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 Abstract 

Agents are designed to be autonomous problem-solvers, possibly communicating with 
other agents and users, and are therefore equipped with sufficient cognitive abilities to 
reason about a domain, make certain types of decisions themselves, and perform the 
associated actions. In this paper, we propose to integrate agents in a Cooperative 
Intelligent Decision Support System. The resulting system, called MACIDS is designed to 
support operators during contingencies. During the contingency, the operators using 
MACIDS should be able to: gather information about the incident location; access 
databases related to the incident; activate predictive modeling programs; support 
analyses of the operator, and monitor the progress of the situation and action execution. 
In MACIDS the communication support enhances communication and coordination 
capabilities of participants. A simple scenario is given, to illustrate the feasibility of the 
proposal.  

 
1. Introduction 

Successful Group DSS (GDSS) acts intelligently and cooperatively in a complex 
domain with potentially high data rates and makes judgements that model the very best 
human technicians[7]. It is crucial that human technicians maintain control over the final 
judgments, either by focusing the system on particular reasoning goals, or by modifying 
the basic knowledge on which the systems judgements rely. In this way, the intelligent 
GDSS is able to capture the domain knowledge and provide intelligent guidance during 
the process [1] [6] [9]. While the data and model data manipulations are done through the 
DSS, decision makers can focus solely on the process issues. 

Due to the inadequate support from GDSS to model group members commitment to 
achieve a common goal, the incompleteness and rigidity of decisional models used, and 
the uncertainty carried out in meeting planning, it becomes inevitable that: 1) GDSS 
design is complicated enough to discourage wide spreading of the system as long as users 
are different in background, roles and interest [4] [5]; 2) group dynamics is difficult to 
understand and consequently to support in an adequate way; 3) group behaviour is not 
generalized to other groups being highly dependent by the context of use.  

Fortunately, the multi-agent system (MAS) paradigm represents one of the most 
promising approaches to address such kinds of problems. It offers a new dimension for 
GDSS integration with complementary services making easier to build complex and 
flexible architectures suitable for organizational settings. 
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In this paper, we propose to model a group decision support system based on a multi-
agent architecture. The use and the integration of software agents in the decision support 
systems provide an automated, cost-effective means for making decisions. The agents in 
the system autonomously plan and pursue their actions and sub-goals to cooperate, and  
Coordinate to respond flexibly and intelligently to dynamic and unpredictable situations. 

We experiment our system on a case of boiler breakdown to detect a functioning defect 
of the boiler (GLZ : Gas Liquefying Zone ) to diagnose the defect and to suggest one or 
several appropriate cure actions. Managing this process is a complex activity which 
involves a number of different sub-tasks: monitoring the process, diagnosing faults, and 
planning and carrying out maintenance when faults occur.  

In this regard, this paper applies the multi-agent system paradigm to cooperative 
decision support in a global contingency management. Multi-agent computational 
environments are suitable for studying a broad class of coordination issues involving 
multiple autonomous or semiautonomous problem solving agents.  

In this study, we examine the potential integration of agent technology into a 
Cooperative Intelligent Decision Support System. Taking into account that the MAS 
paradigm represents a feasible way to address some of the problems encountered in GDSS 
theory and practice, this paper is organized as follow: Once the context of our study 
specified. Section 2 describes our contribution.  This followed by a section (section 3) that 
covers the integration of agent technology into a GDSS. Section 4 describes the 
application area. Then, the multi-agent architecture for group decision support systems 
and the corresponding coordination protocol are described in section 5. We also present 
an example of a scenario to illustrate the feasibility of the idea in section 6. Finally, we 
conclude with future research direction in section 7.  

   
2. Contribution 

   In their research, Limayem et al.  [8] identify two gaps from their review of past 
research on impact of GDSS in group decision settings: (1) There is little knowledge on 
how groups use a GDSS (the process) and thus, little is known about how? and why? 
facilitation impacts decision outcomes in group decisional settings with decisional 
guidance. (2) Due to the lack of understanding of the process of GDSS use, the 
appropriateness of the process used to arrive at decisions is not known. Thus, the 
objective of their work was to address these two gaps.  

In our study we add another gap to the ones mentioned in [8]: the coordination 
problems when they occur have several causes. Most of them are a consequence of 
limitations in both the decision making processes and the technological support for 
communication.  For this reason, the information and tasks related to the decisions made 
in GDDS have to be visible to other organizations to keep the relief effort coordinated 
between the agents. 

In addition, the quality of support received during the decision making processes is the 
key to reaching optimal decisions. Decisional guidance mechanism provides the decision 
makers with step-by-step guidance throughout the decision-making process and allows 
them to evaluate more alternatives. As a result, DSS users with decisional guidance can 
easily come up with better decisions than those with no decisional guidance. 

Mahoney et al. [12] pointed out that when faced with complexities in a decision 
situation, decisional guidance helps users to choose among and interact with a system’s 
capabilities. They argued that in less structured tasks that deal with uncertainty and risk, 
users need more guidance to choose among competing solution techniques or among 
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alternative methods of processing information to structure an appropriate decision-
making process using the GDSS. 

We argue that using a single central controller for a large group of agents has an 
obvious problem. As the group size increases it becomes very difficult for the central 
controller to be informed of all the agents’ beliefs and intentions. Also such a controller 
can become a severe communication bottleneck and would render the remaining 
components unusable if it fails. Agent technology provides a natural way of overcoming 
this problem. We use a coordinator agent to execute an important task. We are exploring 
ways of solving multi-agent plan coordination problems in a distributed manner.  

 
3.    Agent integration in GDSS   

There is a wide range of existing application domains that are making use of the agent 
paradigm and develop agent-based systems, for example in software technology, robotics, 
and complex systems. Luke et al. [14] make a distinction between two main Multi-Agent 
System (MAS) paradigms: multi-agent decision systems and multi-agent simulation 
systems. In multi-agent decision systems, agents participating in the system must make 
joint decisions as a group. In this study we focus on the first paradigm and here in 
particular on the modelling of organizations and agent communication. 

MAS are software systems composed of several autonomous software agents running 
in a distributed environment. Beside the local goals of each agent, global objectives are 
established committing all or some group of agents to their completion. Some advantages 
of this approach are: 1) it is a natural way for controlling the complexity of large and 
highly distributed systems; 2) it allows the construction of scalable systems since the 
addition of more agents become an easy task; 3) MAS are potentially more robust and 
fault-tolerant than centralised systems [15].  

Several agent-based systems have been developed to support a smooth integration of 
software agents into human teams. For example, Miller et al. [17] developed a virtual 
environment for battle staff training using a knowledge-based approach to encode the 
roles of team members, as well as goals, capabilities, responsibilities, needs, situations, 
and activities of the entire team, sub-teams, and individuals in the team. To describe team 
structures (roles and responsibilities), teamwork process knowledge (e.g., work flows, 
team plans), collaborative decision making knowledge, communication strategies and 
protocols they use a logic-based representation language called MALLET. A 
complementary approach has been proposed in the ELEVES project formerly used to host 
a visiting researcher. The approach emphasizes the need to adjust the autonomy of agents 
when acting as proxies for the corresponding humans. Focusing on  interaction aspects 
between agents and humans, COLLAGEN was used to build a collaborative interface 
agent for an air travel application [16]. 

We consider that agents are designed to be autonomous problem-solvers, possibly 
communicating with other agents and users, and are therefore equipped with sufficient 
cognitive abilities to reason about a domain, make certain types of decisions themselves, 
and perform the associated actions. Integrated in DSS in general and GDSS in particular, 
they offer the potential to automate a far wider part of the overall problem-solving task 
than was possible with classical DSS or Expert System DSS [11]. In this regard, this 
paper applies the multi-agent system paradigm to cooperative decision support in a global 
contingency management. The application details are given in the next section. 
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4.     The Boiler Combustion Management System 

Usually, in a situation of contingency (breakdown of a boiler), the exploiting engineer 
(the process administrator and the direct operator), tent to identify the breakdown, to 
analyze and diagnose it on the local site, to make contact with other exploiting engineers 
of the parent company and send for the technicians of the boilers constructor company, in 
general located abroad. This type of situation, compel the plant to work in degraded 
functioning if not to stop the process (case of shutdown alarm) waiting for the problem 
solving. Different sensors are set up to detect anomalies at different stages of the process. 
Breakdown can be automatically signposted by means of an alarm or intercepted by the 
exploiting engineers (case of defectiveness of the sensor where no alarm is triggered off 
but the boiler does not work). If there is a defect, an alarm will be triggered off. In case an 
alarm is signposted to the operator: the flag (the reference given to every alarm) is pointed 
out on the board (control room). It acquaints with an alarm and locates the defect. To 
solve this problem, diagnosis and actions of cure are generated by the system. Otherwise, 
a breakdown is directly raised by the operator (not triggered off alarm). This scenario 
occurs when a sensor defect doesn’t allow to automatically signpost the breakdown. In 
this case, the operator must explore a large research space of potential defects with a 
series of tests. In both cases, the operator tries to solve the problem. Managing this 
process is a complex activity which involves a number of different sub-tasks: monitoring 
the process, diagnosing faults, and planning and carrying out maintenance when faults 
occur. In the next section, the most important agents of the system are detailed and their 
general overview is given in Figure 2. 

 
5.   The multi-agent Framework  

Agents were integrated into the DSS for the purpose of automating more tasks for the 
user, enabling more indirect management, and requiring less direct manipulation of the 
DSS. Specifically, agents were used to collect information outside of the organisation and 
to generate decision-making alternatives that would allow the user to focus on solutions 
that were found to be significant [3]. A set of agents is integrated to the system and placed 
in the DSS components, according to our architecture of GDSS.  

 
5.1. Integrating Agent in Cooperative Intelligent Decision Support System 

The individual DSS, as shown in Figure 1. comprises a set of agents grouped in an 
agency. The agents in an agency are tightly coupled to the dominating agent (representing 
the decision maker). The dominating agent provides access to the world outside its 
agency. Different agents in an agency communicate with each other through messages. 
Incoming messages are selected by each agent based on the event selection mechanism 
such as first come first served (FCFS). The proposed architecture comprises:  

The Interface Agent (IA) continuously receives data from the process – e.g. alarm 
messages about unusual events and status information about the process components. 
From this information, the IA periodically produces a snapshot which describes the entire 
system state at the current instant in time. It also performs a preliminary analysis on the 
data it receives from the process to determine whether there may be a fault. 

A Decision Maker and Agent (DMA) performs most of the autonomous problem 
solving. It exhibits a higher level of sophistication and complexity than other agents. A 
DMA: (1) receives user delegated task specifications from an IA, (2) interprets the 
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specifications and extracts problem solving goals, (3) forms plans to satisfy these goals, 
(4) identifies information seeking sub-goals that are present in its plans, (4) decomposes 
the plans and coordinates with appropriate Information Retrieval Agent (IRA), Modelling 
Agent (MA), Diagnosis Agent (DA) and Action Agent (AA) for plan execution, 
monitoring, and results composition. 

DMA has the following knowledge: 1) knowledge for performing the task (e.g. query 
decomposition, sequencing of task steps), 2) information gathering needs associated with 
the task model, 3) knowledge about relevant information, modelling, diagnosis, and action 
agents that it must coordinate with in support of its particular task, 4) coordination rules 
that enable coordination with the other relevant agents. 

An Information Retrieval Agent (IRA) primarily provides intelligent information 
services. The simpler of these services is a shot retrieval of information in response to a 
query: A more enhanced information service is constant monitoring of available database 
for the occurrence of predefined information patterns. An even more advanced 
information agent can, in addition to communication with other agents, monitor its data 
base for the appearance of particular patterns. A typical information specific agent knows: 
1) model and associated meta-level information of the databases that it is associated with, 
such size, average time it takes to answer a query, 2) procedures for accessing databases, 
3) conflict resolution and information fusion strategies, and 4) protocols for coordination 
with other relevant software agents. 

A Modelling Agent (MA) anticipates the occurrence of contingencies using 
mathematical and computational models. It integrates data from different sources with 
mathematical and computational models that model the contingency in order to predict its 
behaviour and consequences. 

Knowledge management agent (KMA) comprises, manage and update knowledge 
base;  

A Diagnosis Agent (DA) is activated by the receipt of information from DMA which 
indicates that there might be a fault. It uses IA snapshot information and KMA knowledge 
to update its knowledge model of the process on which its diagnosis is based. It pinpoints 
the approximate region of the fault then it generates and verifies the cause of the fault in 
the process.  

The Action Agent (AA) generates a plan of action which can be used to repair the 
process once the cause and location of the fault have been determined. As described in 
Figure 3. a refined representation of DA, AA and KMA agents is given. 
 
5.2. Agents structure 

Clearly, all the modules representing the inner structure of an agent may depend on 
each other. This is especially true for the local problem solver and the coordination 
modules (as shown in Figure 3) which do not only exchange real time information but, in 
addition, must coordinate their decision rules and performance criteria. If we consider the 
relationship between the coordination module, the problem solver, and the knowledge 
base. We found that they have to make sure the data needed available. The 
communication between the agents may roughly be described by the coordination module 
and the interface component. They are describing the way how agents may communicate 

 
5.3.  A coordination protocol 
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The problem solving mechanism is based on a set of cycles until the entire problem is 
solved. Each cycle consists of the following steps: 

1) identifying candidate methods; 
2) identifying triggered methods; 
3) selecting a method; 
4) assigning the method to an agent; 
5) executing the method; and 
6) Evaluating the task state. 
Before launching the problem solving process (diagnosis and actions of repair), The 

DMA Agent ask for help, it calls the coordinator agent which is created at the same time. 
The coordination protocol provides the rules for an information exchange regarding the 
coordination task while the communication protocol (e.g. interface) together with its 
management. In fact, the rules applied in the coordination module concern the 
coordination itself and the way how the data are made available. 

 

 
 
 
 

 

 
 

  
 
5.3.1. The coordinator agent: A coordinator agent in our system exchanges plan 

information with task agents to help them coordinate their actions. The coordinator agent 

Figure 2. Agent architecture for individual DSS 
 

Figure 1. The group decision support system architecture 
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provides two services to task agents: (i) it computes summary information for hierarchical 
plans submitted by the task agents, and, (ii) coordinates hierarchical plans using summary 
information. At the start of each episode, the coordinator waits for coordination requests 
from task agents for a specified interval of time. After the request phase has timed out, the 
coordinator examines the goals and plans of the participating agents. As discussed in the 
previous section, the coordinator may either coordinate the plans of the agents, or inform 
the agents that they can use a previously coordinated plan if the context is appropriate. 

As described in Figure  4. The coordinator agent includes several types of functional 
modules such as: the task generation module, configuration module, a database, and an 
interface and coordination module. The generating task module is the core of this 
architecture; its role is to break up a complex problem into sub-problems. Through its 
participation, it offers a valuable assistance to the DMA agent. It reduces its function of 
handling a problem which has occurred during the management of the GLZ oil plant. The 
coordinator agent analyzes the input events and assigns tasks to agents in order to solve 
the events.  

 

 
 
 

The configuration module ensures the management of multiple coordination episodes 
(steps) and synchronizes the various obtained results. The interface module manages the 
information exchanges between the agent coordinator and the other agents. Finally, the 
coordination module contains the rules. We separated the inter-agent coordination part 
from the problem solving module (task generator module).  

 
5.3.2.   Communication between Agents:  The requests structure presented above is 

also used by agents in their communications. Indeed, these requests formalize the contents 
of the messages exchanged by agents, each of which is structured as follows: m = [id, C, 

Figure 3.  Representation of DA, AA, and  KMA agents
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sender, receiver, agenda]. Where id is the message id, C is the message content, sender 
and receiver are the sender and receiver agents’ ids and the agenda term for indicating the 
memory of the message associated to the initial agent request. 
 
6. A Coordination Scenario 
 

When the task management agent (DMA) receives a task from an interface agent 
(IA), it decomposes the task based on the domain knowledge it has and then delegates the 
primitive tasks to the other agents (IRA, MA, KMA, DA or AA). The task management 
agent will take responsibility for retrieving data, modelling, diagnosing fault, planning 
action, resolving conflicts, coordinating among the related agents and finally reporting to 
the interface agent which conveys the results to the user. The task management agent first 
gets input data through the interface agent. 

 

 
 
 
 
 Next, the modelling agent searches for rules to select a suitable model and to execute 

the model to get analytical results. Additionally, all the parameters values needed by the 
models are retrieved from the database via the information retrieval agent. After finishing 
model analysis, the diagnosing and the action agents use the results of the model analysis 
to identify the fault causes and to perform a suggested action plan. Of course, sometimes, 
the diagnosis and the action agents may independently infer knowledge rules without 
using any model. 

Different methods to achieve a task can be envisaged. Given a task, the system can 
then choose a method dynamically to achieve it. In order to do that, given the name of the 
task to be solve (wording of problem), the system constructs an action plan to be carried 
out (a sub-graph of tasks-methods hierarchy). To this end, first candidate actions are 
proposed. Next, these candidates are checked upon feasibility and relevance. Finally from 
the approved actions a repair plan is prepared. The execution of this plan (guided by the 
human operator) is monitored cooperatively by IA, which groups any alarm messages 
coming from the process, and DA which checks that PA’s predictions about the various 
intermediate states of its recover plan are in fact reflected in the real process.  

To validate the feasibility of the framework, a prototype system is built upon Java 
Agent Development (JADE) Platform. The JADE architecture enables agent 

Coordination 
module 

Task 
generator

    Interface

Configuration 
Module

   DATABASE 

Figure 4. The coordinator agent structure
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communication through message exchange based on the agent communication language 
(ACL). These agents work collectively to achieve the common goal by communicating 
and cooperating toward a better process. To illustrate this, the interface of an action agent 
(AA) is given in Figure 5. 
 

 
 
 
 
7.     Conclusions 
 

In the last decade the technologies used to solve complex problems has shifted from 
developing large and integrated software systems, to delivering small, autonomous and 
heterogeneous software components that can interact with humans, with other software 
components, and different services or data [15].  Multi agent system (MAS) paradigm 
represents the most natural approaches to address complex problems. 

MAS may be employed in many different ways. They can be used in a purely 
structural way, just in splitting up a complex decision problem into simpler tasks, or they 
can be employed in supporting decision making in team-like systems having private 
information or even in principal agent settings and in negotiations[2]. 

In this paper, we have integrated agents into GDSS for the purpose of automating 
more tasks for the decision maker, enabling more indirect management, and requiring less 
direct manipulation of the DSS.  In particular, agents were used to collect information and 
generate alternatives that would allow the user to focus on solutions found to be 
significant. Based on this, and considering that communication capabilities play an 
essential role in GDSS to enable ‘any-time, any-place” operation mode of the system. 
Further work based on coordination protocols between agents needs to be done. 
Particularly, the context information domain included in the software tool will be 
extended in order to improve the support for decision making and the coordination 
activities.  We intend to present an efficient algorithm for multi-agent coordination based 
on the work presented by Cox et al. [13] in another paper.  And Finally,  as stated in [10] 

Figure 5. Action Agent interface 
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Web technology will be ever more considered in DSS, thereby people will make co-
decisions in ‘‘virtual teams’’, no matter where they are temporarily located, thus  we 
intend to integrate Web services at the design level so that we can conduct research on the 
decision and collaboration behaviors of geographically dispersed teams.  
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