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Abstract

A distribution-based classification approach and a set of recently developed texture measures are applied to rotation-invariant texture clas-
sification. The performance is compared to that obtained with the well-known circular-symmetric autoregressive random field (CSAR)
model approach. A difficult classification problem of 15 different Brodatz textures and seven rotation angles is used in experiments. The
results show much better performance for our approach than for the CSAR features. A detailed analysis of the confusion matrices and the
rotation angles of misclassified samples produces several interesting observations about the classification problem and the features used
in this study.
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1. INTRODUCTION

Texture analysis is important in many applications of computer image analysis for classification, detection, or segmenta-
tion of images based on local spatial variations of intensity or color. Important applications include industrial and biomedi-
cal surface inspection; for example for defects and disease, ground classification and segmentation of satellite or aerial
imagery, segmentation of textured regions in document analysis, and content-based access to image databases.

There are many applications for texture analysis in which rotation-invariance is important, but a problem is that many of
the existing texture features are not invariant with respect to rotations. Some invariance for features derived from co-occur-
rence matrices or difference histograms can be obtained, for example, by simply averaging the matrices (histograms) or
features computed for different angles, e.g. for 0, 45, 90 and 135 degrees. Other early approaches proposed for rotation-
invariant texture classification include the methods based on polarograms(1), generalized co-occurrence matrices(2) and tex-
ture anisotropy(3). Kashyap and Khotanzad developed a method based on the circular symmetric autoregressive random
field (CSAR) model for rotation-invariant texture classification(4). Mao and Jain proposed a multivariate rotation-invariant
simultaneous autoregressive model (RISAR) that is based on the CSAR model, and extended it to a multiresolution SAR
model MR-RISAR)(5). A method for classification of rotated and scaled textures using Gaussian Markov random field
models was introduced by Cohen et al.(6). Approaches based on Gabor filtering have been proposed by, among others,
Leung and Peterson(7), Porat and Zeevi(8), and Haley and Manjunath(9). A steerable oriented pyramid was used to extract
rotation invariant features by Greenspan et al.(10) and a covariance-based representation to transform neighborhood about
each pixel into a set of invariant descriptors was proposed by Madiraju and Liu(11). You and Cohen extended Laws’ masks
for rotation-invariant texture characterization in their “tuned” mask scheme(12).

Recently, we introduced new measures for texture classification based on center-symmetric auto-correlation and local
binary patterns, using Kullback discrimination of sample and prototype distributions, and conducted an extensive compara-
tive study of texture measures with classification based on feature distributions(13,14). By using a standard set of test
images, we showed that very good texture discrimination can be obtained by using distributions of simple texture meas-
ures, like absolute gray level differences, local binary patterns or center-symmetric auto-correlation. The performance is
usually further improved with the use of two-dimensional distributions of joint pairs of complementary features(14). In
experiments involving various applications, we have obtained very good results with this distribution-based classification
approach, see e.g.(15). Recently, we also extended our approach to unsupervised texture segmentation with excellent
results(16). An overview of our recent progress is presented in(17).

In our earlier experiments, the problems related to rotation invariance have not been considered. This paper investigates
the efficiency of distribution-based classification, and our feature set in rotation-invariant texture classification. We are
especially interested in seeing the performances for relatively small windows (64x64 and 32x32 pixels) required by many
applications, whereas many of the existing approaches have been tested with larger windows. Texture measures based on
center-symmetric autocorrelation, gray level differences and a rotation-invariant version of the Local Binary Pattern opera-
tor, LBPROT, are used in experiments. A simple method based on bilinear gray level interpolation is used to improve rota-



tion-invariance when extracting texture features in a discrete 3x3 neighborhood. The performance of LBPROT recently
proposed by Ojala(18) is now experimentally evaluated for the first time. The use of joint pairs of features to increase the
classification accuracy is also studied. The results for distribution-based classification are compared to those obtained with
the well-known CSAR features.

2. TEXTURE MEASURES

2.1 Measures Based on Center-symmetric Auto-correlation

In a recent study of Harwood et al.(13), a set of related measures was introduced, including two local center-symmetric
auto-correlation measures, with linear (SAC) and rank-order versions (SRAC), together with a related covariance measure
(SCOV). All of these are rotation-invariant robust measures and, apart from SCOV, they are locally gray-scale invariant.
These measures are abstract measures of texture pattern and gray-scale, providing highly discriminating information about
the amount of local texture. A mathematical description of these measures computed for center-symmetric pairs of pixels in
a 3x3 neighborhood (see Fig. 1) is presented in equations (1) - (4).µ denotes the local mean andσ2 the local variance in the
equations.

Fig. 1. 3x3 neighborhood with four center-symmetric pairs of pixels.

SCOV is a measure of the pattern correlation as well as the local pattern contrast. Since it is not “normalized” in respect
to local gray-scale variation, it provides more texture information than the normalized auto-correlation measures SAC and
SRAC. SAC is an auto-correlation measure, a “normalized”, gray-scale invariant version of the texture covariance measure
SCOV. SAC is invariant under linear gray-scale shifts such as correction by mean and standard deviation. It should also be
noted that values of SAC are bound between -1 and 1.

Texture statistics based directly on gray values of an image are sensitive to noise and monotonic shifts in the gray scale.
With SRAC, the local rank order of the gray values is used instead of the gray values themselves. Hence, SRAC is invariant
under any monotonic transformation including correction by mean and standard deviation and histogram equalization. The
amount of auto-correlation in the ranked neighborhood is given by Spearman’s rank correlation. It is defined for the nxn
neighborhood with 4 center-symmetric pairs of pixels as (3), wherem is n2, and eachti is the number of ties at rankr i in the
ranked neighborhood. The values of SRAC are bound between -1 and 1.
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The symmetric variance ratio (ratio between the within-pair and between-pair variances), SVR, is a statistic equivalent to
the auto-correlation measure SAC. SVR is also invariant under linear gray-scale shifts.

Additionally, the discrimination information provided by three local variance measures can be used. VAR (= BVAR +
WVAR) and the two elements contributing to it are all measures of local gray-scale variation, very sensitive to noise and
other local gray-scale transformations. The between-pair variance, BVAR, is mostly a measure of residual texture variance
and usually it is a very small part of VAR. The majority of local variance is generally due to the within-pair variance
WVAR. In our experiments, the classification results for the VAR measure are reported.

2.2 Rotation-Invariant Local Binary Pattern

In the Local Binary Pattern (LBP) texture operator we introduced(14), the original 3x3 neighborhood (Fig. 2a) is thresh-
olded at the value of the center pixel. The values of the pixels in the thresholded neighborhood (Fig. 2b) are multiplied by
the binomial weights given to the corresponding pixels (Fig. 2c). The result for this example is shown in Fig. 2d. Finally,
the values of the eight pixels are summed to obtain the LBP number (169) of this texture unit. By definition LBP is invari-
ant to any monotonic gray scale transformation. The texture contents of an image region are characterized by the distribu-
tion of LBP.

Fig. 2. Computation of Local Binary Pattern (LBP).

LBP is not rotation invariant, which is undesirable in certain applications. It is possible to define rotation invariant ver-

sions of LBP; one solution is illustrated in Fig. 3(18). The binary values of the thresholded neighborhood (Fig. 3a) are
mapped into an 8-bit word in clockwise or counter-clockwise order (Fig. 3b). An arbitrary number of binary shifts is then
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made (Fig. 3c), until the word matches one of the 36 different patterns (Fig. 3d) of ‘0’ and ‘1’ an 8-bit word can form under
rotation. The index of the matching pattern is used as the feature value, describing the rotation invariant LBP of this partic-
ular neighborhood.

Fig. 3. Computation of LBPROT, rotation-invariant version of LBP.

2.3 Gray Level Difference Method

The method based on histograms of absolute differences between pairs of gray levels or of average gray levels has per-
formed very well in some comparative studies and applications, see e.g.(14,15). For any given displacementd = (dx,dy),
where dx and dy are integers, let f’(x,y) = |f(x,y) - f(x+dx,y+dy)|. Let P’ be the probability density function of f’. If the
image has m gray levels, this has the form of an m-dimensional vector whose ith component is the probability that f’(x,y)
will have value i. P’ can be easily computed by counting the number of times each value of f’(x,y) occurs. For a smalld,
the difference histograms will peak near zero, while for a largerd they are more spread out.

The rotation invariant feature DIFF4 is computed by accumulating, in the same 1-dimensional histogram, the absolute
gray level differences in all four principal directions at the chosen displacement D. If D = 1, for example, the displacements
d = (0,1), (1,1), (1,0) and (1,-1) are considered.

3. CLASSIFICATION BASED ON FEATURE DISTRIB UTIONS

Most of the approaches to texture classification quantify texture measures by single values (means, variances etc.), which
are then concatenated into a feature vector. In this way, much of the important information contained in the whole distribu-
tions of feature values is lost.

In this paper, a log-likelihood pseudo-metric, the G statistic, is used for comparing feature distributions in the classifica-
tion process. The value of the G statistic indicates the probability that the two sample distributions come from the same
population: the higher the value, the lower the probability that the two samples are from the same population. For a good-
ness-of-fit test the G statistic is:

wheres andm are the sample and model distributions, n is the number of bins andsi, mi are the respective sample and
model probabilities at bin i. In the experiments a texture class is represented by a number of model samples. When a partic-
ular test sample is being classified, the model samples are ordered according to the probability of them coming from the
same population as the test sample. This probability is measured by a two-way test-of-interaction:
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wherefi is the frequency at bin i. For a detailed derivation of the formula, see Sokal and Rohlf(19). After the model samples
have been ordered, the test sample is  classified using the k-nearest neighbor principle, i.e. the test sample is assigned to the
class of the majority among its k nearest models. In our experiments, a value of 3 was used for k.

The feature distribution for each sample is obtained by scanning the texture image with the local texture operator. The
distributions of local statistics are divided into histograms having a fixed number of bins; hence, the G tests for all pairings
of a sample and a model have the same number of degrees-of-freedom. The feature space is quantized by adding together
feature distributions for every single model image in a total distribution which is divided into 32 bins having an equal
number of entries. Hence, the cut values of the bins of the histograms correspond to 3.125 (100 / 32) percentile of com-
bined data. Deriving the cut values from the total distribution, and allocating every bin the same amount of the combined
data guarantees that the highest resolution of the quantization is used where the number of entries is largest and vice versa.
It should be noted that the quantization of feature space is only required for texture operators with a continuous-valued out-
put. Output of discrete operators like LBP or LBPROT, where two successive values can have totally different meaning,
does not require any further processing; operator outputs are just accumulated into a histogram.

To compare distributions of complementary feature pairs, metric G is extended in a straightforward manner to scan
through the two-dimensional histograms. If quantization of the feature space is required, it is done separately for both fea-
tures using the same approach as with single features.

4. EXPERIMENTAL DESIGN

4.1. Texture Images

In the experiments, 15 classes of Brodatz(20) textures - pressed cork (D4), grass lawn (D9), herringbone weave (D16),
woolen cloth (D19), french canvas (D21), calf leather (D24), beach sand (D29), pressed cork (D32), straw cloth (D53),
handmade paper (D57), wood grain (D68), cotton canvas (D77), raffia (D84), pigskin (D92) and calf fur (D93) - were used.
The original 600x450 images were globally gray-scale corrected by Gaussian match(21).

Fig. 4. Brodatz textures.
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First, each image was rotated by 11 degrees around its center using  bicubic interpolation, in order to have a uniform
behavior with respect to interpolation effects for both rotated and unrotated samples in the experiments. The operator
included in the MATLAB Image Processing Toolbox was used(22). In further discussion, we call these processed images
reference images and they served as training data in the classification experiments. Then, the rotated images used for test-
ing the texture classifier were generated by rotating each image counter-clockwise around its center with the same bicubic
interpolation method. We used the same set of six different rotation angles that was used by Kashyap and Khotanzad(4): 30,
60, 90, 120, 150, and 200 degrees. In other words this is a true test of rotation-invariant texture classification, for the classi-
fier ‘sees’ only instances of reference  textures, and it is tested with instances of rotated textures it has not ‘seen’ before.

Fig. 5. Extraction of 64x64 samples from a rotated 600 x 450 image.

In order to analyze the effect of the window size, samples of two different sizes were used: 64x64 and 32x32 pixels. The
samples were extracted inside a 256x256 rectangle located in the center of each texture image. Fig. 4 depicts the 256x256
images of each texture and Fig. 5 illustrates the extraction of sixteen 64x64 samples for a texture with a rotation of 30
degrees (+ original rotation of 11 degrees). Hence, with the window size of 64x64 pixels each texture class contained 16
reference samples for training the classifier and 6x16=96 rotated samples for testing it. Similarly, each texture class con-
tained 64 training samples and 6x64=384 testing samples when the window size of 32x32 pixels was used. Even though the
original texture images were globally corrected by Gaussian match, each individual sample image was also histogram
equalized prior to feature extraction, to minimize the effect of possible local variations within the images.

4.2. Use of Gray Scale Interpolation and Joint Pairs of Complementary Features

A problem with computing rotation-invariant texture features in a local neighborhood is that the diagonal neighbors are
farther from the center pixel than the horizontal and vertical neighbors, respectively. To reduce the effects of this on the
classification performance, the pixel values for “virtual” diagonal neighbors, located at the same distance from the center
pixel than the horizontal and vertical neighbors, can be computed from the original pixel values by interpolation. In our
experiments, we used a simple bilinear gray scale interpolation method for this purpose.

In most cases, a single texture measure cannot provide enough information about the amount and spatial structure of
local texture. Better discrimination of textures should be obtained by considering the joint occurrence of two or more fea-
tures. In(14), we showed that the use of joint distributions of such pairs of features which provide complementary informa-



tion about textures, usually improves the classification accuracy.
In this study, we perform experiments with various pairs of center-symmetric features and LBPROT. Our goal is not to

find an optimal feature pair for this task, but to see how much improvement a joint feature pair can provide in the rotation-
invariant classification problem.

5. RESULTS AND DISCUSSION

5.1. Single Feature Performance

Table 1 shows the results of rotation-invariant classification for single features for window sizes of 64x64 and 32x32 pix-
els, without and with the interpolation of diagonal neighbors when features are extracted. In the case of 64x64 samples,
VAR and SCOV features with interpolation provide the best error rates of 14.2% and 16.3%, respectively. DIFF4 also per-
forms reasonably well with an error rate of 27.2%, whereas the worst results are obtained with the gray-scale invariant fea-
tures (LBPROT, SVR, SAC, SRAC), indicating that information about local gray-scale contrast is useful in discriminating
these Brodatz textures. We see that the use of gray level interpolation usually improves the performance. Understandably,
error rates for 32x32 samples are much higher, and the performance of e.g. VAR deteriorates to 36.4%. The 32x32 samples
contain only one fourth of the pixel data of the 64x64 samples, and consequently the feature histograms possess less dis-
criminative power.

A closer examination of confusion matrices reveals that the center-symmetric features have most trouble in discriminat-
ing disordered textures. For example, in the case of 64x64 samples, textures D4, D9, D24, and D32 contribute almost 70%
of the misclassified samples when feature VAR is used. Interestingly, LBPROT has no trouble separating D9 nor D32,
missing only three of the 192 samples belonging to these two classes. This suggests that a better result could be obtained by
carrying out classification in stages, selecting features which best discriminate among remaining alternatives. The local
gray-scale contrast seems to be particularly useful in separating textures D21, D57, and D77, for in these cases SCOV and
VAR provide almost perfect results while their gray-scale invariant counterparts LBPROT, SVR, SAC, SRAC fail misera-
bly. All features are able to discriminate textures D16 and D93, which both exhibit strong local orientation.

Similarly, a closer look at the rotation angles of misclassified samples reveals several interesting details. As expected, of
the six rotation angles all features have the fewest misclassified samples at 90 degrees. This attributes to the pseudo rota-
tion-invariant nature of our features. For example, both the center-symmetric features and DIFF4 are truly rotation-invari-
ant only in rotations that are multiples of 45 degrees, when computed in a 3x3 neighborhood, and in the chosen set of
rotation angles 90 degrees happens to be the only one of this type. A related observation, similarly attributed to the pseudo
rotation-invariant nature of the features, is that the results obtained at a particular rotationα and at its orthogonal counter-
part (α+90o) are very similar for all features. In other words, almost identical results are obtained at 30 and 120 degrees,
just like is the case with 60 and 150 degrees. This suggests that the set of six rotation angles we adopted from Kashyap and
Khotanzad(4) is suboptimal, at least when 3x3 operators are used. A more comprehensive test could be obtained by choos-
ing a set of rotation angles that does not contain any two angles differing a multiple of 45 degrees.

The rotation-invariance of the features can be improved by utilizing their generic nature. The features are not restricted to
a 3x3 neighborhood, but they all can be  generalized to scale. For example, the center-symmetric measures can be com-
puted for suitably symmetrical digital neighborhoods of any size,  such as disks or boxes of odd or even sizes. This allows
for obtaining a finer quantization of orientations for example with a 5x5 box which contains eight center-symmetric pairs
of pixels.

In earlier studies LBP, the rotation-variant ancestor of LBPROT, has proven to be very powerful in discriminating unro-
tated homogeneous Brodatz textures. However, in this study LBPROT provides fairly poor results with rotated Brodatz tex-
tures. By definition LBPROT is rotation-invariant only in digital domain, and consequently, of the six rotation angles, the
interpretation of rotated binary patterns works properly only at 90 degrees, where LBPROT provides clearly the best result
of all features. In other angles, however, rotated binary patterns are obviously not mapped properly. This  is particularly
apparent in the case of strongly ordered textures (e.g. D21, D53, D68, and D77) where LBPROT provides perfect results at
90 degrees, but fails completely at other rotation angles. This suggests that the current mapping of rotated binary patterns is
probably far too strict, and could be relaxed by grouping together rotated patterns that have a specific Hamming distance,
for example.



5.2. Results for Joint Pairs of Features

The results obtained with joint pairs of features are presented in Tables 2 and 3. The gray scale interpolation was used in
feature extraction and the histograms were quantized into 8x8 bins (36x8 for pairs including LBPROT). As expected, the
use of feature pairs clearly improves the classification compared to the case of single features. We see that the feature pairs
LBPROT/VAR and LBPROT/SCOV provide the best performance with error rates of 10.1% and 10.8% for 64x64 samples
and 24.1% and 24.0% for 32x32 samples, respectively. Many other feature pairs also achieve error rates close to 10% for
64x64 samples, including SCOV/VAR, SCOV/SVR, SAC/SCOV and DIFF4/SAC. All these pairs have one thing in com-
mon: they include a feature that incorporates local gray-scale contrast. This emphasizes the importance of contrast in dis-
criminating Brodatz textures. Consequently, the pairs of gray-scale invariant features fail.

Table 1: Error rates (%) obtained with single features.

window
size

interpolation DIFF4 LBPROT SCOV SAC SRAC SVR VAR

64x64 no 28.5 38.5 27.6 37.1 41.2 36.9 24.0

yes 27.2 39.2 16.3 32.4 48.1 31.8 14.2

32x32 no 44.9 50.5 39.0 53.6 48.4 53.9 40.7

yes 39.6 47.7 35.1 50.0 59.4 50.3 36.4

Table 2:  Error rates (%) obtained with pairs of features for 64x64 samples.

LBPROT SCOV SAC SRAC SVR VAR

DIFF4 17.6 12.8 12.6 30.6 12.9 16.3

LBPROT 10.8 29.2 38.1 29.2 10.1

SCOV 11.6 31.7 11.5 10.6

SAC 43.9 32.0 14.6

SRAC 44.2 23.4

SVR 14.4

Table 3:  Error rates (%) obtained with pairs of features for 32x32 samples.

LBPROT SCOV SAC SRAC SVR VAR

DIFF4 30.2 25.5 28.7 40.0 28.5 30.7

LBPROT 24.0 41.2 45.5 41.0 24.1

SCOV 28.7 38.1 28.6 29.8

SAC 54.5 50.9 28.4

SRAC 54.2 35.2

SVR 28.4



In the previous section we made a remark about all features having the fewest misclassified samples at the rotation angle
of 90 degrees. This phenomenon is much stronger when joint pairs of features are used. For example, in the case of
LBPROT/VAR only 5 of the 145 misclassified samples occur at 90 degrees, while each other rotation angle contributes at
least 24 misclassified samples.

Interestingly, even though LBPROT does fairly poorly by itself, LBPROT combined with a gray-scale variant feature
(SCOV or VAR) provides the best results of all pairings. This indicates that the combination of just crude pattern shape/
code and pattern contrast is a useful description of rotated Brodatz textures. The shortcomings of LBPROT are still appar-
ent, though, for in the case of 64x64 samples, strongly ordered texture D21 contributes 80 of the 145 samples misclassified
by the LBPROT/VAR pair. These 80 misclassified D21 samples, which all are incidentally assigned to class D9, correspond
to samples of all other rotation angles but those of 90 degrees which are classified correctly. Obviously, a significant
improvement in the classification accuracy can be expected, when the shapes of rotated binary patterns are described effec-
tively.

6.  QUANTIT ATIVE COMP ARISON TO CIRCULAR-SYMMETRIC A UTOREGRESSIVE RANDOM FIELD
(CSAR) MODEL

6.1. CSAR Features

For comparison purposes we used the circular-symmetric autoregressive random field (CSAR) model which was pro-
posed for rotation invariant texture classification by Kashyap and Khotanzad(4). The general expression of the model is
described as:

where {y(s), , } is a set of pixel intensity values of a givenMxM digitized discrete
image;s are the pixel coordinates;Nc is the neighborhood pixel set;r are the neighborhood pixel coordinates;ν(s) is a cor-
related sequence with zero mean and unit variance;α andβ are the coefficients of the CSAR model; and  denotes mod-
ulo M addition. The model from this equation yields two parameters,α andβ. Parameterα measures a certain isotropic
property of the image andβ a roughness property. The rotation invariant characteristics ofα andβ are contributed by the
choice of the interpolated circular neighbourhood of image pixels. There is also a third parameterζ which is a measure of
directionality and is determined by fitting other SAR models over the image(4).

6.2. Classification Procedure

Texture classification is performed by extracting parametersα, β andζ from the sample images, and feeding them to a
feature vector classifier. In other words, a texture sample is represented by three numerical CSAR features, in contrast to
our approach where features are described by histograms of 32 bins. The texture classifier is trained with the features of the
reference samples, and tested with the rotated samples. Both a multivariate Gaussian (quadratic) classifier and a 3-NN
(nearest neighbor) classifier were used. When the 3-NN classifier was used, the features were first normalized into the
range 0-1 by dividing each feature with its maximum value over the entire training data.

6.3. Results and Discussion

Since the quadratic classifier provided slightly better results than the 3-NN classifier, the discussion is based on the
results obtained with the quadratic classifier (Table 4).  Even though none of the individual features is very powerful by
itself (the best feature () provides error rates of 51.9% and 60.0% for the 64x64 and 32x32 samples, respectively), the
three features combined offer a reasonable texture discrimination with error rates of 15.3% and 29.3%, respectively. How-
ever, we see that the distribution-based classification with single features (e.g. VAR and SCOV) performs about as well as
the three CSAR features combined in the case of 64x64 samples, and several pairs of joint features provide better perform-
ance than the combined CSAR features for both the 64x64 and 32x32 samples.

y s( ) α gr y s r⊕( ) βv s( )+
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Confusion matrices reveal that the CSAR features have difficulties in separating textures D4, D24, D57, and D68. When
all three features are used,  these four classes contribute almost 80% of the 221 misclassified 64x64 samples. The confusion
is particularly severe between classes D4 (pressed cork) and D24 (pressed calf leather). Examination of the rotation angles
of the misclassified samples verifies the observation of the pseudo rotation-invariant nature of 3x3 operators made in Sec-
tion 5.1., for again by far the fewest misclassified samples occur at 90 degrees (only 10, while each other rotation angle
contributes at least 31), and again the results obtained at two orthogonal rotation angles are almost identical.

7. CONCLUSION

In this paper, a distribution-based classification approach and a set of texture measures based on center-symmetric auto-
correlation and local binary patterns were applied to rotation-invariant texture classification. The performance of the pro-
posed approach was compared to that of circular-symmetric autoregressive random field (CSAR) model with a difficult
classification problem involving 15 different Brodatz textures and seven rotation angles. The error rates of the best single
features (SCOV, VAR) were comparable to those obtained with the three CSAR features combined, and better results were
achieved with distributions of joint pairs of features.

It was also shown that the rotation invariance of texture measures in a discrete 3x3 neighborhood can be improved by
gray level interpolation. The experimental results also emphasize the importance of local pattern contrast in discriminating
Brodatz textures, for even though the samples were corrected against global gray-scale variations, the features measuring
local gray-scale variations clearly outperformed their gray-scale invariant counterparts. Another observation, verified both
with our operators and with the CSAR features, was the pseudo rotation-invariant nature of the features which should be
taken into account when designing new operators and new studies on rotation-invariant texture classification. The short-
comings of LBPROT, the rotation-invariant version of the powerful LBP operator, were exposed, and a significant improve-
ment in classification accuracy can be expected, once the shapes of rotated binary patterns are described effectively.
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