprocedural analysis algorithm for the complemen-
tary problem of determining what permissions have to be
granted to a given program or component to execute it with-
out run-time authorization failures. Subsequently, Pistoia,
et al. [30] described an interprocedural analysis algorithm
to detect which portions of library code would be good can-
didates for becoming privileged without introducing tainted
variables inside trusted code. These types of permission
analysis are orthogonal to the analysis we describe in this
paper.



Secure information flow is important in the context of Web
applications. A number of approaches for reasoning about
flow of information in systems with mutual distrust have
been proposed. For example, Myers and Liskov [25] use
static analysis for certifying information control flow and
avoiding costly run time checks.

8. FUTURE WORK
Currently, a security policy on an RBAC system, such as

Java EE, can only be specified in terms of methods. System
administrators may want to have the flexibility to be able to
specify RBAC policies that restrict access to both locations
and methods. Without imposing a change in the underlying
container specification, the work presented in this paper can
be extended to allow system administrators to restrict access
to abstract locations. SAVES can then detect the access
tuple associated with each method and identify a method-
based RBAC equivalent to the desired location-based RBAC
policy, if one exists. Otherwise, SAVES can report the flaws
identified in the location-based RBAC policy. Furthermore,
the work presented in this paper can be extended to detect
whether mixed RBAC policies that restrict access to both
data and operations are incompatible.

9. SUMMARY
Unlike other access control systems, RBAC allows restrict-

ing access to operations rather than data. This paper has
introduced a novel theoretical foundation for correlating an
operation-based RBAC policy with a data-based RBAC pol-
icy. Relying on the location-consistency property, this pa-
per has shown how to infer whether for an operation-based
RBAC policy there exists any equivalent data-based RBAC
policy. Furthermore, this paper has described the design and
implementation of SAVES, a static analysis tool for Java EE
applications. SAVES analyzes Java EE bytecode to deter-
mine if the associated RBAC policy is location consistent,
and reports potential security flaws where location consis-
tency does not hold. The experimental results obtained by
using SAVES on a number of production-level Java EE codes
have identified several security flaws with no false positive
reports.
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