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Abstract

The state of the art movie restoration methods like AWA, LMMSE
either estimate motion and filter out the trajectories, or compensate the
motion by an optical flow estimate and then filter out the compensated
movie. Now, the motion estimation problem is fundamentally ill-posed.
This fact is known as the aperture problem: trajectories are ambiguous
since they could coincide with any promenade in the space-time isophote
surface. In this paper, we try to show that, for denoising, the aperture
problem can be taken advantage of. Indeed, by the aperture problem,
many pixels in the neighboring frames are similar to the current pixel
one wishes to denoise. Thus, denoising by an averaging process can use
many more pixels than just the ones on a single trajectory. This obser-
vation leads to use for movies a recently introduced denoising method,
the NL-means algorithm. This static 3D algorithm outperforms motion
compensated algorithms, as it does not lose movie details. It involves the
whole movie isophote, including the current frame, and not just a trajec-
tory. Experimental evidence will be given that it also improves the “dirt
and sparkle” detection algorithms.

1 Introduction

1.1 Sequences and noise

Let us define a continuous image sequence u(x, y, θ) as a bounded function
defined on a domain Ω ⊂ R3. A discrete sequence is just a sampling of u(x, y, θ)
for a discrete set of times t1, · · · , tn. For a fixed time t, the image u(i, j, t) is
defined on a finite grid of pixels, each one denoted by x = (i, j, t).

Figure 1 displays three consecutive frames of a degraded image sequence.
These degradations are due to several reasons. When digital video is produced
directly from the scene, noise is introduced by the acquisition equipment. Each
one of the pixel values u(i, j, t) is the result of a light intensity measurement.
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Figure 1: Three consecutive frames of a degraded image sequence. Two types
of degradations are distinguished: slight fluctuations of the grey level values
(noise) and local artifacts which change abruptly position (“dirt and sparkle”).
The sparse time sampling in film sequences makes restoration more difficult
than in 3D images.

When the light source is constant, the number of photons received by each pixel
fluctuates around its average. In a first rough approximation one can write

u(i, j, t) = u0(i, j, t) + n(i, j, t),

where u is the observed sequence, u0 is the original sequence without noise and
n(i, j, t) is the noise perturbation.

Film and videotape material is also subject to degradations with time and
repeated use which introduce noise and artifacts. These degradations are even
enhanced by the digitization process. The sequence of Figure 1 presents a type
of degradation familiarly called “dirt and sparkle”. This degradation appears
under the form of stains which affect a relatively small zone and whose position
is random. Thus, they change abruptly position and are seldom superposed in
consecutive frames.

What makes particularly difficult the sequence restoration is the movement.
If an image sequence is completely static, then a simple temporal averaging
would be an excellent estimation. Unfortunately, if some region of the scene
moves, the temporal averaging will blur it. For this reason, recent filtering
techniques are adapted to the dynamic character of image sequences. The two
main approaches for avoiding the temporal artifacts are the adaptivity and the
motion compensation. Adaptive algorithms implicitly take into account the mo-
tion assumption in the design of the method. Motion compensation algorithms
compute a motion estimation as a preprocessing step.

1.2 Filtering methods

In local filtering methods, the restoration of a certain pixel x only depends on the
value of its neighboring pixels. The set of pixels involved in the restoration of x is
called the support of x, Sx. When the support Sx involves only pixels belonging
to the same frame, we talk about spatial filters. In that case, each image of
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the sequence is filtered independently of the rest. Such an approach neglects
the temporal correlation between consecutive frames and does not exploit the
huge redundancy of image sequences. Spatiotemporal filters take advantage of
the correlations that exist in both the spatial and temporal directions. In that
case, the support of a pixel involves pixels in the current frame but also in the
previous and posterior ones. This fact leads to a more coherent filtering of the
sequence. Finally, temporal filters exploit only the correlation in the temporal
direction.

In this work, we are mainly concerned with spatiotemporal filters. We shall
distinguish three classes of filters: static filters, adaptive filters and motion com-
pensated filters. The static filters are straightforward extensions of image filters.
These filters are obtained by extending the 2D image support to a 3D space-
time support. Even though they are the simplest algorithms, they are crucial
for the understanding of the sequence filtering problem. The adaptive filters are
designed specifically to deal with image sequences and take into account the
possibility of a motion. The motion compensated filters estimate explicitly the
motion of the sequence by a motion estimation algorithm. The trajectories ob-
tained by the previous estimation yield a new stationary data. The most recent
articles use the motion compensation strategy. This seems a necessary step to
obtain good results in sequence filtering. However, the motion estimation is a
very difficult problem itself and there is no algorithm able to give a final solu-
tion. In fact, the motion compensation can propose inaccurate trajectories and
a filtering along these trajectories a blur and an information loss.

We shall sustain the position that, in fact, motion estimation is not only
unnecessary, but probably counterproductive. The aperture problem, viewed as
a general phenomenon in movies, can be positively interpreted in the following
way : there are many pixels in the next or previous frame which can match the
current pixel. Now by the law of large numbers, a denoising method works so
much the better if the estimation of the current pixel is based on many, and
not just a few pixels. Thus, it seems sound to use not just one trajectory, but
rather all similar pixels to the current pixel across time and space.

This leads us back to a classical filter, namely the sigma-filter [17], or neigh-
borhood filter [31], or SUSAN [25], more recently renamed bilateral filter [26].
The main idea of this spatial filter is to denoise the current pixel by taking
an average of all neighboring pixels whose grey level value is close enough. If
one applies a sigma-filter to the space-time data, one noticeably averages on
the whole space-time isophote. As we shall see, this static filter gives excellent
results, but which can still be improved by piling up some motion compensation.

In this paper, we adapt a recently introduced nontrivial extension of the
sigma-filter, the NL-means algorithm [4, 5]. This spatial algorithm defines a
generalized isophote on which noise reduction is performed by averaging. In the
case of movies, as we shall see, this static filter is no more improvable by motion
compensation.

The plan of this paper derives from the above remarks. In section 2 we
review some classical image denoising algorithms and their extension to the 3D
time-space support. In section 3 we review classical adaptive algorithms. In
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section 4 we introduce motion estimation algorithms and the aperture problem.
These algorithms are used in section 5 to compensate the algorithms of previous
sections. Experiments show the improvement of motion compensated versions
of static filters. In section 6 we deal with the “dirt and sparkle problem”. For a
sake of completeness, we describe a simple algorithm which removes these local
artifacts. In section 7 we introduce the NL-means algorithm and its extension
to image sequence filtering. The experiments compare the performance of the
various algorithms for noise filtering. Finally, we discuss the combination of
NL-means with the removal of “dirt and sparkle”.

2 Static filters

The static filters are obtained by extending the 2D image filter support to the 3D
time-space support. We call them static because they do not take into account
the dynamic character of image sequences. Many image denoising algorithms
have been proposed in the literature. However, only a few ones can be easily
extended to the 3D support, namely the local average filters.

The support of a pixel x = (i0, j0, t0) is given by

Sx = {y = (i, j, t) | |i− i0| ≤ δi, |j − j0| ≤ δj and |t− t0| ≤ δt},

where δi, δj , δt > 0. Then, static filters can be written as

û(y) =
1

C(x)

∑

y∈Sx

w(x,y)u(y), (1)

where û denotes the restored sequence and C(x) =
∑

y∈Sx
w(x,y) is the nor-

malizing term. A median filter is just obtained by setting a selected pixel weight
to one and all others to zero.

The most classical example is the arithmetic mean. The spatiotemporal
extension simply sets all the weights in the support to 1. We shall denote this
filter by MFu. Like the two dimensional version, the algorithm blurs the edges
and removes many details. These artifacts are aggravated on moving regions,
see Figure 2.

The blurring of the previous method can be avoided by analyzing the per-
formed mean. When the averaging is performed on a contour or texture, the
variance of the grey levels of the averaged pixels can become larger than the
variance of the noise. A more conservative estimate can be obtained by the
following method, due to Lee [16].

Let us assume that the observed value u(x) is the realization of a random
variable X. Let us suppose that X = X0 + N where X0 is the true value and
N is the noise value. Then, the best linear estimate in a minimum least square
error sense is:

X̂ = EX0 +
σ2

X0

σ2
X0

+ σ2
N

(X − EX0),
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where EX0 denotes the expectation of the variable X0, σX0 its standard devia-
tion and σn the noise standard deviation. The expectation EX0 is replaced by
the mean MFu and the variance of the original variable is approximated by

σ2
X0

= max(0, σ2
X − σ2

N ),

where σ2
X is estimated on the sample sequence

σ2
X =

1
|Sx|

∑

y∈Sx

(u(y)−MFu(x))2.

The original noisy values are less altered near the boundaries or textured regions,
where σX is large. Thus, the noise is mainly reduced in flat zones where σX

and σN take close values, see Figure 2.
The neighborhood (or sigma-) filters [17, 31] also avoid the blurring effect of

the mean filter. Neighborhood filters are based on the assumption that pixels
belonging to a same region have a similar grey level value. Therefore, one
should restrict the average to pixels with a small grey level difference with the
one in restoration. The filter is written under the average form (1) by taking
the weights

w(x,y) = e
−(u(y)−u(x))2

h2 , (2)

where h > 0 controls the degree of filtering of the restored sequence. This
parameter controls the decay of the exponential in function of the grey level
distances, and therefore the decay of the weights. The neighborhood filter is
a better denoising tool than Lee’s correction. It maintains sharp boundaries,
since it averages pixels belonging to the same region as the reference pixel. Un-
fortunately, this method fails when the standard deviation of the noise exceeds
the contrast of edges.

Notice that the three above mentioned classes of static filters are not adapted
to the removal of local artifacts such as the “dirt and sparkle”. The mean filter
reduces these artifacts because it averages all the pixels inside the spatiotempo-
ral support. The cost of this reduction is the blurring of boundaries and details.
Since the mean performed at local artifacts has a large variance, the Lee sta-
tistical correction performs a more conservative estimate and keeps the original
values. Thus, it maintains dirt and sparkle. Since the neighborhood filters
average pixels with a similar grey level value, they also keep these artifacts.

The median filter [28] chooses the median value, that is, the value which
has exactly the same number of grey level values above and below in a fixed
neighborhood. This filter is optimal for the removal of impulse noise on images.
Figure 2 shows that this algorithm is able to reduce the additive noise and to
remove as well dirt and sparkle. The median filter preserves the main bound-
aries, but it tends to remove the details and to blur the boundaries of moving
regions.
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Figure 2: Application of static filters to the sequence of Figure 1 (only the central
frame is displayed). From left to right and from top to bottom: mean filter,
Lee’s statistical correction, the neighborhood filter and the median filter. All the
experiments have been performed with a spatiotemporal support of δi = δj = 3
pixels and δt = 2 frames. The mean filter averages all the pixels in the support,
thus blurring the edges and moving regions. The statistical correction performs
a more conservative estimate when a large variance of the mean is observed.
As a consequence, the edges and boundaries between moving regions are kept
noisy. The neighborhood filter does not blur the image as it averages only pixels
with a similar grey level. However, many isolated noisy points are still visible.
All of these methods reduce the noise but are not able to remove the “dirt and
sparkle” effect. The median filter preserves the edges and at the same time
reduces the noise and the local artifacts. However, the result is blurred because
of the poor adaptation to movement.
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3 Adaptive filters

Adaptive filters take into account the dynamic character of image sequences but
do not compute explicitly the optical flow. The aim of these filters is to avoid
the blurring effect where motion occurs. The objective of this section is not to
make a review of adaptive filters, but to give some simple ideas about them.
For a more complete description see [3].

Adaptive median filters have been proposed in [1, 2, 15]. First, several
median filters are performed on different supports. Each support has a different
topology in order to preserve a fixed direction or pattern. Then, a new median
operation is performed on a subset of the previous computed medians.

Recursive filters follow a similar strategy to the statistical correction of the
mean filter. They are written as

ûa(i, j, t) = ûb(i, j, t) + c(i, j, t)(u(i, j, t)− ûb(i, j, t)),

where ûb(i, j, t) is a rough approximation, ”before updating”, ûa(i, j, t) is the
final estimate, ”after updating”, and the control value c(i, j, t) ∈ [0, 1]. These fil-
ters perform a more conservative estimate when any movement is detected. The
rough approximation is computed using the filtered values of previous frames.
The estimate before updating is often chosen as [20, 7, 8]:

ûb(i, j, t) = ûa(i, j, t− 1)

which implies a recursion in the temporal direction. In that case, when c(i, j, t) =
0 the filtered value of the previous frame is forwarded while when c(i, j, t) = 1 the
actual noisy value is kept. The differences between the several approaches lie in
the choice of the control parameter c(i, j, t). Intuitively the value c(i, j, t) should
depend on the difference between the actual noise value and the forwarded value
e = |u(i, j, k) − ûb(i, j, t)|. A large difference may be due to motion or scene
changes. Different functions of e have been proposed: a threshold function [20],
a truncated linear function [8] or a non linear function [7].

Recursive filters can be improved by using a priori information of the image
sequence model. Katsaggelos [13] and Triplicane [27] proposed the following
auto regressive model for the original sequence:

u(i, j, t) =
∑

(p,q,l)∈A

a(p, q, l)u(i− p, j − q, t− l) + n(i, j, t),

where n is a signal independent white noise and a(p, q, l) are the fixed model
coefficients. This model means that each sequence value is written as a combina-
tion of the values in previous frames plus a signal independent noise. The model
is used for the computation of the rough approximation ûb which is estimated
as

ûb(i, j, t) =
∑

(p,q,l)∈A

a(p, q, l)ûa(i− p, j − q, t− l).

Then, the control parameter c(i, j, t) is chosen to be optimal in a mean square
error sense.
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Recursive filters estimate the value of a pixel x depending on the filtered
values of previous frames. This approach is the only one available when dealing
with real time applications where we only know the previous frames. However,
if we already handle a whole sequence or if some delay is allowed, this approach
doesn’t take advantage of the information in the forward direction.

Adaptive filters may also be preferred when speed is required or the sequence
is highly corrupted. The motion compensation filters have a high computational
cost and the accuracy of motion estimation algorithms decreases with noise [3].
However, when dealing with moderated noise, motion compensation filter are
usually preferred. In fact, many papers dealing with adaptive filters conclude
that a motion compensation is required to overcome the temporal artifacts. In
the next section, we introduce the motion estimation problem and two different
approaches. The availability of an accurate motion estimation is crucial for the
performance of the motion compensation filters.

4 Motion estimation

In this short review, we shall deal with two different approaches, the optical flow
constraint (OFC) based methods and the block matching algorithms. The first
class of methods assumes that the grey level value of the objects during their
trajectory is nearly constant (Lambertian assumption). The second strategy
computes the displacement at each pixel by comparing the grey level values in
a whole block around it. One of the major difficulties in motion estimation is
the ambiguity of trajectories, the so called aperture problem. This problem is
illustrated in Figure 3. In many pixels we have several options for the displace-
ment vector. All of these options have a similar grey level value and a similar
block around them. Now, motion estimations are forced to select one by some
additional criterion.

The OFC based methods assume that the grey level of a pixel is nearly the
same on each trajectory. This assumption leads to the optical flow equation

uxv + uyw + uθ = 0

where ux and uy denote the partial derivatives of u in the spatial directions
and uθ the temporal derivative. The vectors v and w denote respectively the
displacement functions in the horizontal and vertical directions. This single
equation is not sufficient to determine the unknown functions v and w (the
aperture problem). In order to obtain a unique flow field, a second constraint is
needed. Such a constraint may impose the flow field to vary smoothly in space.
The flow is obtained by minimizing the energy

E(v, w) =
∫

Ω

(uxv + uyw + uθ)2 + α

∫

Ω

Ψ(|∇v|2 + |∇w|2) dx dy

where the parameter α > 0 controls the tradeoff between the OFC constraint
and the regularization term. Larger values of α give more weight to the regu-
larization term leading to a smoother optic flow. The original work of Horn and
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Figure 3: Aperture problem: The ambiguity of trajectories is the most difficult
problem in motion estimation. Many good candidates are possible and the
motion estimation algorithms must choose one.

Schunk [11] considered the function Ψ(x) = x which leads to an spatial isotropic
smoothing of the flow. As a consequence, the flow field is smoothed across the
boundaries and therefore blurred. Many modifications have been proposed to
avoid this smoothing across the boundaries, see for instance [21]. Non linear
regularizing functionals Ψ have also been considered, see for instance [29]. This
type of algorithms is local in time, and two frames are in general enough to
compute the optical flow. In this work, we shall use the method developed by
Weickert and Schnorr [30]. The spatial regularization term is replaced by a
spatiotemporal one. The minimized energy is now a three dimensional integral
whose solution is the optical flow for all the frames t ∈ [O, T ]:

E(v, w) =
∫

Ω×[0,T ]

(uxv + uyw + uθ)2

+α

∫

Ω×[0,T ]

Ψ(|∇3v|2 + |∇3w|2) dx dy dθ.

The spatiotemporal regularization improves the vector fields significantly, smoo-
thes out background noise, and preserves the true motion boundaries. In the
experiments, we shall use the nonlinear convex function proposed in the men-
tioned work,

Ψ(x) = εx + (1− ε)λ2
√

1 + s/λ2,

where 0 < ε << 1 and λ > 0.
The second model we shall involve in comparisons is the block-matching.

The image is divided into blocks of a general rectangular shape. For each block
in the current frame the block of pixels in the reference frame which is the most
similar is searched for. The similarity is measured by l1 or a l2 distance. Then,
a constant displacement is assumed in each block. In order to achieve the most
accurate motion estimation at each pixel, we have implemented a slower version
of this algorithm. For every pixel x = (i0, j0, t0), we take a block centered at
x and size N ×N . Then, we search the pixel in the reference frame which has
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Figure 4: Comparison of the optical flow obtained by the Weickert and Schnorr
algorithm (left) and the block matching algorithm (right). The regularity condi-
tion of the OFC based methods yields a smooth optical flow. The non-presence
of this regularity term in the block matching can lead to a chaotic optical flow
field. Indeed, by the aperture problem, trajectories on isophotes are essentially
ambiguous and therefore the choice performed by block matching close a random
walk.

a more similar block to the one centered in x. The displacement vector at x,
(v, w), minimizes

∑
m

∑
n

(u(i0 + n, j0 + m, t0)− u(i0 + v + n, j0 + w + m, t0 + ∆t))2

where ∆t represents the time interval between the current frame and the refer-
ence one.

As Figure 3 shows, there can be many blocks with similar configurations in
the reference frame. Then, the algorithm chooses the closest one. That does
not ensure we choose the right pixel, particularly when the sequence is noisy.
In contrast with the (OFC) based algorithms, there is no constraint on the
regularity of the obtained flow. Thus, pixels of the same region can have very
different displacements vectors.

Figure 4 displays the motion estimation of the sequence in Figure 1. The
flow obtained by the Weickert and Schnorr algorithm is more coherent while the
block matching flow seems to be less accurate and chaotic.

5 Motion compensated filters

Nearly all the recently proposed image sequence filters are motion compensated.
It is assumed that, in order to deal with the dynamic character of sequences and
to obtain high quality results, a motion estimation is necessary. The underlying
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idea is the existence of a “ground true” physical motion, which motion estima-
tion algorithms should be able to estimate. Legitimate information should exist
only along these physical trajectories.

A motion estimate of the sequence is computed previously to the application
of the algorithm. For a pixel x = (i0, j0, t0), let vt and wt denote the horizontal
and vertical displacements between the pixel x and the corresponding pixel in
the frame t. Then, the new support is obtained by centering the spatial window
at each frame t at (i0 + vt, j0 + wt)

Sx = {(i, j, t) | |i− (i0 + vt)| ≤ δi, |j − (j0 + wt)| ≤ δj and |t− t0| ≤ δt},

where δi, δj , δt > 0. Following this scheme, all of the previous static filters
can be compensated. Many of these motion compensated denoising algorithms
have been directly proposed in the literature. Samy [23] and Sezan et al. [24]
proposed the LMMSE filter which is a motion compensation of the statistical
correction of the mean filter. Ozkan et al [22] proposed the AWA filter which is
in fact a motion compensation of the neighborhood filter. These authors do not
use the exponential function as in (2) but another decreasing function of the
grey level differences. Huang [12] and Martinez [19] implemented motion com-
pensated median filters. Motion compensated Wiener filters were also proposed
by Kokaram [15].

The experiments illustrate the improvement of motion compensated algo-
rithms compared with static and adaptive filters. Figure 5 compares the mean
and median static filters and their motion compensated versions. The mo-
tion compensated mean filter uses the optical flow computed by the Weickert
and Schnorr algorithm. The motion compensated median filter uses the block
matching estimation. In both cases, the motion compensation improves the
static version, avoiding the excessive blurring of the static filters. The details
are also better preserved with motion compensation. This explains why most
recent papers propose motion compensated algorithms.

Figure 6 compares the motion compensated versions of the neighborhood
filter and the statistical correction of the mean. We compare the estimates
obtained by the two motion estimation algorithms. Both motion compensation
versions improve their static version of Figure 2 and lead to high quality restored
sequences. However, the filtered sequence using the block matching algorithm
better preserves the details and is less blurred than the filtered with the Weickert
and Schnorr algorithm. The block matching motion estimation is more accurate
near the edges. As a consequence, the statistical correction is able to reduce
more noise when the block matching is used. When using the Weickert and
Schnorr method the algorithm is forced to be more conservative and keeps much
more noise. When dealing with the neighborhood filter the block matching also
better preserves the details. In spite of its chaotic optical flow (Figure 4) it seems
that the block comparison is more robust when dealing with noisy sequences.
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Figure 5: Comparison of static and motion compensated filters with the se-
quence of Figure 1 (only the central frame is displayed). Top: mean and motion
compensated mean filter with the WS estimation. Bottom: median and motion
compensated median filter with the BM estimation. All the experiments have
been performed with a spatiotemporal support of δi = δj = 3 pixels and δt = 2
frames. The application after motion compensation improves the static version
with both motion estimation algorithms. The blurring is reduced and many
more details are preserved. This experiment illustrates why most recent papers
propose motion compensated algorithms.
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Figure 6: Comparison of motion compensated filters by the WS and the BM
algorithms. Top left: statistical correction with WS. Top right: statistical cor-
rection with BM. Bottom left: neighborhood filter with WS. Bottom right:
neighborhood filter with BM. In spite of the chaotic optical flow of Figure 4,
the BM algorithm better preserves the details and creates less blur. The block
matching motion estimation is more accurate near the edges. As a consequence,
the statistical correction is able to better reduce the noise. When using the
WS method, the algorithm is forced to be more conservative and keeps much
more noise. When dealing with the neighborhood filter, the block matching also
better preserves the details.
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6 Dirt and sparkle

The local artifacts are of relatively small size and remove the original infor-
mation. The positions of these artifacts change abruptly from one frame to
another. Thus, a removal algorithm should take advantage of the previous and
next frames where artifacts occur, but it should not modify the value of other
pixels. The previously mentioned algorithms are unable to remove these arti-
facts without blurring the whole sequence.

The local artifacts are easily recognized by the eye as large oscillations of the
grey level values in consecutive frames. Thus, they should be easily recognized
by detecting these oscillations [15]. Let us present, for a sake a completeness, a
simple strategy to remove them. We shall use this simple algorithm for compar-
isons hereafter. For each pixel, let us look for the pixel with the closest value
in the previous and next frames and at a distance less or equal than a fixed
parameter. Then, let us take the median value of the triple made by the current
pixel and the two selected ones. Such an algorithm is very conservative. If no
local artifacts are present, it should always find pixels with a similar grey level
value in the previous and next frames. Guichard’s movie filtering PDE [10] can
be viewed as an iterative extension of this algorithm, and yields similar results.

Figure 7 displays an application of the previous, classical, strategy. We have
applied it to the noisy sequence of Figure 1. The local artifacts are removed
and the rest of the image is nearly not modified. In particular, the noise is
generally kept. We also display a threshold of the difference between the noisy
and filtered sequences. With this simple threshold, one is able to single out the
local artifacts.

In contrast to structured dirt and sparkle, white or nearly white noise is
mixed with the sequence features and cannot be detected by such simple devices.
In the next section, we deal with this problem and present an extension to movies
of a static image denoising algorithm, the NL-means.

7 The NL-means algorithm

The NL-means is a recently introduced image denoising algorithm [4, 5]. This
algorithm tries to take advantage of the high degree of redundancy of any natural
image. Most small windows in a natural image have many similar windows in
the same image. In a very general sense inspired by the neighborhood filters,
one can define as “neighborhood of a pixel i” any set of pixels j in the image
such that a window around j looks like a window around i. All pixels in that
neighborhood can be used for predicting the value at i, as was first shown in
Efros et al. [9] for texture synthesis. This prediction was shown to be consistent
by Levina [18].

Let us take first u to be a single image defined on a bounded domain Ω ⊂ R2.
The NL-means algorithm is defined as

NLu(x) =
1

C(x)

∫

Ω

e−
(Ga∗|u(x+.)−u(y+.)|2)(0)

h2 u(y) dy,
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Figure 7: Removal of “dirt and sparkle’ artifacts by a simple classical algorithm.
Top: three consecutive frames of a degraded sequence. Middle: sequence after
the application of the algorithm for the removal of local artifacts. Bottom:
Threshold of the difference of both sequences. Pixels with a difference larger
than 5 grey level values are shown in white. The ’Dirt and Sparkle’ effect is
removed by this simple algorithm. The rest of the image is nearly not modified,
including the noise. The l1 differences between the three degraded frames and
its filtered versions are: 0.174, 0.177, 0.179 (we note that grey level values
vary from 0 to 255). Thus, the image is practically unaltered. With a simple
threshold of the difference (actually 5), one is able to detect the stains. Once the
detection is performed, more sophisticated algorithms can of course be applied
if desired. White noise instead is not detectable in that way, as it is mixed with
the movie features.
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where x ∈ Ω, Ga is a Gaussian kernel of standard deviation a, h acts as a

filtering parameter and C(x) =
∫
Ω

e−
(Ga∗|u(x+.)−u(z+.)|2)(0)

h2 dz is the normalizing
factor. In order to make clear the previous definition, we recall that

(Ga ∗ |u(x + .)− u(y + .)|2)(0) =
∫

R2
Ga(t)|u(x + t)− u(y + t)|2dt.

This amounts to say that NLu(x), the denoised value at x, is a mean of the
values of all pixels whose gaussian neighborhood looks like the neighborhood of
x.

The NL-means algorithm is non-local since all pixels in the image are used for
the estimation at a pixel x. NL-means take advantage of the huge redundancy
present in natural images. As this redundancy is even larger in image sequences,
it seems obvious to directly extend the 2D support to a 3D spatiotemporal one.

7.1 Sequence filtering algorithm

Every detail or small window usually has many similar windows through the
sequence. However, the comparison of a window with all possible windows of
the sequence is a prohibitive amount of computation. For this reason, the NL-
means algorithm is usually applied in a fixed, large enough neighborhood,

Sx = {y = (i, j, t) | |i− i0| ≤ δi, |j − j0| ≤ δj and |t− t0| ≤ δt},

where δi, δj , δt > 0 and x = (i0, j0, t0). The estimated value NL(u)(x) is com-
puted as a weighted average of all the pixels in the support of x,

NLu(x) =
1

C(x)

∑

y∈Sx

w(x,y)u(y), (3)

where the weights w(x,y) ≥ 0 depend on the similarity between the pixels x
and y and C(x) is the normalizing factor.

The similarity between pixels x and y depends upon the similarity of the
intensity gray level vectors u(Nx) and u(Ny), where Nz denotes a two dimen-
sional square neighborhood of fixed size and centered at the pixel z. Square
neighborhoods of fixed size are used for simplicity.

The similarity of the intensity gray level vectors u(Nx) and u(Ny) can even
be computed as an L2 distance, ‖u(Nx)−u(Ny)‖22. Efros and Leung [9] showed
that the L2 distance is a reliable measure for the comparison of image windows
in a texture patch. Now, this measure is so much the more adapted to any
additive white noise as such a noise alters the distance between windows in a
uniform way. Indeed,

E||u(Nx)− y(Ny)||22 = ||u0(Nx)− u0(Ny)||22 + 2σ2

where the observed sequence u is supposed to be obtained by the addition of a
signal independent white noise of standard deviation σ to the true sequence u0.
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This equality shows that, in expectation, the Euclidean distance preserves the
order of similarity between pixels. So the most similar pixels to x in u also are
expected to be the most similar pixels to x in u0. The weights associated with
the quadratic distances are defined by

w(x,y) = e−
||u(Nx)−u(Ny)||22

h2 ,

where h controls the decay of the exponential function and therefore the decay
of the weights as a function of the Euclidean distances.

7.2 Motion adaptation and the aperture problem.

The NL-means algorithm applied to movies is a static filter, that is, a straight-
forward extension of a two dimensional filter. It does not directly take into
account the dynamic character of image sequences. The aim of this section is
to experimentally show that motion compensation is not necessary and even
counterproductive.

Motion estimation algorithms try to solve the aperture problem. The block
matching algorithm chooses the pixel with the more similar configuration, thus
loosing many other interesting possibilities, as displayed in Figure 3. Algorithms
based on the OFC must impose a regularity condition of the flow field in order
to choose a single trajectory. Thus, the motion estimation algorithms are forced
to choose a candidate among all possible equally good choices. However, when
dealing with sequence restoration, the redundancy is not a problem but an ad-
vantage. Figure 3 shows that we could choose anyone of the possible candidates
for the averaging, so why not take them all.

In Figure 8, we display the probability distributions computed by the NL-
means for three different cases. We display the support and the probability
distributions used to estimate the central pixel of the middle frame. The support
contains the two previous and posterior frames. In a flat zone a) we see that the
NL-means gives a large weight to all the pixels belonging to the same region.
In straight and curved edges the algorithm favors pixels belonging to the same
space time contour (b) and c)). The algorithm favors pixels with a similar
local configuration even if they are far away from the reference pixel. As the
similar configurations move, so do the weights. Thus, the algorithm is able to
follow the similar configurations when they move but without an explicit motion
computation. So, there is no need to solve any aperture problem ; let us just
average all pixels with a similar local configuration.

8 Experimentation and comparison

In the previous sections we have compared the performance of static filters
and motion compensated filters. The comparison of these algorithms leads to
conclude that the motion compensation improves a lot the static versions of
the algorithms. In this section, we limit ourselves to the comparison of motion
compensated filters with the NL-means algorithm.
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a)

b)

c)

Figure 8: Display of the probability distributions given by the NL-means al-
gorithm. We display the original noisy values of the support and the weight
distribution used to estimate the central pixel (in white) of the middle frame.
The weight configuration is spatially adapted to the local configuration of each
frame. The algorithm looks for the pixels with a more similar configuration
even they have moved. This algorithm is adapted to moving pictures without
the need of an explicit motion estimation.
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In Figures 9 and 11 we compare the NL-means algorithm with the motion
compensated statistical correction and neighborhood filter. The motion esti-
mate has been obtained using the block matching algorithm. We display a
filtered image of the sequence and the noise removed by the three algorithms.
Ideally, the removed noise should not contain any noticeable structure and it
should look like the realization of a white noise. The statistical correction and
the sigma filters present many structures on the residual noise. This implies that
these structures have been removed from the original sequence. The NL-means
residual noise does not present any noticeable structure. As a consequence, the
filtered image has kept more details and is less blurred.

In Figure 12 we combine the NL-means algorithm and the removal of dirt
and sparkle. The NL-means algorithm has been applied first to remove white
noise. Then, the strategy described in section 6 has been applied to the filtered
sequence. The combination of both methods permits the removal of the two
artifacts without blurring the sequence. As shown in Figure 13, it is better to
denoise first and thereafter remove the “dirt and sparkle”. The local artifacts
are not totally removed by first applying the dirt and sparkle removal. Applying
instead first the NL-means algorithm leads to a significantly better removal.
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Figure 9: Comparison experiment. From top to bottom and left to right: one
frame extracted from a sequence filtered by the motion compensated statistical
correction of the mean, the motion compensated neighborhood filter and the
NL-means. The motion estimation has been obtained by the block matching
algorithm. Bottom: the residual noise for each one of the three methods. The
residual noise is the noise removed by the algorithm. Ideally, it should not
contain any noticeable structure and it should look like the realization of a
white noise. The statistical correction and the neighborhood filter present many
structures on the residual noise. These structures are removed from the original
image. The NL-means residual noise does not present any noticeable structure.
As a consequence, the filtered image preserves more details and is less blurred.
Dirt and sparkle is not removed, rather restored by these algorithms (see below).

Figure 10: Three consecutive frames of a noisy image sequence. The noisy
sequence has been obtained by the addition of a Gaussian additive white noise
(σ = 15) to the original sequence.
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Figure 11: Comparison experiment with the sequence of Figure 10. Top to bot-
tom and left to right: the same filtered frame extracted from a sequence after
three different algorithms have been applied : the motion compensated statisti-
cal correction of the mean, the motion compensated neighborhood filter and the
NL-means. The motion estimation has been obtained by the block matching
algorithm. Bottom: the residual noise from the three algorithms above. This
experiment corroborates the observations of Figure 9. The statistical correction
residual noise is nearly zero on the strong boundaries. Now, these boundaries
are kept noisy on the filtered sequence. We can read the titles of the books on
the residual noise of the neighborhood filter. Therefore, that much information
has been removed from the original. Finally, the NL-means algorithm does not
have any noticeable structure in its residual noise.
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Figure 12: Combination of the NL-means and the dirt and sparkle removal
on the sequence of Figure 1. Are displayed three consecutive frames of the
restored movie, after applying: First, the NL-means algorithm to remove the
additive noise. Second, the strategy described in section 6 for the removal of
local artifacts. As shown in Figure 13 this order of application performs better
in the removal of the dirt and sparkle.

Figure 13: Comparison of the filtered sequences by the application of the NL-
means algorithm and the removal of dirt and sparkle in different order. Top:
Crop of the third frame, filtered crop by first applying the removal of dirt and
sparkle, filtered crop by first applying the NL-means algorithm. The local ar-
tifacts are not totally removed by first applying the dirt and sparkle removal.
Applying first the NL-means algorithm, they are no more visible. On the bot-
tom, the histogram equalization of both images corroborates the first visual
observation.
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