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Abstract

A distribution-based classification approach and a set of recently developed texture measures are applied to rotation-invariant texture clas-
sification. The performance is compared to that obtained with the well-known circular-symmetric autoregressive random field (CSAR)
model approach. A difficult classification problem of 15 different Brodatz textures and seven rotation angles is used in experiments. The
results show much better performance for our approach than for the CSAR features. A detailed analysis of the confusion matrices and the
rotation angles of misclassified samples produces several interesting observations about the classification problem and the features use
in this study.
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1. INTRODUCTION

Texture analysis is important in maapplications of computer image analysis for classification, detectiormgroesta-
tion of images based on local spatiatiations of intensity or colormportant applications include industrial and biomedi-
cal surfice inspection; forxample for defects and disease, ground classification ymesgation of satellite or aerial
imagery s@gmentation of tetured rgions in document analysis, and content-based access to image databases.

There are manapplications for teture analysis in which rotationyvariance is important,ub a problem is that mgrof
the eisting texture features are notvariant with respect to rotations. Somesariance for features deed from co-occur-
rence matrices or ddrence histograms can be obtained, faneple, by simply eeraging the matrices (histograms) or
features computed for d&frent angles, e.g. for 0, 45, 90 and 13§rdes. Other early approaches proposed for rotation-
invariant texture classification include the methods based on polaro&)agmeralized co-occurrence matriéeand te-
ture anisotrop(3). Kaslyap and Khotanzad deloped a method based on the circular symmetric auressie random
field (CSAR) model for rotation-irariant teture classificatioff). Mao and Jain proposed a muiiiate rotation-iariant
simultaneous aut ssve model (RISAR) that is based on the CSAR model, atehded it to a multiresolution SAR
model MR-RISARY). A method for classification of rotated and scaledutes using Gaussian Mark random field
models vas introduced by Cohen et®. Approaches based on Gabor filteringéndeen proposed pgmong others,
Leung and Petersbi, Porat and Ze&®), and Halg and Manjunat??). A steerable orientedypamid was used toaract
rotation irvariant features by Greenspan etl8).and a ceariance-based representation to transform neighborhood about
each piel into a set of imariant descriptors as proposed by Madiraju and (Y. You and Cohenxtended Lavs’ masks
for rotation-irvariant teture characterization in their “tuned” mask schéie

Recently we introduced ne measures for ¥ure classification based on certgmmetric auto-correlation and local
binary patterns, usingwlback discrimination of sample and prototype disttitns, and conducted artensive compara-
tive study of teture measures with classification based on feature ditnig13:14) By using a standard set of test
images, we shwed that ery good tgture discrimination can be obtained by using distidns of simple teture meas-
ures, like absolute gray Vel differences, local binary patterns or cersgmmetric auto-correlation. The performance is
usually further impreed with the use of terdimensional distritions of joint pairs of complementary featdtés In
experiments imolving various applications, we ha obtained gry good results with this disttibion-based classification
approach, see e(bf?. Recently we also gtended our approach to unsupervisedure sgmentation with ecellent
result$1®). An overview of our recent progress is presentéd’i

In our earlier gperiments, the problems related to rotatiorairance hee not been considered. This papeesticates
the eficiengy of distribution-based classification, and our feature set in rotatieariant texture classification. &/ are
especially interested in seeing the performances forvellagmall windevs (64x64 and 32x32 piks) required by man
applications, whereas maf the &isting approaches kia been tested with Iger windavs. Texture measures based on
centersymmetric autocorrelation, graykl differences and a rotationviariant \ersion of the Local Binaryd®tern opera-
tor, LBPROT, are used inxperiments. A simple method based on bilinear gregl limterpolation is used to impre rota-



tion-invariance whendracting teture features in a discrete 3x3 neighborhood. The performance of@BRiently
proposed by Ojafés) is nov experimentally galuated for the first time. The use of joint pairs of features to increase the
classification accurgds also studied. The results for distrilon-based classification are compared to those obtained with
the well-knavn CSAR features.

2. TEXTURE MEASURES
2.1 Measues Based on Centsymmetric Ato-correlation

In a recent study of Hawod et a3, a set of related measureasnintroduced, including twlocal centesymmetric
auto-correlation measures, with linear (§4and rank-orderersions (SRE), together with a related eariance measure
(SCOV). All of these are rotation-irariant rolust measures and, apart from SC@hey are locally gray-scale variant.
These measures are abstract measuregtaféepattern and gray-scale, piding highly discriminating information about
the amount of local i¢ure. A mathematical description of these measures computed forsgmi@etric pairs of pis in
a 3x3 neighborhood (see Fig. 1) is presented in equations (1p-déiotes the local mean aotlthe local ariance in the
equations.
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Fig. 1. 3x3 neighborhood with four centeymmetric pairs of pis.

SCOV is a measure of the pattern correlation as well as the local pattern contrast. Since it is not “normalized” in respect
to local gray-scaleariation, it prowides more teture information than the normalized auto-correlation measur€saB4
SRAC. SAC is an auto-correlation measure, a “normalized”, gray-scaeiamt \ersion of the t&ture cwvariance measure
SCOV. SAC is invariant under linear gray-scale shifts such as correction by mean and stanésionddt should also be
noted that &lues of S& are bound between -1 and 1.

4
SCOV = 35 (4 =)0~ (1)

sac = 3 @)

(¢}

Texture statistics based directly on grafues of an image are sensitito noise and monotonic shifts in the gray scale.
With SRAC, the local rank order of the graglues is used instead of the grajues themsebs. Hence, SR@. is invariant
under ag monotonic transformation including correction by mean and standaiatide and histogram equalization. The
amount of auto-correlation in the ratkneighborhood is ¢gn by Spearmas’rank correlation. It is defined for the nxn
neighborhood with 4 centsymmetric pairs of pids as (3), whermis r?, and eacly is the number of ties at rankin the
ranked neighborhood. Thealues of SRE are bound between -1 and 1.
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The symmetric ariance ratio (ratio between the within-pair and between-pagnces), SVR, is a statistic egalent to
the auto-correlation measure SASVR is also ivariant under linear gray-scale shifts.

WVAR (5)

SVR = BVAR

Additionally, the discrimination information pvaded by three localariance measures can be use8iR\(= BVAR +
WVAR) and the tw elements contriliing to it are all measures of local gray-scaeation, \ery sensitie to noise and
other local gray-scale transformations. The between-paance, BR, is mostly a measure of residuatttee \ariance
and usually it is aary small part of XR. The majority of local &riance is generally due to the within-paariance
WVAR. In our xperiments, the classification results for tifeRVmeasure are reported.
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2.2 Rotation-Imariant Local Binary Rttern

In the Local Binary Bttern (LBP) t®ture operator we introduced), the original 3x3 neighborhood (Fig. 2a) is thresh-
olded at the &lue of the center pet. The \alues of the pigls in the thresholded neighborhood (Fig. 2b) are multiplied by
the binomial weights gen to the corresponding gits (Fig. 2c). The result for thisx@ample is shan in Fig. 2d. Finally
the \alues of the eight pets are summed to obtain the LBP number (169) of tkisre unit. By definition LBP is iari-
ant to ay monotonic gray scale transformation. Theuee contents of an imagegien are characterized by the distrib
tion of LBR
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Fig. 2. Computation of Local Binaryd®tern (LBP).

LBP is not rotation imariant, which is undesirable in certain applications. It is possible to define rotatoiain \er-

sions of LBP; one solution is illustrated in Fig.(1§). The binary alues of the thresholded neighborhood (Fig. 3a) are
mapped into an 8-bit evd in clockwise or counterlockwise order (Fig. 3b). An arbitrary number of binary shifts is then



made (Fig. 3c), until the avd matches one of the 36fdifent patterns (Fig. 3d) of ‘0’ and ‘1’ an 8-bibwd can form under
rotation. The inde of the matching pattern is used as the feataheey describing the rotationvariant LBP of this partic-
ular neighborhood.
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Fig. 3. Computation of LBPRT, rotation-irvariant \ersion of LBP

2.3 Gray Level Difference Method

The method based on histograms of absoluferdifices between pairs of graydts or of aerage gray Meels has per-
formed \ery well in some comparat studies and applications, see @%g®) For ary given displacemerd = (dx,dy),
where dx and dy are irgers, let f(x,y) = [f(x,y) - f(x+dx,y+dy)|. Let P’ be the probability density function bfIf the
image has m grayVels, this has the form of an m-dimensionattor whose ith component is the probability théd,y)
will have value i. P’ can be easily computed by counting the number of times alaehof f(x,y) occurs. Br a smalld,
the diference histograms will peak near zero, while for gded they are more spread out.
The rotation imariant feature DIFF4 is computed by accumulating, in the same 1-dimensional histogram, the absolute
gray level differences in all four principal directions at the chosen displacement D. If D = %afopke, the displacements
d=(0,1), (1,2), (1,0) and (1,-1) are considered.

3. CLASSIFICATION BASED ON FEATURE DISTRIB UTIONS

Most of the approaches toctare classification quantify xéure measures by singlalues (means.ariances etc.), which
are then concatenated into a featwretar In this way, much of the important information contained in the whole distrib
tions of feature &lues is lost.

In this papera log-likelihood pseudo-metric, the G statistic, is used for comparing featureudistbin the classifica-
tion process. Thealue of the G statistic indicates the probability that the sample distribtions come from the same
population: the higher thealue, the laver the probability that the twsamples are from the same populatiar. &good-
ness-of-fit test the G statistic is:
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wheres andm are the sample and model distiions, n is the number of bins argl m, are the respest sample and
model probabilities at bin In the eperiments a tdure class is represented by a number of model samples. When a partic-
ular test sample is being classified, the model samples are ordered according to the probability of them coming from the
same population as the test sample. This probability is measured bynaywtest-of-interaction:
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wheref; is the frequengcat bin i. For a detailed devation of the formula, see Sokal and RO After the model samples
have been ordered, the test sample is classified using the k-nearest neighbor principle, i.e. the test sample is assigned to th
class of the majority among its k nearest models. In xperements, aalue of 3 vas used for k.

The feature distrilition for each sample is obtained by scanning thieite image with the local xture operatorThe
distributions of local statistics arewiiled into histograms king a fixed number of bins; hence, the G tests for all pairings
of a sample and a modelvgathe same number of glees-of-freedom. The feature space is quantized by adding together
feature distrintions for @ery single model image in a total distrilton which is dvided into 32 bins hang an equal
number of entries. Hence, the catues of the bins of the histograms correspond to 3.125 (100 / 32) percentile of com-
bined data. Deving the cut alues from the total distnittion, and allocatingwery bin the same amount of the combined
data guarantees that the highest resolution of the quantization is used where the number of egessaisdarnceersa.
It should be noted that the quantization of feature space is only requirextdioe teperators with a continuouahred out-
put. Output of discrete operatorsdik BP or LBPROT, where tvo successe values can hee totally diferent meaning,
does not require grfurther processing; operator outputs are just accumulated into a histogram.

To compare distriltions of complementary feature pairs, metric Gxterded in a straightforavd manner to scan
through the tw-dimensional histograms. If quantization of the feature space is required, it is done separately for both fea-
tures using the same approach as with single features.

4. EXPERIMENTAL DESIGN
4.1. Bxture Images

In the experiments, 15 classes of Brodat textures - pressed cork (D4), grasaia(D9), herringbone wea (D16),
woolen cloth (D19), french caas (D21), calf leather (D24), beach sand (D29), pressed cork (D3%),cktth (D53),
handmade paper (D57)pad grain (D68), cotton caas (D77), rdfa (D84), pigskin (D92) and calf fur (D93) - were used.
The original 600x450 images were globally gray-scale corrected by Gaussiaffhatch

Fig. 4. Brodatz tetures.



First, each image as rotated by 11 deees around its center using bicubic interpolation, in orderv® &ainiform
behaior with respect to interpolation fetts for both rotated and unrotated samples in peraments. The operator
included in the MALAB Image Processingoblbox was useff?). In further discussion, we call these processed images
reference images and theened as training data in the classificatioperiments. Then, the rotated images used for test-
ing the tature classifier were generated by rotating each image cealatdwise around its center with the same bicubic
interpolation method. Wused the same set of sixfeiént rotation angles thatas used by Kasfap and Khotanz&8: 30,

60, 90, 120, 150, and 200gtees. In other wrds this is a true test of rotationsamiant teture classification, for the classi-
fier ‘sees’ only instances of referencettrees, and it is tested with instances of rotatgtltes it has not ‘seen’ before.

Fig. 5. Extraction of 64x64 samples from a rotated 600 x 450 image.

In order to analyze thefett of the windw size, samples of wvdifferent sizes were used: 64x64 and 32x32IgixThe
samples werext¢racted inside a 256x256 rectangle located in the center of edtetamage. Fig. 4 depicts the 256x256
images of each x¢éure and Fig. 5 illustrates theteaction of sixteen 64x64 samples for attee with a rotation of 30
degrees (+ original rotation of 11 geees). Hence, with the windasize of 64x64 pigls each teture class contained 16
reference samples for training the classifier and 6x16=96 rotated samples for testing it. Seatarkgture class con-
tained 64 training samples and 6x64=384 testing samples when thewsizéof 32x32 pigls was used. Ean though the
original texture images were globally corrected by Gaussian match, eactidiralisample image as also histogram
equalized prior to featureceaction, to minimize the &fct of possible localariations within the images.

4.2. Use of Gay Scale Interpolation andiht Rairs of Complementaryeatues

A problem with computing rotationsmariant teture features in a local neighborhood is that the diagonal neighbors are
farther from the center pkthan the horizontal ancestical neighbors, respeetily. To reduce the &cts of this on the
classification performance, the pixalues for “virtual” diagonal neighbors, located at the same distance from the center
pixel than the horizontal ancestical neighbors, can be computed from the originatlpialues by interpolation. In our
experiments, we used a simple bilinear gray scale interpolation method for this purpose.

In most cases, a singlextare measure cannot pide enough information about the amount and spatial structure of
local texture. Better discrimination of xeures should be obtained by considering the joint occurrenceoddrtmore fea-
tures. 1M1, we shaved that the use of joint distriions of such pairs of features which yicte complementary informa-



tion about tgtures, usually impnees the classification accuyac

In this study we perform gperiments with arious pairs of centeasymmetric features and LBRR. Our goal is not to
find an optimal feature pair for this taskitlbo see he much impreement a joint feature pair can pide in the rotation-
invariant classification problem.

5. RESULTS AND DISCUSSION
5.1. Single Batule Rerformance

Table 1 shass the results of rotationamriant classification for single features for windsizes of 64x64 and 32x32 pix-
els, without and with the interpolation of diagonal neighbors when featuregteaeted. In the case of 64x64 samples,
VAR and SCQ features with interpolation pvade the best error rates of 14.2% and 16.3%, respéctDIFF4 also per-
forms reasonably well with an error rate of 27.2%, whereas tingt wesults are obtained with the gray-scalariant fea-
tures (LBPROT, SVR, SAC, SRAC), indicating that information about local gray-scale contrast is useful in discriminating
these Brodatz t@ures. V¢ see that the use of grayéeinterpolation usually impres the performance. Understandably
error rates for 32x32 samples are much higéwed the performance of e.gAR deteriorates to 36.4%. The 32x32 samples
contain only one fourth of the mkdata of the 64x64 samples, and consequently the feature histograms possess less dis-
criminative paver.

A closer eamination of confusion matricesvesls that the centslymmetric features lra most trouble in discriminat-
ing disordered tdures. [or example, in the case of 64x64 samplestures D4, D9, D24, and D32 contiiie almost 70%
of the misclassified samples when featuARMs used. Interestinglt BPROT has no trouble separating D9 nor D32,
missing only three of the 192 samples belonging to theselbgses. This suggests that a better result could be obtained by
carrying out classification in stages, selecting features which best discriminate among remainingyedtefinatilocal
gray-scale contrast seems to be particularly useful in separatingeeD21, D57, and D77, for in these cases\6@@

VAR provide almost perfect results while their gray-scalaiiant counterparts LBRIR, SVR, SAC, SRAC fail misera-
bly. All features are able to discriminatetigres D16 and D93, which botklebit strong local orientation.

Similarly, a closer look at the rotation angles of misclassified sampleslseseeral interesting details. Axpected, of
the six rotation angles all featuressbdhe fevest misclassified samples at 9@uges. This attrilites to the pseudo rota-
tion-invariant nature of our featuresoiFexample, both the centsymmetric features and DIFF4 are truly rotatioveai
ant only in rotations that are multiples of 45dses, when computed in a 3x3 neighborhood, and in the chosen set of
rotation angles 90 deees happens to be the only one of this type. A related alisensimilarly attrilited to the pseudo
rotation-irvariant nature of the features, is that the results obtained at a particular rotatidrat its orthogonal counter-
part @+90°) are \ery similar for all features. In otherords, almost identical results are obtained at 30 and If@ek
just like is the case with 60 and 15@ydees. This suggests that the set of six rotation angles we adopted frorapg<ast
Khotanza&® is suboptimal, at least when 3x3 operators are used. A more compreheastould be obtained by choos-
ing a set of rotation angles that does not contajrtwa angles diering a multiple of 45 dgrees.

The rotation-imariance of the features can be imd by utilizing their generic nature. The features are not restricted to
a 3x3 neighborhood,ub they all can be generalized to scaler [example, the centesymmetric measures can be com-
puted for suitably symmetrical digital neighborhoods of sime, such as disks or hEsxof odd oren sizes. This alles
for obtaining a finer quantization of orientations feample with a 5x5 box which contains eight cersggmmetric pairs
of pixels.

In earlier studies LBRhe rotation-ariant ancestor of LBRBT, has prgen to be ery paverful in discriminating unro-
tated homogeneous Brodatxtieres. Hovever, in this study LBPRT provides firly poor results with rotated Brodatxie
tures. By definition LBPRYT is rotation-ivariant only in digital domain, and consequentlf/the six rotation angles, the
interpretation of rotated binary patternenks properly only at 90 deees, where LBPBT provides clearly the best result
of all features. In other angles,wever, rotated binary patterns arevidusly not mapped properlyrhis is particularly
apparent in the case of strongly ordereditess (e.g. D21, D53, D68, and D77) where LBFRprovides perfect results at
90 dgrees, ht fails completely at other rotation angles. This suggests that the current mapping of rotated binary patterns is
probably &r too strict, and could be rektk by grouping together rotated patterns thaeleaspecific Hamming distance,
for example.



Table 1: Error rates (%) obtained with single features.

ngig;w interpolation DIFF4  LBPROT SCO/ SAC SRAC SVR VAR
64x64 no 28.5 38.5 27.6 37.1 41.2 36.9 24.0
yes 27.2 39.2 16.3 32.4 48.1 31.8 14.2
32x32 no 44.9 50.5 39.0 53.6 48.4 53.9 40.7
yes 39.6 47.7 35.1 50.0 59.4 50.3 36.4

5.2. Results foralnt Pairs of Featues

The results obtained with joint pairs of features are presenteablast2 and 3. The gray scale interpolati@as wsed in
feature &traction and the histograms were quantized into 8x8 bins (36x8 for pairs including@dIBP& expected, the
use of feature pairs clearly impes the classification compared to the case of single featueese&\that the feature pairs
LBPROT/VAR and LBPROT/SCOV provide the best performance with error rates of 10.1% and 10.8% for 64x64 samples
and 24.1% and 24.0% for 32x32 samples, respegtiMary other feature pairs also achéeerror rates close to 10% for
64x64 samples, including SG/AR, SCO//SVR, SAC/SCO/ and DIFF4/SA. All these pairs hee one thing in com-
mon: thg include a feature that incorporates local gray-scale contrast. This emphasizes the importance of contrast in dis-
criminating Brodatz tetures. Consequentlthe pairs of gray-scalevariant featuresdil.

Table 2: Error rates (%) obtained with pairs of features for 64x64 samples.

LBPROT SCO/ SAC SRAC SVR VAR

DIFF4 17.6 12.8 12.6 30.6 12.9 16.3
LBPROT 10.8 29.2 38.1 29.2 10.1
Scov 11.6 31.7 115 10.6
SAC 43.9 32.0 14.6
SRAC 44.2 23.4
SVR 14.4

Table 3: Error rates (%) obtained with pairs of features for 32x32 samples.

LBPROT SCO/ SAC SRAC SVR VAR

DIFF4 30.2 255 28.7 40.0 285 30.7
LBPROT 24.0 41.2 45.5 41.0 241
SCo/ 28.7 38.1 28.6 29.8
SAC 54.5 50.9 28.4
SRAC 54.2 35.2
SVR 28.4




In the preious section we made a remark about all featureimtpahe fevest misclassified samples at the rotation angle
of 90 dgrees. This phenomenon is much stronger when joint pairs of features are arsednfiple, in the case of
LBPROT/VAR only 5 of the 145 misclassified samples occur at gdeds, while each other rotation angle conteb at
least 24 misclassified samples.

Interestingly even though LBPRT does &irly poorly by itself, LBPRT combined with a gray-scalearant feature
(SCOV or VAR) provides the best results of all pairings. This indicates that the combination of just crude pattern shape/
code and pattern contrast is a useful description of rotated Brogtafete The shortcomings of LBRR are still appar-
ent, though, for in the case of 64x64 samples, strongly ordetteded21 contribtes 80 of the 145 samples misclassified
by the LBPROT/VAR pair. These 80 misclassified D21 samples, which all are incidentally assigned to class D9, correspond
to samples of all other rotation anglast bhose of 90 dgees which are classified correctbviously, a significant
improvement in the classification accuyaran be gpected, when the shapes of rotated binary patterns are desciined ef
tively.

6. QUANTIT ATIVE COMP ARISON TO CIRCULAR-SYMMETRIC A UTOREGRESSIVE RANDOM FIELD
(CSAR) MODEL

6.1. CSAR €&atues

For comparison purposes we used the ciresyjanmetric autorgressve random field (CSAR) model whichas pro-
posed for rotation irariant teture classification by Kagap and Khotanz&H. The generalression of the model is
described as:

y(s) = a g\‘ g, Y(sOr) +.Bv(s)  (11)
r c

where {y(s), sO0Q , Q = (0<s,;,s,<M-1) }is a set of piel intensity walues of a gien MxM digitized discrete
image;s are the pigl coordinatesiN. is the neighborhood pk set;r are the neighborhood mgikcoordinatesy(s) is a cor-
related sequence with zero mean and waniawce;o andp are the coditients of the CSAR model; ar® denotes mod-
ulo M addition. The model from this equation yieldotparametersy and. Parameteln measures a certain isotropic
property of the image arféla roughness propertyhe rotation imariant characteristics of andf3 are contrilbted by the
choice of the interpolated circular neighbourhood of imagelfiXhere is also a third paramefewhich is a measure of
directionality and is determined by fitting other SAR modet the imag#é).

6.2. Classification Facedue

Texture classification is performed byteacting parameters, 3 and from the sample images, and feeding them to a
feature 'ector classifierln other vords, a tgture sample is represented by three numerical CSAR features, in contrast to
our approach where features are described by histograms of 32 binstlitedkassifier is trained with the features of the
reference samples, and tested with the rotated samples. Both aariai#i Gaussian (quadratic) classifier and a 3-NN
(nearest neighbor) classifier were used. When the 3-NN class#geused, the features were first normalized into the
range 0-1 by diding each feature with its maximuralue wer the entire training data.

6.3. Results and Discussion

Since the quadratic classifier pided slightly better results than the 3-NN classiftee discussion is based on the
results obtained with the quadratic classifieat€ 4). Een though none of the inddual features isery paverful by
itself (the best featureB() provides error rates of 51.9% and 60.0% for the 64x64 and 32x32 samples, vegpethie
three features combinedferf a reasonablexture discrimination with error rates of 15.3% and 29.3%, reshctHow-
ever, we see that the distribon-based classification with single features (eARand SCQ®) performs about as well as
the three CSAR features combined in the case of 64x64 samplesyarad gairs of joint features priole better perform-
ance than the combined CSAR features for both the 64x64 and 32x32 samples.



Table 4: Error rates (%) obtained with the CSAR features.

window size a B 4 a+p a+( B+ a+3+(
64x64 56.4 51.9 68.5 24.9 34.2 27.6 15.3
32x32 67.0 60.0 72.5 445 48.2 37.0 29.3

Confusion matrices weal that the CSAR featuresveadifficulties in separating x¢éures D4, D24, D57, and D68. When
all three features are used, these four classes agrtelmost 80% of the 221 misclassified 64x64 samples. The confusion
is particularly seere between classes D4 (pressed cork) and D24 (pressed calf leather). Examination of the rotation angles
of the misclassified samplesrifies the obseation of the pseudo rotationviariant nature of 3x3 operators made in Sec-
tion 5.1., for agin by far the fevest misclassified samples occur at 9grdes (only 10, while each other rotation angle
contritutes at least 31), andaig the results obtained atdwrthogonal rotation angles are almost identical.

7. CONCLUSION

In this papera distritution-based classification approach and a setxtiire measures based on cersggnmetric auto-
correlation and local binary patterns were applied to rotatiariamt teture classification. The performance of the pro-
posed approach ag compared to that of circuilsymmetric autorgressve random field (CSAR) model with a fififult
classification problem ilving 15 diferent Brodatz teures and seen rotation angles. The error rates of the best single
features (SCW®, VAR) were comparable to those obtained with the three CSAR features combined, and better results were
achieved with distrilutions of joint pairs of features.

It was also shen that the rotation irariance of teture measures in a discrete 3x3 neighborhood can bevetbiyy
gray level interpolation. Thexperimental results also emphasize the importance of local pattern contrast in discriminating
Brodatz tetures, for gen though the samples were correctedirsy global gray-scaleaviations, the features measuring
local gray-scale ariations clearly outperformed their gray-scaleaimnt counterparts. Another obsation, \erified both
with our operators and with the CSAR featureaswhe pseudo rotationviariant nature of the features which should be
taken into account when designingwneperators and mestudies on rotation-uariant texture classification. The short-
comings of LBPRT, the rotation-imariant \ersion of the paerful LBP operatqrwere &posed, and a significant imme>
ment in classification accunacan be gpected, once the shapes of rotated binary patterns are desciéotidedy.
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