THz Imaging: Biomedical Applications

Mark Stringer

Institute of Microwaves and Photonics

School of Electronic + Electrical Engineering

University of Leeds

The "TeraHertz Gap"

Technology Review (MIT) 2004: THz selected as one of "10 emerging technologies that will change your world"

- Frequency: 0.1 10 THz
- Wavelength: 3 mm 30 μm
- Wavenumber: 3.3 333 cm⁻¹
- Energy: 0.41 41 meV
- Colour Temperature: 1 100 K

THz interactions

- Changes in high-energy rotational states
- Changes in low-energy vibrational states
- Classical electromagnetic wave description for interaction with collections of molecules, in terms of:

Polarization and conductivity (complex permittivity)

Refractive index and absorption coefficient (complex R.I)

- Passive
 - Incoherent
- Active
 - Spectroscopy or Imaging
 - Pulsed (coherent)
 - Continuous wave (coherent)

Passive imaging

Dr Chris Mann (RAL) imaging his hand at ~250 GHz, using a passive system. (*StarTiger* ESA project)

Spin-off company *ThruVision* start airport trials

Active imaging (I)

Wide frequency range, high power coherent output <u>But</u> - large, complex and very expensive LEEDS

THz FEL: KAERI, Daejon, Korea

BEAMLINE

INDULATOR

MICROTRO

- FEL Beam Specification - Wavelength Range : 100-300 μm
 - Wavelength Range : 100-300 μm (100-1200 μm)
 - Macropulse Pulsewidth : 4 μs Power : 10 W at the experimental stage
 - Micropulse

Pulsewidth : 25-40 ps Power : 100 W at the experimental stage

Pulse Energy Fluctuation : <10% rms

THz imaging stage

Active imaging (II)

• Time-domain spectroscopy

Change in polarization $\propto E$

Bandwidth dictated laser pulse duration, electro-optic detection material, etc.

Bio-medical areas of investigation

- Biological effects of THz radiation
- Molecular spectroscopy
- *Ex-vivo* tissue spectroscopy/imaging
- *In-vivo* tissue spectroscopy/imaging

Examples (Journal of Biological Physics, 29, 2003)

Exposure of human keratinocytes up to 0.45 Jcm⁻²: (a)0.2-3 THz @ 1 μ W (Leeds system) (b)0.1-2.7 THz @ 10 μ W (TeraView system)

• No significant effect Clothier and Bourne -Nottingham

Exposure of human lymphocytes to 1.2 Jcm⁻²: 0.12-0.14 THz @ 1mW (Frascati FEL system)

• No significant effect Scarfi et al - Napoli

Spectroscopy: intrinsic resonances

- Low-frequency vibrational modes (stretching, twisting) Isomeric configurations Intermolecular interactions
- Kinetic measurements (excited state modes)
- Bio-molecules (amino acids, proteins, blood analytes, etc)
- Pharmaceuticals, Pathogens, Cosmetics

Ex vivo tissue studies

Systematic measurement of tissue optical properties Tissue catalogue

Defining contrast - investigation of imaging parameters

Development of THz tissue phantom(s)

Identification of candidate disease states

Tissue properties

Material	Nn	< <u>n</u> >	N_{μ}	<µ>/cm ⁻¹
Deionized water	16	2.04 ± 0.07	13	225 ± 21
Tooth enamel	44	3.06 ± 0.09	44	62 ± 7
Tooth dentine	72	2.57 ± 0.05	72	70 ± 7
Skin	36	1.73 ± 0.29	36	121 ± 18
Adipose tissue	37	1.50 ± 0.47	37	89 ± 23
Striated muscle	37	2.00 ± 0.35	37	164 ± 17
Cortical bone	59	2.49 ± 0.07	59	61 ± 3
Vein	33	1.58 ± 0.49	33	110 ± 43
Artery	12	1.86 ± 0.40	24	151 ± 25
Nerve	12	1.95 ± 0.46	12	246 ± 27

 N_n = broadband refractive index

 N_{μ} = broadband attenuation coefficient

E. Berry et al. Proc. SPIE: Medical Imaging 2003

Contrast mechanisms

At each pixel in the image, one can plot:

- 1. Absorption coefficient $[\alpha(\omega)]$ over the whole bandwidth: panchromatic absorption image
- 2. $\alpha(\omega)$ at a fixed frequency or narrow band of frequencies monochromatic absorption image
- 3. Thickness of object: time-of-flight image
- 4. Refractive index n(ω) at a fixed frequency, or over whole bandwidth: *refractive index image*

Proof of principle experiment:

- Plant allowed to dry, and then watered
- As the leaf re-hydrates, THz transmission decreases
- Changes smaller than 1% are detectable

Phantom is designed to perform a quantitative evaluation of the system's ability to image small structures similar to those found clinically. THz system resolved 0.4 mm fibre, 0.25 mm mass and 0.24 mm speck.

X-C Zhang et al. Renssellaer Polytechnic Institute, Troy, USA

Commercial development

Transmission / reflection spectroscopy

Reflection imaging system

Remote probe imaging

THz reflection imaging

Ex vivo BCC

Woodward et al. JID 2003

TPI of breast cancer (ex vivo)

Fitzgerald et al. 2004

In vivo BCC

Clinical image

THz image

Histology section

Wallace et al. BJD 2004

Limits of resolution (~100 µm)

Courtesy: Dave Zimdars, Picometrix, Inc, Ann Arbor, USA

Near-field imaging (aperture at the sample) can enhance spatial resolution.

Near-field, aperture ~50x80 µm

Standard T-ray image

Real-time imaging

Interferometry improves the depth resolution

Photomixing (difference frequency generation)

Photomixer electrodes

10 µm

cw THz : Quantum Cascade Lasers

Terahertz semiconductorheterostructure laser. R Kohler, A Tredicucci, F Beltram, HE Beere, EH Linfield, AG Davies, DA Ritchie, RC lotti and F Rossi. *Nature* 2002; 417: 156-159.

(Collaboration between INFM (Italy) and University of Cambridge, performed under the EC FP5 programme)

Köhler_fig3

Medical imaging techniques

- Standard X-rays
- X-ray CT
- Radioisotope
- PET
- MRI / MRS / fMRI
- Ultrasound
- Applied potential tomography
- MEG

- Optical coherence tomography
- Confocal microscopy
- Infrared FT spectroscopy
- Fluorescence (UV)
- Raman spectroscopy
- mm wave / microwave

- Availability of stable terahertz systems
- Control of experimental variables
- Need to balance discovery-driven with hypothesis-driven studies
- Opportunities in data analysis
- More work on safety
- Exploitation of linear frequency dependence (analogy to broadband ultrasound attenuation, dual energy absorptiometry)
- Phase contrast methods (detection of anomalies, range finding, phase contrast analogues)
- Hybrid or synergistic technologies

- Dr E Berry
- Professor JM Chamberlain
- Professor AG Davies
- Dr AJ Fitzgerald
- J Fletcher
- AP Foulds
- Dr JW Handley
- Professor EH Linfield
- Dr T Löffler
- Dr W Merchant
- Dr C Sudworth

- Professor RE Miles
- Dr M Naftaly
- S Reed
- Dr K Siebert
- Professor MA Smith
- Dr SW Smye
- MR Stone
- Dr GC Walker
- M Whitaker
- NN Zinov'ev DSc