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Abstract 

 
This research applies the meta-heuristic methods 
such as Ant Colony Optimization (ACO) and 
Genetic Algorithm (GA) for identification of 
suspicious region in mammograms. The 
proposed method uses the asymmetry principle 
(bilateral subtraction): Strong structural 
asymmetries between corresponding regions in 
the left and right breast are taken as evidence for 
the possible presence of microcalcification in 
that region. Bilateral subtraction is achieved in 
two steps. First, the mammogram images are 
enhanced using median filter, pectoral muscle 
region is removed and the border of the 
mammogram is detected for both left and right 
images from the binary image. The enhancement 
technique is evaluated by signal to noise ratios. 
Further GA is applied to enhance the detected 
border. The figure of merit is calculated to 
identify whether the detected border is exact or 
not. And the nipple position is identified for both 
left and right images using GA and ACO, and 
their performance is studied. Second, using the 
border points and nipple position as the reference 
the mammogram images are aligned and 
subtracted to extract the suspicious region. 
Results obtained with a set of mammograms 
indicate that this method can improve the 
sensitivity and reliability of the systems for 
automated detection of breast tumors i.e. 
microcalcification. The algorithms are tested on 
161 pairs of digitized mammograms from 
Mammographic Image Analysis Society (MIAS) 
database. A Free-Response Receiver Operating 
Characteristic (FROC) curve is generated for the 
mean value of the detection rate for all the 161 
pairs of mammograms in MIAS database, to 

evaluate the performance of the proposed method.  
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1 Introduction 
 
Breast cancer is one of the leading cancers in the 
female population. About 25% of all cancers 
diagnosed in women are breast cancers and about 
20% of all lethal cancers are breast cancers. It is the 
leading cause of death due to cancer in women [11]. 
The risk of developing Breast Cancer can be reduced 
by: Having children before 30, Breast-feeding, 
Limiting alcohol intake, maintaining a healthy 
weight, exercising regularly.  

 
X-ray mammography is the most effective 

imaging technique for the early-diagnosis of breast 
cancer. Mammography-based screening programs 
are carried out in many countries, and their 
effectiveness has had a great impact on prognoses. A 
mammographic image is characterized by a high 
spatial resolution that is adequate enough to detect 
subtle fine-scale signs such as microcalcifications. 
On the other hand, the analysis of mammographic 
images is a complex and cumbersome task that 
requires highly specialized radiologists. In addition, 
population screening produces a very large number 
of images, most of which are usually negative. The 
performance of the observer can be degraded by the 
huge resulting caseload, which is undoubtedly 
caused by visual fatigue and other psychophysical 
mechanisms. Double readings, as carried out, for 
example, by two radiologists, usually improve the 
quality of diagnostic findings, thus, greatly reducing 
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the probability of misdiagnosis. On these 
grounds, adequate computational tools are 
expected to be helpful to the radiologist. 
Thangavel et al., [57] and Cheng et al., [8] are 
presented a study on methods of various stages 
on automatic detection of microcalcification in 
digital mammograms. According to those studies 
it is noted that the Ant Colony Optimization 
(ACO) has not been implemented in the field of 
mammogram analysis.  In this paper, meta-
heuristic algorithms such as GA and ACO are 
implemented to extract the suspicious region 
based on asymmetry approach. 

 
Overview and Merits of Metaheuristic 
Algorithms: Recently, many researchers have 
focused their attention on a new class of 
algorithms, called metaheuristics. A 
metaheuristic is a set of algorithmic concepts that 
can be used to define heuristic methods 
applicable to a wide set of different problems. In 
other words, a metaheuristic can be seen as a 
general-purpose heuristic method designed to 
guide an underlying problem specific heuristic 
toward promising regions of the search space 
containing high-quality solutions. A 
metaheuristic therefore a general algorithmic 
framework, which can be applied to different 
optimization problems with relatively few 
modifications to make them, adapted to a 
specific problem. The use of metaheuristics has 
significantly increased the ability of finding very 
high-quality solutions to hard, practically 
relevant combinatorial optimization problems in 
a reasonable time. This is particularly true for 
large and poorly understood problems. Several 
meta-heuristics, such as genetic algorithms 
[24,33], tabu search [23] and simulated 
annealing [37], have been proposed to deal with 
the computationally intractable problems. Ant 
colony optimization (ACO) is a new meta-
heuristic developed for composing approximate 
solutions. The ant algorithm was first proposed 
by Colorni et al., (1991) and has been receiving 
extensive attention due to its successful 
applications to many combinatorial optimization 
problems [10,14]. Like genetic algorithm and 
simulated annealing approaches, the ant 
algorithms also foster its solution strategy 
through use of nature metaphors. The ACO is 
based upon the behaviors of ants that they 
exhibit when looking for a path to the advantage 
of their colony. Unlike simulated annealing or 
tabu search, in which a single agent is deployed 
for a single beam session, ACO and genetic 
algorithms use multiple agents, each of which 

has its individual decision made based upon 
collective memory or knowledge. Recently, the 
ACO metaheuristic has been proposed to provide a 
unifying framework for most applications of ant 
algorithms [13,15] to combinatorial optimization 
problems. Algorithms that actually are instantiations 
of the ACO metaheuristic will be called ACO 
algorithms [2,16,19,22,27,49]. This paper presents 
an automatic alignment for analyzing corresponding 
mammogram images using genetic algorithm and ant 
colony optimization technique.  
 
Overview of Genetic Algorithm: A genetic 
algorithm is an iterative procedure that involves a 
population of individuals, each one represented by a 
finite string of symbols, known as the genome, 
encoding a possible solution in a given problem 
space [12,45,50]. This space, referred to as the 
search space, comprises all possible solutions to the 
problem at hand. The standard genetic algorithm 
proceeds as follows: an initial population of 
individuals is generated at random or heuristically. 
Every evolutionary step, known as a generation, the 
individuals in the current population are decoded 
and evaluated according to some predefined quality 
criterion, referred to as the fitness, or fitness 
function. To form a new population, individuals are 
selected according to their fitness. Thus, high-fitness 
individuals stand a better chance of ‘reproducing’, 
while low-fitness ones are more likely to disappear. 
Then crossover is performed with the probability pc 
between two selected individuals, called parents, by 
exchanging parts of their genomes to form two new 
individuals, called offspring. Next, the mutation 
operator is introduced to prevent premature 
convergence to local optima by randomly sampling 
new points in the search space. Flipping bits at 
random carries it out; with some small probability 
pm. Genetic algorithms are stochastic iterative 
processes that are not guaranteed to converge. The 
termination condition may be specified as some 
fixed, maximal number of generations or as the 
attainment of an acceptable fitness level. 
 
Overview of Ant Colony Optimization: Ant Colony 
Optimization (ACO) metaheuristic; a recent 
population-based approach, is inspired by the 
observation of real ants colony and based upon their 
collective foraging behavior  [16,49]. Real ants are 
capable of finding the shortest path from a food 
source to the nest without using visual cues [1,27]. 
Ants are moving on a straight line that connects a 
food source to their nest is a pheromone trail. 
Pheromone is a volatile chemical substance lay 
down by ants while walking, and each ant 
probabilistically prefers to follow a direction rich in 
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pheromone. This elementary behavior of real 
ants can be used to obtain optimum value from a 
population. In ACO, solutions of the problem are 
constructed within a stochastic iterative process, 
by adding solution components to partial 
solutions. Each individual ant constructs a part of 
the solution using an artificial pheromone, which 
reflects its experience accumulated while solving 
the problem, and heuristic information dependent 
on the problem [2,19,22]. 
 

Two different techniques are used in the 
interpretation of mammograms. The first 
technique consists of a systematic search of each 
mammogram for visual patterns symptomatic of 
tumors. Such as, a bright, approximately circular 
blob with hazy boundary might indicate the 
presence of a circumscribed mass [39,56]. The 
second technique, the asymmetry approach, 
consists of a systematic comparison of 
corresponding regions in the left and right breast. 
Significant structural asymmetries between the 
two regions can indicate the possible presence of 
a tumor. Most researchers have focused on 
processing a single image to find abnormalities. 
In comparison, only a handful of researchers 
have dealt with analysis of bilateral 
mammograms [3,30,35,36,41,46,60,62,63,64] 
and even fewer have dealt explicitly with 
comparing time sequences of mammograms 
[5,20,29,41,52,55,59,65]. 

 
This paper follows the asymmetry approach 

to extract the suspicious region in mammograms. 
The technique presented in this paper is 
applicable to bilateral and time sequences of 
mammograms. However, only bilateral 
mammograms are used in the evaluation since 
large data sets of bilateral images are more 
readily available. The technique is fully 
automated and it recovers deformations that go 
beyond simple translation, scale and rotation. 
The reason for considering this approach is, 
methods that attempt to detect specific tumors, 
are likely to give a better performance, however, 
the method presented here can provide clues 
about the presence of tumors that are not 
available to other methods and thus it provides 
another building block for a clinically useful 
system. The strategy of the asymmetry detection 
system can be described as follows: Given a pair 
of identical-view mammograms of the left and 
right breast, detect all structural asymmetries 
between corresponding positions in the left and 
right breast. Significant asymmetries are taken as 
evidence for the possible presence of a tumor. 

 In this proposed method, the combination of 
genetic operators (reproduction, crossover, mutation) 
is applied to detect the border of the mammogram 
image. To identify the nipple on digital 
mammograms a novel method, Ant Colony 
Optimization and Genetic Algorithm are 
implemented, and compared. Using the border 
coordinates and nipple position of left and right 
mammograms, the images are aligned and subtracted 
to extract the suspicious regions. Prior to bilateral 
subtraction, the pectoral muscle region is removed 
from the breast region and the mammogram images 
are normalized. 
  

The following section presents an overview of 
the proposed method. Section 2 explores 
preprocessing and enhancement techniques such as 
median filtering, removal of pectoral muscle and 
normalization for mammogram images. Section 3 
presents genetic algorithm for breast boarder 
detection. Section 4 presents the nipple identification 
techniques using genetic algorithm and Ant Colony 
Optimization. The alignment of mammograms and 
generating asymmetry image are described in 
Section 5. The experiments and results are presented 
in Section 6. And Section 7 describes the conclusion. 
 
1.1 Overview Of The CAD System 
 
A closer inspection of the mammograms reveals 
several difficulties for the asymmetry approach. 
First, the global appearance (brightness, contrast, 
etc.) of the two breasts may differ, usually due to 
variations in the recording procedure. In this work, 
initially the mammogram images are enhanced by 
median filter to remove the high frequency 
components (ie.noise) from the image. Then the 
pectoral muscle region is eliminated. Second, due to 
natural asymmetry, and due to the mammographic 
recording procedure, the shapes of the left and right 
breast do not match. Defining corresponding 
positions in both breasts becomes therefore a 
nontrivial task. The breast border and the nipple 
position of the mammogram are detected to find the 
deflection between both left and right mammograms.  
 

In border detection, the mammogram image is 
converted into binary image [55]. From the binary 
image the border points are extracted and it is 
mapped with the original image. The extracted 
border is enhanced using genetic algorithm as 
follows: From the extracted border, for each border 
points a 3×3-window size of neighborhood pixels 
(kernel) are taken, and they are considered as initial 
population for genetic algorithm. The sum of 
intensity values of all the pixels in a kernel is 
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considered as fitness values for the kernel. The 
genetic operators like reproduction, crossover, 
and mutation are applied to the kernels. The 
kernels from the final population has the 
enhanced border pixels, they are mapped with 
the original image. Next step is to find out the 
nipple position of the mammogram image. A 
genetic algorithm and a novel method; Ant 
Colony Optimization is used to identify the 
nipple position and the results are compared. 

The border points are considered as the 
population for both GA and ACO algorithms to 
identify the nipple position. In GA, the genetic 
operators, reproduction, crossover and mutation 
are applied on border points to generate the new 
population at each iteration.  The minimum value 
is calculated from the final population at final 
iteration. This minimum value is compared with 
the intensity values of the border points. The 
matching pixel is considered as the nipple 

position. In the case of ACO, the ants start their 
search from a random border point with initial 
pheromone value. Then the Maximizing A 
Posterior (MAP) function is evaluated for each 
ant, and the pheromone values are updated for 
each ant. The global minimum value is 
calculated at the end of each iteration. The 
border pixel, whose intensity value is equal to 
the global minimum value from the final 
iteration, is considered as the nipple position. 
The coordinate points of border points and 
nipple position of both left and right images are 
compared to find out the deflection between two 
images. Then the right image is aligned to 
correspond with the left image. Then the left and 
right images are subtracted to extract the 
suspicious region. Figure. 1 shows that the 

methods employed in the proposed method for 
extraction of suspicious region. 

 
2 Preprocessing and Enhancement 
 
Image enhancement refers to attenuation, or 
sharpening, of image features such as edges, 
boundaries, or contrast to make the processed image 
more useful for analysis. Image enhancement 
includes gray-level and contrast manipulation, noise 
reduction, background removal, edge crisping and 
sharpening, filtering, interpolation and 
magnification, pseudo-coloring, and so on. The 
greatest difficulty in image enhancement is 
quantifying the evaluation criteria for enhancement. 
Image enhancement techniques can be improved if 
the enhancement criteria can be stated precisely. 
Often such criteria are application dependent. This 
section presents the preprocessing and enhancement 
procedures such as median filtering, normalization 
and removal of pectoral muscle region for 
enhancement of mammograms. The performance of 
the enhancement technique is evaluated by Signal to 
Noise Ratio (SNR). 

Image Acquisition 

Median Filtering 

 
Border Detection using GA 2.1 Median Filtering 

 
Nipple Identification using GA/ACO Median filtering has been found to be very powerful 

in removing noise from two-dimensional signals 
without blurring edges. This makes it particularly 
suitable for enhancing mammogram images [44]. To 
apply median filtering to a mammogram, the low-
frequency image was generated by replacement of 
the pixel value with a mean pixel value computed 
over a square area of 11x11 pixels centered at the 
pixel location [39,53]. The pre-processing phase is 
the most important step in image analysis and the 
classification result will depends on the 
preprocessing result. The evaluation criteria for 
median filtering is considered as follows: 

Alignment of Mammograms 

Generating Asymmetry Image 

Extracting Asymmetries and Classification

Figure 1. Block Diagram for Extracting 
Suspicious Region from Background 

Tissue 

Performance evaluation: Li et al. [42,43] used 
Contrast, Contrast Improvement Index (CII), 
background noise level, Peak Signal-to-Noise Ratio 
(PSNR), and Average Signal-to-Noise Ratio 
(ASNR) to evaluate the enhancement performance 
[40]. The definitions of contrast and CII are defined 
as,  
 CII = Cprocessed / Coriginal ,  (1) 
where Cprocessed and Coriginal are the contrasts for a 
mammogram in the processed and original images, 
respectively. The contrast C of a region is defined by 
 C = (f - b) / (f + b) (2) 
where f is the mean gray-level value of the 
foreground and b is the mean gray-level value of the 
background. The background noise level is 
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measured by the standard derivation σ of the 
background: 
 σ = √ (1 / N) ∑i (bi – b)2, i=1,…N (3) 
where bi is the gray-level value of a surrounding 
background region, and N is the total number of 
pixels in the surrounding background region. 
PSNR and ASNR are defined as follows: 

 PSNR = (p – b) / σ ; and 
 ASNR = (f – b)/σ (4) 

where p is the maximum gray-level value and f is 
the average gray-level value of a foreground. 
The values of the two indexes are larger, the 
enhancement method performance better.  
 
2.2 Normalization of mammograms 
 
Mammogram images are corrected to avoid 
differences in brightness between the left and 
right mammograms caused by the recording 
procedure [7]. The Figure 2 shows the original 
and normalized mammogram. In order to reduce 
the variation, and achieve computational 
consistency, the images are normalized, by 
mapping all mammograms into a fixed 
intensities range r1 and r2 ( 0 ≤ r1 < r2 ≤ 255). 
Assume an image gi(x,y) whose maximum gray 
level is max Gi and minimum gray level is min 
Gi, transform gi(x,y) into gk(x,y) 
 gk(x,y) ={r1+(gi(x,y)–minGi)×(r2–r1)}/ 
 {maxGi – min Gi } (5)  (5) S  ← Read the mammogram image 
In this work, r1 and r2 are assigned with the 
values 60 and 210 respectively [7], due to the 
fact that maximum intensities and minimum 
intensities of the microcalcifications are not 
beyond r2 and below r1 with certainty after 
investigating a huge amount of mammograms. 

 
2.3 Pectoral Muscle Extraction 
 
The reliability of boundary matching may be 
increases by extracting the pectoral muscle from 
the breast region. The pectoral muscle appears as 
a bright triangular region in the image corner 
towards the chest wall and the bottom of the 
breast region. A histogram-based thresholding 
technique is used to separate the pectoral muscle 
region. The global optimum in the histogram is 
selected as the threshold value. The intensity 
values smaller than this threshold are changed to 
black (0), and the gray values greater than the 

threshold are changed to white (1). The erosion and 
dilation operators are used to better preserve the 
pectoral muscle region. Then the gray level 
mammogram image is converted to binary image to 
segment the pectoral muscle region. The white 
pixels in the lower left corner of the mammogram 
image indicate the pectoral muscle region. The 
corresponding white pixels in the segmented breast 
region image are changed to black (0) to remove the 
pectoral muscle region from the breast region. 
Figure 3 shows the breast region of left and right 
mammograms after the removal of pectoral muscle 
region.  
In processing mammogram views known to contain 

a pectoral muscle, the following algorithm attempts 
to remove the pectoral muscle region from the breast 
region [55]. If only a small portion of the muscle is 
visible in the image the algorithm simply matches 
the full breast region outline for the images being 
compared [20,21,38]. 

Figure 3. Removal of Pectoral Region 

 
Algorithm: Removal of Pectoral Muscle Region 

[m n]  ← size of the image 
th  ← peak threshold value from the histogram 
for each pixel in Sij { i=1,..m; j=1,..n } 
 if (Sij < th) 
  Bij = 0; 
 else 
  Bij = 1; 
end 
Bij  ← erosion (Bij) 
Bij  ← dilation (Bij) 
for each pixel in BijFigure 2. Normalized Mammogram Images 
 if (Bij = = 1) 
  Sij = 0 
 end 
end 
Sij  ← image after the removal of pectoral muscle 
region 
 
3 Breast Border Detection 
 
Segmentation of the breast region and non-breast 
region is a necessary prerequisite for further bilateral 
subtraction. This section presents the border 
detection method using genetic algorithm. The 
breast border can be obtained by segmenting the 

 45  

GVIP Journal, Volume 5, Issue 7, July 2005



breast region in the image. Some authors have 
developed methods to identify the breast region 
on the basis of a global histogram analysis 
[41,62,63]. However, a method based on global 
thresholding alone is critically dependent on the 
selection of the threshold values. Bick et al. [4] 
developed a method on the analysis of the local 
gray-value range to classify each pixel in the 
image. Clarke et al., [9] and Qian et al., [54] 
have developed a segmentation algorithm based 
on wavelet transformation. Wirth and Stapinski 
[61] have explored the application of active 
contours to the problem of extracting the breast 
region in mammograms.  
 
3.1 Existing Methods 
 
Mendez et al., [44] developed a fully automatic 
technique to detect the breast border and the 
nipple. First, a smoothed version of the threshold 
image is generated. Five reference points, (x1,y1), 
(x2,y2), (x3,y3), (x4,y4) and (x5,y5),are 
automatically selected dividing the breast into 
three regions. Finally, a tracking algorithm [44] 
detects the border establishing that a point (xi, 
yi) belongs to the breast border if the gray level 
value f(x,y) of its nine previous pixels verifies 
the condition:  

 f(x1,y1) < f(x2,y2) < …. < f(x7,y7) ≤ f(x8,y8) ≤ 

f(x9,y9) ≤ f(x,y)  (6) 
The detection algorithm was relaxed such that 
the breast border obtained was always external to 
the real border. Calculating the slope of the 
breast border in the reference points (x1,y1) and 
(x2,y2), the detected border was enlarged until it 
reached the edge of the digital image. Hence, the 
breast region where the relevant information for 
diagnosis is included was completely determined 
within a closed contour.  

 
Chandrasekhar and Attikiouzel [6] 

developed a simple method for detecting the 
breast border. Initially, histogram equalization is 
applied to the mammogram image, and then 
intensity change is applied to each original 
intensity value, I0, to yield the new intensity, In, 
which is given by;  

 In = (mI0) mod 256,  (7) 
where, m is the number of cycles to be 
performed. The gray level mammogram is 
converted to binary image [55], showing the 
breast and background. A threshold value (T) is 
assigned with the peak value from the histogram 
of the mammogram image. The intensity values 
are changed as  

 if A(x,y)<T, B(x,y)=0; else B(x,y)=1,  (8) 
where A is the original image and B is the binary 
image. The binary image is searched from top to 
bottom, a point (x,y) would belong to the border  

 if B(x,y) = 1 and B(x-1,y) = 0;  (9) 
the points those satisfies the above conditions are 
stored as border pixels. 
 

Also mammogram images can be enhanced by 
logarithmic transformation, and morphological 
operations are performed to extract the breast border. 
First, the logarithmic transformation [18,27] 
function is used to enhance the mammogram image. 
Histogram-based thresholding technique is used to 
separate the breast region and non-breast region. 
Histogram is generated for the mammogram image. 
The peak point of the histogram is select as the 
threshold value (T).  

If g(x,y) < T, b(x,y)=0, else b(x,y)=1,  (10) 
where g is the original image and b is the binary 
image [34,51]. The interior pixels inside the 
segmented breast regions are removed using erosion 
and then dilation operations with octagonal-shaped 
operators. Once the interior pixels are removed, the 
binary image only contains the border pixels alone 
as white pixels. The spatial coordinate points of 
these white pixels can be mapped with the gray level 
mammogram. To draw the border, the corresponding 
pixels are set to 255, i.e., white pixels. 

 
In this paper the genetic algorithm is used to 

detect the breast boarder. A histogram-based 
thresholding technique is used to separate the dark 
background region. The local optimum in the 
histogram is selected as the threshold value. The 
intensity values smaller than this threshold are 
changed to black (0), and the gray values greater 
than the threshold are changed to white (1). The 
segmented foreground regions are processed using 
morphological operations [32] with octagonal-
shaped operators of radius 21. The octagonal shape 
is used to better preserve the shape of the anterior 
part of the breast boundary. The obtained breast 
border points are mapped with the original gray 
scale mammogram image. 

 
By using the edge map as a solution space for 

the GA, no special mappings are required, small 
neighborhood windows can be overlaid, and edge 
structures and pixels can be modified on a local, 
intuitive basis. Furthermore, this representation 
allows for easy transition into an extended type of 
chromosome for the GA, the kernel, defined as an 
array of bits instead of the conventional bit vector, or 
string, used in traditional GA’s. A kernel is highly 
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compact memory usage, essential when running 
a simulation with a large population, or a large 
image. 

 
3.2 Detection of the breast border using 

Genetic Algorithm 
 
A Genetic Algorithm (GA) is an optimization 
technique for obtaining the best possible solution 
in a vast solution space. Genetic algorithms 
operate on populations of strings, with the string 
coded to represent the parameter set. Genetic 
algorithm consists of three operators such as 
reproduction, crossover and mutation. These 
operators are applied to successive string 
populations to create new string populations.  

Reproduction is a process that selects the 
members from the population for crossover. This 
operator is implemented by roulette wheel where 
each string in the population has a roulette wheel 
slot sized in proportion to its fitness.  A simple 
spin of the weighted roulette wheel yields the 
reproduction string. In crossover, random 
number of bits is exchanged between the newly 
reproduced strings. Mutation is the occasional 
random alteration with small probability of the 
value of the string position; this simply means 
changing 1 to 0 and vice versa. The process of 
generating new population is iterated till, either a 
sufficiently good solution is found, or after a 
predetermined number of iterations 
[25,26,28,45,58]. 

 
Border detectors normally represent edges in 

a binary image, where each pixel takes on either 
the intensity value zero for a non-border pixel or 
one for a border pixel. Each pixel in the binary 
map corresponds to an underlying pixel in the 
original image. In this proposed system a kernel 
is defined as a neighborhood array of pixels with 
the size of 3 × 3 window instead of the 
conventional bit vector, or string, which is 
essential when running a simulation with a large 
population, or a large image.  

 
The corresponding kernels are extracted 

from gray level mammogram image using spatial 
coordinate points, and the intensity values of the 
pixels in the kernel are summed and this sum is 
considered as fitness values. After the initial 
population is generated, genetic operators can be 
applied in this population to generate the new 
one. Reproduction operator produces a new 
string for crossover. Reproduction is 
implemented as linear search through roulette 
wheel with slots weighted in proportion to kernel 

fitness values. In this function, a random number 
multiplies the sum of the population fitness, called 
as stopping point. The partial sum of the fitness 
value is accumulated in a real variable until it is 
greater than or equal to the stopping point. The 
location where the iteration stops, the corresponding 
kernel is selected for crossover. The newly 
reproduced kernels are crossed over by exchanging 
the values in the window with the size of 2×2. 
Figure 4 shows the cross over operation. The kernels 
A and B are from old population, and X and Y are 

Next, the mutation operat

the kernels after crossing over.  

or is introduced to 
prev

Figure 4. Crossover Operator 

ent premature convergence to local optima by 

randomly sampling new points in the search space. 
Flipping bits at random carries it out, with some 
small probability.  When mutation occurs on a bit 
string representation, the bit corresponding to the 
gene to be mutated is flipped or flopped, i.e., its 
value is changed from 0 to 1 or vice versa. In 
mutation, if a border configuration that matches one 
of the 28 configurations in Figure 5 is found, the 
corresponding transformation is performed. If the 
edge configuration at this site does not correspond to 
any of those, no change is made. The new kernels 
are stored as new population. This procedure is 
performed until the size of the new population is 
equal to the initial population. Then the old 
population is assigned with new population value 
and the same procedure is performed again to 
generate the next population. Finally, the kernels in 
the latest population have the enhanced border 
points. They can be mapped with the original image. 
Figure 6 shows the breast border extracted using 
genetic algorithm.  

Figure 5. Mutation Operator 

Figure 6. Border Detection Using Genetic 
Algorithm 
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Performance Evaluation:  The performance of 

e

lgorithm: Detection of Breast Border using 

ij  ← Border image 

the detected border using genetic algorithm is 
tested with Pratt’s figure of merit. The Pratt’s 
figure of merit [51] can be used to quantitatively 
compare the results of different edge detectors. It 
measures the deviation of the output edge from a 
known ideal edge in the following manner [39]:  
P=(1/max(IA,II)∑i (1/(1+αd2 (i) )) , I=1,.,IA (11) 
where, IA is the number of edge points det cted, 
II is the number of edge points in the ideal edge 
image, α is a scaling factor, and d(i) is the 
distance of the detected edge pixel from the 
nearest ideal edge position. Pratt’s figure of 
merit is a rough indicator of edge quality. A 
higher value for the Pratt figure of merit denotes 
a better edge image. Gudmundsson et al., [28] 
developed an edge detection algorithm using 
Simulated Annealing (SA); the value of P for 
this method is 0.83, and Mendez et al., [44] 
achieves only 0.89, whereas the proposed GA 
approach produces 0.93, which shows that the 
genetic algorithm can detect the breast border 
better.  
 
A
Genetic Algorithm 
Sij ← Original Image;  B
[m ]  ← size of Bn

n Bij  
l of size 3×3  

es of 

tion contains K and F 

t for N times 
in Pop1 

 select two kernels 
o

For the selection lette wheel is 

s   
s a random 

num
 m → size of the 

(iii)  the population strings 

 m) and (partsum < r)) Goto Step: 

k3, ls after crossover.  
here a 

 ← Pop2; 
e Bij 

ij
for each border pixel i
K ← kernel of the border pixe
F ← fitness value; sum of the intensity valu
all the pixels in a kernel 
Pop1 ← initial popula
end 
repea
 for each string 

k1, k2 ←
for repr duction. 
of two kernels rou

implemented as follows:   
(i) r = random() * sum_of_fitnes

[Hint: random() function return
ber between 0 and 1]  

(ii) partsum = 0,  i=0,
population 

 p → contains
(iv) partsum = partsum + p(i) 
(v) i = i + 1 
(vi) if ( (i <=

(iv) else return i 
k4 ← new kerne

k5, k6  ← kernels after mutation, 
random bit in the kernel is flipped or flopped. In 
mutation, if a border configuration that matches 

one of the 28 configurations in Figure 5 is found, the 
corresponding transformation is performed. 
Pop2(p) ← k5;  p ← p+1; Pop2(p) ← k6; 
end 
Pop1
Map the kernels with th
end 
4 Identification of The Nipple Position 
 
The nipple may appear either in profile or not in 

.1 Existing Methods 

endez et al., [44] developed a gradient method, the 

.2 Identification of Nipple Position using 

 
itially the breast is divided into three regions [44]. 

profile. The nipple is located on the mammogram 
close to where the rate of change among gray-levels 
is larger than in the rest of the breast. This section 
presents two algorithms, using genetic algorithm and 
Ant Colony Optimization, for identifying the nipple 
position. 
 
4
 
M
maximum height of the breast border is taken as the 
position of the nipple. The maximum of the gradient 
across the median-top section of the breast was 
calculated over a straight line connecting a point at 
the border (xb,yb) and a reference point inside the 
mammogram. The average intensity gradient method 
is used for automatically locating the nipple on 
digitized mammograms that have been segmented to 
expose the skin-air interface [6]. If the average 
gradient of the intensity is computed in the direction 
normal to the interface and directed inside the breast, 
it is found that there is a sudden and distinct change 
in this parameter close to the nipple. Specifically, the 
nipple is located midway between a successive 
maximum and minimum of the derivative of the 
average intensity; these being local turning points 
for a nipple in profile and global otherwise. The 
maximum of the second derivative was calculated 
over straight lines connecting each point of the 
border with a reference point inside the breast, was 
taken as the position of the nipple. In this case, the 
result is dependent not only on the gray-level at both 
the center (x,,y) and the border (xb,yb), but also the 
shape of the straight line [44]. 
 
4

Genetic Algorithm 

In
The intensity values of the border pixels in the 
second region are considered as initial population for 
the genetic algorithm [58]. The intensity values of 
the border points are then converted as binary 
strings, and these values are considered as 
population strings for genetic algorithm. Now the 
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genetic operators such as reproduction, 
crossover, and mutation are applied to get new 
population of strings [17,18,20,26]. Finally, the 
border pixel, which generates the minimum 
value of the population, is considered as the 
nipple position. The algorithm for identification 
of the nipple position in mammogram image 
using genetic algorithm is as follows:  
Algorithm: Identification of Nipple Position 

ij  ← Border image; 
using Genetic Algorithm 
Sij ← Original Image; B
[m ]  ← size of Bn

n Bij  
der pixel from S, 

F← fitne f the pixels 

N times 
in Pop1 

 two strings for 

For the selection roulette wheel is 

s   
s a random 

num
ze of the population 

m) and (psum < r)) Goto Step: (iv) 

3, g4 ← new strings after cross over.  
random 

e

op2(p) ← g5; p ← p+1; Pop2(p) ← g6; 

 Min(Pop2); Pop1 ← Pop2; 

ij
for each border pixel i
G← intensity of the bor

converted to binary string 
ss value; intensity values o

Pop1 ← initial population contains G 
end 
p ← 1 
repeat for 
 for each string 

g1, g2 ← select
reproduction. 
of two strings 

implemented as follows:   
(i) r = random() * sum_of_fitnes

[Hint: random() function return
ber between 0 and 1]  

(ii) psum = 0,  i=0, m → si
(iii) p → contains the population strings 
(iv) psum = psum + p(i) 
(v) i = i + 1 
(vi) if ( (i <= 
(vii) return i 
 
g
g5, g6  ← strings after mutation, here a 
bit in th  kernel is flipped or flopped.  
 
P
end 
min ←
pos ← where the B(i,j) = min;  
end 
 
4.3 Identification of Nipple Position using 

 
nt Colony Optimization (ACO) is a population-

ded into 
three reg

)={∑[(y-µ)  / (2*σ )]+∑log(σ)+∑V(x)} (12) 
whe

heromone Initialization:  
al pheromone value T0. 

ocal Pheromone Update:  
e randomly 

(13) 
erom

values, and ρ is rate of pheromone evaporation 

Ant Colony Optimization 

A
based approach first designed by Marco Dorigo 
and coworkers [17] and inspired by the foraging 
behavior of ant colonies. Individual ants are 
simple insects with limited memory and capable 
of performing simple actions. However, the 

collective behavior of ants provides intelligent 
solutions to problems such as finding the shortest 
paths from the nest to a food source. Ants foraging 
for food lay down quantities of a volatile chemical 
substance named pheromone, marking their path that 
it follows. Ants smell pheromone and decide to 
follow the path with a high probability and thereby 
reinforce it with a further quantity of pheromone. 
The probability that an ant chooses a path increases 
with the number of ants choosing the path at 
previous times and with the strength of the 
pheromone concentration laid on it [1,38].  

Similar to GA, the breast is divi
ions [44]. The border pixels in the second 

region are extracted. For each kernel in the border 
pixel, calculate the posterior energy function value 
U(x). [Kernel is a 3×3 window of neighborhood 
pixels] 

U(x 2 2

re, y is the intensity value of pixels in the kernel, 
µ is the mean value of the kernel, σ is the standard 
deviation of the kernel, V is the potential function of 
the kernel, and x is the label of the pixel. If x1is 
equal to x2 in a kernel, then V (x) = β, otherwise 0, 
where β is visibility relative parameter (β >= 0). The 
MAP probability estimate can be written as: P(x|y) = 
exp (-U(x)), the challenge of finding the MAP 
estimate of the segmentation is search for the 
optimum label which minimizes the posterior energy 
function U(x). The goal of this method is to find out 
a pixel of the image on the border that maximizes 
the posterior energy function value. Initially assign 
the values for number of iterations (N), number of 
ants (K), initial pheromone value (T0), a constant 
value for pheromone update (ρ). [Hint: N=50, K=10, 
T0=0.001 and ρ=0.9]. 
 
P
For each ant assign the initi
And for each ant select a random pixel from the 
border pixels set which has not been selected 
previously. A flag value is assigned for each pixel to 
know whether the pixels are selected or not. Initially 
the flag value is assigned as 0, once the pixel is 
selected the flag is changed to 1. This procedure is 
followed for all the ants. For each ant a separate 
column for pheromone and flag values are allocated 
in the solution matrix.  
 
L
Update the pheromone values for all th
selected pixels using the following equation: 
 Tnew = (1 – ρ) * Told + ρ * T0 ,   
where Told and Tnew  are the old and new ph one 
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parameter in local update, ranges from [0,1] i.e., 
0 < ρ < 1. Calculate the posterior energy function 
value for all the selected pixels by the ants from 
the solution matrix.  
 
Global Pheromone Update:  
Compare the posterior energy function value for 

ach ants, select the 

 and Tnew  are the old and new 
m

he ∆ is assumed as 0. Thus the 
e ant, w

Com n 
entified by the Ant Colony Optimization is 

Position using 
nt Colony Optimization: 

all the selected pixels from e
maximum value from the set, which is known as 
‘Local Maximum’ (Lmax) or ‘Iterations best’ 
solution. This value is again compared with the 
‘Global Maximum’ (Gmax). If local maximum is 
greater than global maximum, then the global 
maximum is assigned with the current local 
maximum. Then the ant, which generates this 
local maximum value, is selected and whose 
pheromone is updated using the following 
equation:  
 Tnew  = (1 – α) * Told + α * ∆Told,   (14) 
where Told

pheromone values, and α is rate of phero one 
evaporation parameter in global update called as 
track’s relative importance, ranges from [0,1] 
i.e., 0 < α < 1, and ∆ is equal to ( 1 / Gmax). For 
the remaining ants their pheromone is updated 
as:  
 Tnew = (1 – α) * Told,  (15) 
here, t
pheromones are updated globally. Th hich 
generates the Gmax, is traced and the 
corresponding pixel and its co-ordinates are 
stored. This procedure is repeated for all the 
image pixels. The entire procedure can be 
repeated for N number of times. At the final 
iteration, the co-ordinate of the image pixel that 
maximizes the posterior energy function value is 
considered as nipple position. Figure 7 shows the 
nipple position of a mammogram, detected by 
ant colony optimization algorithm.  
 

parative Study: The nipple positio
id
compared with other methods. The points with 
values of 0-50 pixels of distance between the real 
position and the position obtained with the 
maximum height method have shorter distances 
between the real position and the position 
obtained with the second derivative method is 0-
30 pixels. In case of average intensity gradient 

method the difference is reduced to 0-15 pixels. The 
genetic algorithm approach has the difference of 0-
10 pixels. Whereas the proposed ant colony 
optimization algorithm shorter the distance between 
the real position and the position obtained is 0-5 
pixels. The proposed algorithm is as follows: 
 
Algorithm: Identification of Nipple 
A
Mij ← Original Image 
Bij  ← Border pixels  
[m n]  ← size of Bij 
for each border pixel in Bij  

G    ← kernel of the border pixel of size 
 

(x) is cal
U (x) ={
end 

 10   - Number of Ants 
e 

oration 

{ (x
ether the pixels is selected by the ant or 

Store th
the phero  values with T0=0.001.  

t  
der pixel for each ant, 

elected previously. 

ax < Gmax) then Gmax = Lmax 
whose solution is 

Trace the
position t the co-ordinates of the border pixel 

3×3 from M
U  ← fitness value; the posterior energy U 

culated.  
∑[( y-µ )2/(2*σ2 )] +∑ log(σ) + ∑ V(x)}  

N  ← 50  - Number of iterations  
K ←
T0 ← 0.001  - Initial pheromone valu
ρ ← 0.9  - rate of pheromone evap
parameter 
S ← U ),T0, flag}  flag column mentions 

wh
not. 

e energy function values in S. Initialize all 
mone

repeat for N times 
for each pixel in Mij
for each an
gi ← a random bor
which is not s
Tnew ← (1–ρ) * Told + ρ * T0 for gi 
end 
Lmax  ← max(Ui(x))  
if (Lm
g ← Select the ant, 
equal to local maximum 

Figure 7. Nipple Identification using ACO

Tnew ← (1 – α) * Told + α * ∆Told, only for g 
end 
 ant that generates the Gmax, from the ant’s 
find ou

from the solution matrix. Consider this co-ordinate 
as nipple position. 
end 
 
 
5 Alignment Of Mammograms 

h d prior to 
ubtraction. Alignment involves the selection of 

reference points for transforming the coordinates of 

 
Rig t and left breast images must be aligne
s

 50  

GVIP Journal, Volume 5, Issue 7, July 2005



one image in order to achieve correspondence 
between both images. In this study the right 
breast image is always transformed. The right 
mammogram is both displaced and rotated to 
align the images,. The coordinates of the 

determine the angle of rotation to achieve 
correspondence. After the right breast border was 
displaced, the correlation coefficient between the 
coordinates of the points of the left breast border 
and the coordinates of the points of the rotated 
right breast border was calculated for angles 
ranging between -5° and 5° with one-degree step. 
The angle corresponding to the maximum value 
of the correlation coefficient was the angle of 
rotation of the right breast image, that is, the 
degrees that need to be rotated for the right 
breast border to match the left breast border. 
Figure 8 shows the left breast image and right 
breast image, which is transformed 
corresponding to left image. 
 
5.1 Generating The Asymmetry Image 
 

detected nipples of both images determined the 
displacem nts 
along

fter the images were aligned, bilateral 
ng 

e digital matrix of the left breast image from 

i the proposed 
h tent to which 

otential abnormalities can be extracted from 

ent. The coordinates of the poi
 the detected breast borders were used to 

A
subtraction was performed [47,48] by subtracti
th
the digital matrix of the right breast image. 
Microcalcification in the right breast image have 
positive pixel values in the image obtained after 
subtraction, while microcalcification in the left 
breast image have negative pixel values in the 
subtracted image. As a result, two new images 
were generated: one with positive values and the 
other with negative values. The most common 
gray level was zero, which indicated no 
difference between the left and right images. 
Simple linear stretching of the two generated 
images to cover the entire available range of 

1024 gray levels was then calculated. The difference 
between corresponding pixels contains important 
information that can be used to discriminate between 
normal and abnormal tissue. The asymmetry image 
can be thresholded to extract suspicious regions. To 
generate FROC curve, the asymmetry image is 
thresholded using ten different intensity values 
ranges from 50-150. Figure 9 shows a asymmetry 
image and connected regions extracted based on 
thresholding to obtain a progressively larger number 
of high difference pixels. 
 
6 Experiments And Results 
 

Figure 8. Alignment of Mammograms

Ult mately, the effectiveness of 
tec nique is determined by the ex
p
corresponding mammograms based on analysis of 
their asymmetry image. Figure 10 shows the normal 
left and right mammogram image. The 
Mammographic Image Analysis Society (MIAS) 
Database is used to evaluate the technique. This data 
is available at ftp://peipa.essex.ac.uk. The X-ray 
films in the database have been carefully selected 
from the United Kingdom National Breast Screening 
Programme and digitized with a Joyce-Lobel 
scanning microdensitometer to a resolution of 50 µm 
× 50 µm, 8 bits represent each pixel. The database 
contains 322 mammograms including normal, mass, 
and microcalcification cases. It indicates different 
classes of abnormalities such as calcification, well-
defined circumscribed masses, speculated masses, 
ill-defined masses, architectural distortion, 
asymmetry and normal. Each of these abnormalities 
has been diagnosed and confirmed by a biopsy to 
indicate its severity: benign or malignant. Although 
the abnormalities vary greatly in shape, the ground 
truth is given as a center and radius of a circle, 
which encloses each abnormality.  

All 161 MIAS image pairs were used in this 

Figure 10. Left and Right Mammograms 
from MIAS dataset  (a) mdb063 (b) mdb064 

paper. A randomly selected set of 15 bilateral
wn from the pairs with spiculated and 
umscribed lesions was used for developing 

 pairs 
dra
circ the 
algorithm and for guiding parameter setting. One of 
the training circumscribed cases also had an 
asymmetric density. The remaining abnormal and 
the normal image pairs were used to measure 
performance. Table 1 provides a list of different 

Figure 9. Asymmetry Image 
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categories of image pairs available in MIAS 
database. The true positive detection rate and the 
number of false positive detection rate at various 
thresholds of the asymmetry images are used to 
measure the algorithm’s performance. These 
rates are represented using Free-Response 
Receiver Operating Characteristic (FROC) 
curves [31]. 
Table 1. Summary of MIAS bilateral image pairs 

MIAS Category 
No. of 
Image No. of 

Abnormalities pairs 
Normal 53 - 
Circumscribed 
M
Spiculated Masses 

d Masses 

n 

asses 
21 26 

19 19 
Ill-define 14 15 
Architectural 
Distortio

18 19 

Asymmetry 14 14 
Calcification 22 25 
Total 161 118 
 

True Positive (TP) si  (FP) 
ated at different t holds 

d on asymmetry image pixels to generate 
n FROC curve. A region extracted in the 

asym

e pairs. 
As exp

CO 

urve (Az value) is an important criterion for 
evaluating diagnostic performance [68,69]. The AZ 

and False Po tive
rates are calcul 10 hres
selecte
a

metry image, which overlaps with a true 
abnormality as provided in the ground truth of 
the image, is called a true positive detection. An 
overlap means that at least 75% of the region 
extracted lies within the circle indicating a true 
abnormality as determined by MIAS database. 
For example, the mammogram mdb239.pgm, the 
spatial coordinate position of the suspicious 
region, x and y are 567, 808 respectively, and the 
radius is 25 pixels. The resultant asymmetry 
image contains the suspicious region at 
[567,807], with the radius of 25 pixels. 
Compared to the MIAS information on 

mdb239.pgm, results from the proposed method 
overlaps 98% of the specified region and this image 
is classified as true positive image. Suppose the 
overlap is less than 75% of the specified region, and 
then the image is considered as false positive image. 
In the previous methods such as Sallam and Bowyer 
[55], Lau and Bischof [41] have taken the overlap 
region of only 40% are considered as true positive. 
But in this paper, the true positive is considered only 
at 75% of overlap occurs. All other regions extracted 
by the algorithm are labeled as false positives. 
Figure 11 shows the FROC curves generated on the 
full test set, using 10 operating points. In general, it 
is expected that the true positive detection rate in an 
FROC curve will continue to increase or remain 
constant as the number of false positives increase. In 
this case the true positive rate actually drops at 
certain points. If the threshold value is low true 
detections may become merged with false positive 
regions.  

The exact true positive and false positive 
rates are given in Table 2. The table also shows false 
positive rates for the set of 53 normal imag

ected for the calcifications cases, the 
technique is only able to extract a very small fraction 
of the clusters. For the other abnormal categories 
(misc), best performance is achieved on ill-defined 
masses followed by circumscribed masses and 
asymmetry cases. The algorithm performance is 
slightly worse on spiculated lesions (spic) followed 
by architectural distortion pairs (arch). Unlike 
circumscribed and ill-defined masses, spiculated 
lesions and, to a larger extent, architectural 
distortion can have characteristic radiating or 
irregular thin structures without a distinct central 
mass. 
 
Table 2. Detection Rates at different operating points 
using A
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Classification Ratio: The area under the FROC 
cFigure 11. Combined results on all 

161 normal and abnormal MIAS 
image pairs using ACO and GA
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value of FROC curve should be computed by 

 Rate

normalizing the area under the FROC curve by 
the range of the abscissa. The value of AZ is 1.0 
when the diagnostic detection has perfect 
performance, which means that TP rate is 100% 
and FP rate is 0%. The Az value for the proposed 
algorithm is 0.94. The Table 3 shows the 
comparison of detection rate between the 
previous works and the proposed method. 
 
Table 3. Comparison of Detection Rate 

Authors & 
References Methods Detecti

on
Ferrari and Directional Filtering .4%Rangayyan [20] with Gabor wavelets 74

La
Bi

Asym
Meas

 
rithm 

 
 94.8%

u  and 
schof [41] 

metry 
ures 85.0%

Sallam and 
Bowyer [55] 

Unwarping 
Technique 86.6%

The proposed  
Metaheuristic
Approach 

Genetic Algo
Ant Colony
Optimization

86.6% 

 
7 CONCLUSI

sed m en desig o 
tomatically detect both the breast border and 
p mograms using genetic 

perators and Ant Colony Optimization. The 

 L. Deneubourg, and S. Goss. Trails and U-
he shortest path by the ant Lasius. 

io., 159:397–415, 1992.  

ONS 
 
The propo ethod has be ned t
au
nip le in digital mam
o
proposed algorithm is developed as an 
application using MATLAB v6.5 the figure 12 
shows the layout and the outputs from the 
corresponding functions. Initially the 
mammogram images are smoothened by median 
filter and the pectoral muscle region is 
eliminated from the breast region. In border 
detection, the border pixel intensity values are 
considered as population strings, reproduction is 
applied to these strings to generate parent strings 
using fitness values, for crossover operator. 
Crossover and mutation operators are used to 
generate mated strings, the new population for 
detection of border. The detected border is 
evaluated using figure of merit, which shows the 
genetic algorithm detects exact border than other 
edge detectors. From the extracted border, the 
border pixels are considered as population 
strings to genetic algorithm and Ant Colony 
Optimization, to find out the optimum value 
from the border pixels. Ant Colony Optimization 
(ACO) algorithm updates the pheromones for 
each ants, while searching for the optimum 
value. At the final iteration, the border pixel, 
which returns the optimum value, is considered 
as the nipple position of the mammogram image. 

The result of the nipple position using ACO is better 
than the results using highest peak method, second 
derivative method, average gradient method, and 

genetic algorithm comparatively. The border and 
nipple as references, the right mammogram is 
aligned corresponding to left mammogram, and left 
image is subtracted from right image to obtain the 
asymmetry image. Then the asymmetry image is 
thresholded to isolate the asymmetries or 
microcalcifications extracted from back ground 
tissue. To evaluate the performance of the proposed 
algorithm a FROC curve is generated. The 
experimental results shows that the proposed 
technique produces better Az (0.94) results 
comparatively. 
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