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Cláudio Rosito Jung *

UNISINOS—Universidade do Vale do Rio dos Sinos, PIPCA - Graduate School on Applied Computing, Av. UNISINOS, 950. CEP 93022-000,

São Leopoldo, RS, Brazil

Received 11 May 2004; received in revised form 2 August 2005; accepted 7 January 2006

Abstract

This paper proposes a new segmentation technique that combines multiresolution wavelet decompositions with the watershed transform. The

wavelet transform is applied to the intensity image, producing detail and approximation coefficients. Gradient magnitudes of the approximation

image at the coarsest resolution are computed, and an adaptive threshold is used to remove small gradient magnitudes. The watershed transform is

then applied, and the segmented image is projected up to higher resolutions using inverse wavelet transforms. Typically, if a low resolution is

chosen for the initial segmentation, large relevant objects will be captured; on the other hand, a higher initial resolution will lead to smaller (and

more detailed) segmented objects. The low-pass filtering involved in the wavelet decomposition provides robust segmentation results for noisy

images, even when the amount of noise is very large.

q 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Image segmentation is a fundamental problem in image

analysis. It provides a partitioning of the image, where each

region should represent a different object. With this infor-

mation, it is possible to accomplish quantitative object

measurements, such as size, shape and position, with many

practical applications (for example, measurement of the size

and shape of tumors in medical images).

A powerful tool for image processing based on mathemat-

ical morphology is the watershed transform [1,2]. For example,

images can be segmented into visually sensible regions by

finding the watershed regions in a gradient magnitude image

[1]. However, small fluctuations in the image gray values

(usually due to noise) produce spurious gradients, which cause

oversegmentation. To overcome this problem, many tech-

niques based on watersheds have been proposed [3–7]. For

example, Meyer [6] introduced the levelings approach, which

consists of applying morphological filters to reduce small

details in the image. Haris et al. [3] proposed an edge-
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preserving statistical noise reduction approach as a pre-

processing for the watershed transform, and a hierarchical

merging process as a post-processing stage. Weickert [7]

proposed partial differential equations for image denoising or

edge enhancement (as pre-processing), combined with water-

sheds segmentation and region merging. Nguyen and collab-

orators [8] approached the problem of watershed segmentation

as the minimization of an energy functional, integrating

smoothness constraints of snakes [9] with the watershed

transform.

A particular class of segmentation techniques relies on

multiscale representations of images. Such methods are

typically based on image transformations that change image

resolution, being able to segment objects of different sizes. In

general, small details are detected in higher resolution images,

while larger objects are segmented in coarser images.

The multiscale behavior of image features have been

analyzed in different ways. Tracking of intensity extrema

along scales [10] and multiscale behavior of graylevel blobs

(defined relative to intensity extrema) [11] were used for image

segmentation. Since edge information was not explicitly

included, the performance of both techniques had deficiencies.

Jackway [12], Gauch [13] and Mukhopadhyay and Chanda [14]

used morphological scale-spaces for image segmentation.

Vanhamel et al. [15] explored multiscale image representations

(based on diffusion schemes) and watersheds, focused on color
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image segmentation. Kim and Kim [16,17] proposed a

multiresolution wavelet-based watershed image segmentation

technique, using markers and a region merging procedure to

reduce oversegmentation. Jung and Scharcanski [18] used a

combined image denoising/enhancement technique based on a

redundant wavelet transform for multiscale image segmenta-

tion. Ma and Manjunath [19,20] proposed the Edge Flow

segmentation technique, which consists of computing and

updating changes in color and texture in a pre-defined scale.

Deng and Manjunath [21] proposed the JSEG method for

multiscale segmentation of color and texture, based on color

quantization and region growing. Wy et al. [22] proposed a

multiscale wavelet-based directional image force as external

forces for snakes segmentation. Comaniciu and Meer [23] used

a kernel in the joint spatial-range domain to filter image pixels

and a clustering method to retrieve segmented regions.

It should be noticed that several others segmentation

techniques have been proposed in the past years, such as the

graph-based approach in [24], and statistical and fuzzy

techniques designed to reduce oversegmentation produced by

watersheds [25,26].

In this paper, a new multiscale segmentation technique based

on wavelets and watersheds is presented. The first step of this

technique is to describe an image in multiple resolutions using

an orthogonal wavelet decomposition. A certain resolution 2J is

chosen, and gradient magnitudes at that resolution are estimated

by applying the Prewitt edge detector [27]. An adaptive

threshold is used to remove small magnitudes, and the

watershed transform is applied. This initial segmentation is

projected to higher resolutions using the inverse wavelet

transform, until the full resolution segmented image is obtained.

A variation of the proposed technique relies on region merging

to further reduce oversegmentation produced by watersheds.

The proposed technique is particularly efficient for segmenting

noisy images, as it will be discussed in Section 6.

The remaining structure of this paper is arranged as follows.

In Section 2, a brief description of the wavelet transform is

given. Section 3 presents an adaptive threshold and the initial

segmentation at the coarsest resolution using watersheds.

Section 4 describes the projection of the initial segmentation to

the full resolution image. An alternative to further reduce

oversegmentation by region merging is given in Section 5.

Section 6 contains several experimental results of the proposed

technique, and the conclusions are presented in Section 7.

2. The wavelet transform

The wavelet transform is a mathematical tool that can be

used to describe images in multiple resolutions. The wavelet

decomposition is a complete representation, since it allows a

perfect reconstruction of the original image [28]. Also, since a

low-pass filter is involved, noise suppression is inherent to this

transform.

According to Mallat’s pyramid algorithm [28], the input

image is convolved with low-pass and high-pass filters

associated with a mother wavelet, and downsampled after-

wards. Four images (each one with half the size of the original
image) are produced, corresponding to high frequencies in the

horizontal direction and low frequencies in the vertical

direction (HL), low frequencies in the horizontal direction

and high frequencies in the vertical direction (LH), high

frequencies in both directions (HH) and low frequencies in

both directions (LL). This last image is a low-pass version of

the original image, and will be called the approximation image.

This procedure is repeated for the approximation image at each

resolution 2j (please note that dyadic scales are used). The four

images HL, LH, HH and LL are denoted, respectively, by Wh
2j ,

Wv
2j Wd

2j and A2j . If the wavelet transform is applied up to the

scale 2J, the original image can be reconstructed using images

A2J and fWh
2j ;W

v
2j ;W

d
2j gfjZ1;2;.;Jg.

In this paper, the Haar wavelet [29] was chosen because of

its orthogonality and, more important, its small support (the

importance of using small support basis will become clear in

Section 4.2). Also, it requires small computational complexity

(linear with respect to the size of the input image) to compute

the wavelet decomposition with the Haar wavelet. The

expressions for the low-pass h[n] and high-pass g[n] filters

for the Haar wavelets are provided in Eq. (1).
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3. Image segmentation at the coarsest resolution

The first stage of the proposed segmentation method is to

choose the initial resolution 2J, and compute the wavelet

representation up to that resolution. The Prewitt edge detector

is applied to the coarsest resolution image A2J , and the gradient

magnitude image M is obtained. Some magnitudes of M are

related to actual edges, but others are related to noise (or small

fluctuations of the grayvalues). Even though noise was reduced

when the approximation image was obtained (because of low-

pass filtering), some residual noise still remains. To remove

these small magnitudes (and reduce oversegmentation pro-

duced by the watershed transform), an adaptive threshold is

applied to image M.
3.1. Adaptive thresholding and watershed segmentation

Scharcanski et al. [30] used wavelet shrinkage for image

denoising, based on a redundant wavelet transform. The

shrinkage function was a posterior probability based on

gradient magnitudes, that should return ‘1’ at edge positions

and ‘0’ in homogeneous (and/or noisy) regions. In this work,

such shrinkage function was adapted for magnitude threshold-

ing using the Prewitt operator, and is described next.

If the original image is constituted solely of additive

Gaussian noise, the corresponding detail wavelet coefficients

Wh and Wv at a certain resolution can be considered Gaussian

[31], with standard deviation snoise. As a consequence, the

magnitude image (estimated using detail coefficients of the

wavelet transform) MZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWhÞ2C ðWvÞ2

p
will be a Rayleigh

process [32] with probability density function given by:



Fig. 1. (a) Original peppers image. (b) Noisy peppers image (PSNRZ
16.58 dB).

1 The peak-to-peak signal-to-noise ratio is defined as

PSNRZK20 log10
255
snoise

� �
, where snoise is the standard deviation of the noise

corrupting the image.
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pðrjnoiseÞZ
r

½snoise�
2

eKr2=2½snoise�
2

: (2)

On the other hand, noise-free images typically consist of

homogeneous regions and not many edges. In general,

homogeneous regions contribute with a sharp peak around

zero for the histograms of Wh and Wv, and the edges contribute

to the tail of the distribution. This distribution presents a

sharper peak than a Gaussian [33], and therefore, the Gaussian

model is not the most appropriate model. However, the

distribution of wavelet coefficients Wv and Wh related

exclusively to edges (and not related to homogeneous regions)

can be approximated by a Gaussian function [30]. The normal

model for edge-related coefficients is assumed because it leads

to a simple model (Rayleigh) to approximate the corresponding

edge-related gradient magnitudes. Therefore, edge-related

magnitudes are also approximated by a Rayleigh process:

pðrjedgeÞZ
r

½sedge�
2

eKr2=2½sedge�
2

: (3)

The overall gradient magnitude distribution can be

expressed as a mixture of two Rayleigh functions: one

representing noise (and also fairly homogeneous regions),

and the other one representing actual edges. Hence,

pðrÞZwnoisepðrjnoiseÞC ð1KwnoiseÞpðrjedgeÞ: (4)

where wnoise is the a priori probability for the noise-related

gradient magnitude distribution (and, consequently, 1Kwnoise

is the a priori probability for edge-related gradient

magnitudes).

Parameters snoise, sedge and wnoise can be estimated through

a maximum likelihood approach [30], and the posterior

probability function p(edgejr) is calculated using Bayes

theorem as follows:

pðedgejrÞZ
ð1KwnoiseÞpðrjedgeÞ

ð1KwnoiseÞpðrjedgeÞCwnoisepðrjnoiseÞ
: (5)

Given a coefficient with gradient magnitude r, the value

p(edgejr) represents the likelihood of such coefficient being

related to an actual edge (i.e. it should be close to one near

edges, and close to zero in homogeneous and/or noisy regions).

In this work, a normalized threshold P (i.e. 0%P%1) is

defined such that all magnitudes r satisfying p(edgejr)!P are

set to zero, and the remaining magnitudes are multiplied by the

shrinkage function p(edgejr). Then, for each pixel [n, m], the

thresholded magnitude image Mthresh is given by:

Mthresh½n;m�

Z
0; if pðedgejM½n;m�!P

M½n;m�pðedgejM½n;m�Þ; if pðedgejM½n;m�RP
:

(

(6)

This means that only magnitudes with likelihood of being

edges greater than P will be kept after the thresholding process.

Small values of P result in less noise removal (hence, more

segmented regions). As P gets larger, more magnitudes are
removed, and less regions are retrieved (however, some small

contrast edges may be removed). A suggested default value is

PZ0.5, so that magnitudes with probability less than 50% of

being actual edges are removed, in accordance with the

adaptive thresholding procedure adopted by Henstock and

Chelberg [34].

In [30], horizontal (Wh) and vertical (Wv) details of a

redundant wavelet transform were used to estimate gradient

magnitudes. Such redundant wavelet transform was based on a

mother wavelet similar to the derivative of a Gaussian, which is

very efficient for edge detection. In this work, a decimated

wavelet transform based on Haar wavelets is employed, and it

produces three detail images per scale (horizontal, vertical and

diagonal). These detail images are not very adequate for edge

detection, since the small support of Haar wavelets tends to

produce broken contours. Hence, instead of using wavelet

coefficients for estimating gradient mangitudes, we chose to

use horizontal and vertical image differences based on the

Prewitt operator. It should be noticed that Gaussian assump-

tions for horizontal and vertical differences of convolution-

based edge detectors (such as Prewitt) are acceptable for edges

and nonedges [34]. Hence, the mixture of Rayleigh functions

provided in Eq. (4) can also be used for gradient magnitudes

computed through the Prewitt operator.

Finally, the watershed transform of Mthresh is computed, and

the initial segmentation at the coarsest resolution is obtained.

The adopted gradient magnitude thresholding scheme and the

initial watershed segmentation for a ‘clean’ image and its noisy

version are illustrated in the next figures. Fig. 1(a) shows the

peppers image (256!256 pixels), and Fig. 1(b) shows its noisy

version (PSNR1Z16.58 dB). Fig. 2(a) and (e) shows the

respective approximation images A22 (with 64!64 pixels),

corresponding to the resolution 22, and Fig. 2(b) and (f) shows

the respective thresholded magnitude images (using PZ0.5).

The corresponding shrinkage functions p(edgejr) are shown in

Fig. 2(c) and (g). As expected, the adaptive threshold is higher

for the noisy image (in noisy images, gradients related with

noise have larger magnitudes). Finally, the initial watershed

segmentation at resolution 22 is shown in Fig. 2(d) and (h). For



Fig. 2. (a) Approximation coefficient A22 related to the original peppers image, (b) thresholded magnitude image, (c) the corresponding function p(edgejr) used to

determine the threshold, (d) initial watershed segmentation. (e) Approximation coefficient A22 for the noisy peppers image, (f) thresholded magnitude image, (g) the

corresponding function p(edgejr) used to determine the threshold, (h) initial watershed segmentation.
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the original peppers image, 150 regions were segmented; for

the noisy version, 80 regions were obtained (it can be noticed

that texture of the objects was partially destroyed by noise

corruption, leading to less segmented regions).
4. Projection of the segmented image to higher resolutions

The result of applying the watershed transform to the edge

map of approximation image A2J is a segmentation at resolution

2J, with each segmented region having a different label. It must

be noticed that the segmented image has about 2KJ of the size of

the original image, due to the downsampling used in the wavelet

transform. Direct projection of the simplified image by pixel

duplication (upsampling) in both horizontal and vertical

directions offers very poor results (producing a blocking effect),

as noticed by Kim and Kim [17]. This effect happens because

high frequencies that allow edge definition are contained in the

detail coefficients Wh
2j , Wv

2j and Wd
2j , which are not taken into

consideration in the pixel duplication process, but are

considered when computing the inverse wavelet transform

(IWT). In [17], the IWT is computed to project the initial

segmentation to finer scales, and a combination of watershed

transforms and connection of segmented regions is applied at

each new projected scale. In this work, a simple adjustment of

object boundaries is performed at each projected scale through

the IWT, as explained next.
4.1. Computing the simplified image

The first step to project the initial segmentation to finer

resolutions is to obtain a simplified version S2J of the

approximation image A2J . Such image S2J is obtained by

replacing each label of the initial watershed segmentation by
the average grayvalue of the corresponding region in image A2J

(at this point, S2J is piece-wise constant, separated by

watershed lines). Then, watershed lines are removed by setting

S2J ZA2J at all regions borders (i.e. the watershed lines are

replaced by the corresponding grayvalues of the approximation

image). Fig. 3 illustrates this procedure. The simplified images

S22 for the original and noisy peppers images at the resolution

22 are shown in Fig. 3(a) and (b), respectively.

In order to project S2J to resolution 2JK1, detail coefficients

Wh
2J , Wv

2J and Wd
2J are needed. However, only some detail

coefficients (those related to region borders) are used to prevent

noise from being introduced back into the upsampled image. The

updated detail coefficients NWh
2J , NWv

2J and NWd
2J are defined as:

NWl
2J ½n;m�Z

Wl
2J ½n;m�; if ½n;m� belongs to a region border

0; otherwise
;

(

(7)

where l2{h,v,d}. Eq. (7) implies that all detail coefficients are

set to zero, except in the positions corresponding to watershed

lines of S2J .
4.2. Applying the inverse wavelet transform

The inverse wavelet transform is applied using S2J as the

approximation image and the updated detail coefficients NWh
2J ,

NWv
2J and NWd

2J , resulting is a higher resolution image S2JK1 .

Since detail coefficients are non-zero only at region borders,

the interior of homogeneous regions of S2J are kept

homogeneous when computing S2JK1 . However, such non-zero

detail coefficients at region borders introduce fluctuations in

the grayvalues close to region borders of S2JK1 .

The result of the projection algorithm is illustrated in Fig. 4.

Fig. 4(a) and (c) shows the projection of the initial segmentation



Fig. 3. (a) Simplified image S22 for the original peppers image at resolution 22.

(b) Simplified image S22 for the noisy peppers image at resolution 22.
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(performed at scale 22) onto scale 21 for the original and noisy

peppers images, respectively. It can be observed that projected

images are formed mostly by homogeneous plateaus, but there

are some pixels close to region boundaries that are not assigned

to any homogeneous region (such pixels are denoted lost pixels).

Due to the very small support of Haar wavelets, we can

determine the exact position of those lost pixels. More precisely,

each detail coefficient will influence a 2!2 neighborhood in the

upsampled image, so that all lost pixels must lie in the positions

of the upsampled watershed lines. It should be noticed that other

wavelets with larger support could be used instead of Haar

wavelets, but they would produce a larger number of lost pixels

(hence, causing more distortions to pre-existing homogeneous

regions).
4.3. Assigning lost pixels

The next step is to scan all lost pixels in S2JK1 and assign them

to an existing adjacent homogeneous region, so that a piece-wise

constant image representation is achieved. For that purpose, let

us consider a lost pixel [n, m] and its 8-connectedness

neighborhood. Some of these neighboring pixels belong to

existing homogeneous regions, while others may be also lost

pixels. Let Nh%8 denote the number of adjacent pixels that

effectively belong to existing homogeneous regions, and let [nk,

mk] denote the positions of such pixels, for kZ1,.,Nh. The

intensity differences dk between lost pixel [n, m] and its

neighbors [nk, mk] are computed through:

dk Z jS2JK1½n;m�KS2JK1½nk;mk�j; k Z 1;.;Nh; (8)
Fig. 4. Simplified image S21 for the original peppers image at resolution 21 before (a

image at resolution 21 before (c) and after (d) assigning lost pixels.
and [n, m] is assigned to the region for which the value dk is the

smallest. In other words, the value of S2JK1 at position [n, m] is

redefined as:

S2JK1 ½n;m�Z S2JK1½nl;ml�; where l Z argmin
k

dk: (9)

This procedure for assigning lost pixels may be interpreted as

competitive region growing, where each existing homogeneous

region tries to capture neighboring lost pixels. When a lost pixel

is connected to two or more homogeneous regions, the winner

region is the one for which the intensity difference is the

smallest.

At the end of this process, an updated simplified image S2JK1

is obtained at the resolution 2JK1, consisting of homogeneous

regions with constant intensity. Fig. 4(b) and (d) illustrate such

procedure. They show, respectively, the results of assigning

lost pixels for Fig. 4(a) and (c). As it can be observed, resulting

images after correcting lost pixels are indeed piece-wise

constant.

The next step consists of projecting S2JK1 to scale 2JK2. For

that purpose, object boundaries of S2JK1 are computed (since

S2JK1 is piece-wise constant, it is trivial to obtain region

boundaries). Then, the values of S2JK1 are replaced by the

respective values of A2JK1 at all boundary positions, and the

procedure described above for computing the IWT and

assigning lost pixels to valid regions is applied. This process

is repeated until the full resolution image is obtained (i.e. until

resolution 20 is reached). It should be noticed that the process

of assigning lost pixels, recomputing object boundaries and

applying the IWT is necessary to refine object contours as finer

resolutions are reached.

Fig. 5 shows the projection of the simplified images S21

related to original and noisy peppers images from resolution 21

to 20 (which corresponds to full resolution), and the respective

object boundaries. There are 156 segmented objects in

Fig. 5(a), and 82 objects in Fig. 5(b). It is expected that

fewer regions will be obtained for noisy images, because noise

corruption destroys small textured regions (and the adaptive

threshold described in Section 3 tends to be larger). Also, it can

be noticed that contours of segmented objects are clear and

well-defined in the full resolution simplified image. However,

for the noisy image, edges are a little jagged. Such jaggedness

originates in the assignment of lost pixels, because noise

produces large intensity variations close to objects borders. To
) and after (b) assigning lost pixels. Simplified image S21 for the noisy peppers
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obtain a smoother contour for a specific object, one could use

the boundary of the segmented region as the initialization step

for active contour methods, such as snakes or one of its many

variations.
Fig. 5. (a) Simplified image S20 for the original peppers image at full resolution.

(b) Simplified image S20 for the noisy peppers image at full resolution. (c)–(d)

Region boundaries of (a)–(b).
5. Region merging

In order to further reduce oversegmentation during the

initial segmentation of A2J , region merging can be applied.

There are several approaches for merging watershed regions to

obtain larger segments corresponding to objects of interest

[7,16,17,35,36]. Since this work deals with image simplifica-

tions based on intensity averages of segmented regions, a

merging criterion based on contrast difference (similar to the

approach adopted by Weickert [7]) seems appropriate. In the

present approach, two adjacent regions will be merged if their

contrast2 is smaller than a threshold Tm. Although this merging

procedure indeed reduces the number of segmented regions, it

is not crucial to the proposed technique. In general, region

merging becomes more significative when a finer resolution 2J

is chosen as starting point, where many irrelevant details may

be segmented.

Fig. 6 shows the segmentation result for the original and

noisy peppers images, starting at resolution 22, after region

merging. Fig. 6(a) and (b) shows, respectively, the segmenta-

tion of the original peppers image using TmZ10 (126 regions)

and TmZ30 (58 regions). Fig. 6(c) and (d) shows analogous

results for the noisy peppers image, and the number of

segmented regions is, respectively, 80 and 38. As expected, the

number of segmented objects was reduced after the merging

process, as regions with small contrast were combined into

larger ones. As the threshold Tm increases, the number of

regions decreases.
6. Experimental results

In this Section, the influence of the initial resolution 2J over

the final segmentation is investigated. The performance of the

proposed method under the presence of intense noise is also

analyzed, and the results are compared with other segmentation

methods. All results concerning the proposed technique were

obtained without region merging, and default value PZ0.5 was

used to obtain the adaptive threshold. Since segmentation

results for most natural images are very application dependent

(hence, it is difficult to obtain reliable ground truth for

segmented images), a qualitative comparison through visual

inspection was performed. The number of segmented regions

for each example is also provided as a quantitative measure.

Fig. 7 shows the segmentation of an image corrupted by

additive Gaussian noise (PSNRZ24.60 dB). The 256!256

noisy house image is shown in Fig. 7(a), and the segmentation

results starting at resolutions 21, 22 and 23 are shown,

respectively, in Fig. 7(b)–(d). In this order, the number of

segmented regions is 127, 62 and 40. As expected, when a finer
2 By contrast, we mean the absolute value of intensity differences.
initial resolution is chosen, more details are segmented. On the

other hand, as the initial resolution gets coarser, the proposed

technique returns larger (more relevant) objects. As expected,

there is a little loss of contour definition when larger values of J
Fig. 6. Final segmentation of original and noisy peppers image starting at

resolution 22 after region merging using. (a) original, TmZ10; (b) original,

TmZ30; (c) noisy, TmZ10; (d) noisy, TmZ30.



Fig. 8. (a) Noisy cameraman image (PSNRZ20.57 dB). (b)–(d) Final

segmented image starting at resolutions 21, 22 and 23.
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are used, mostly due to noise influence when the initial

segmentation is projected to finer resolutions.

An example of even larger contamination with Gaussian

noise is given in Fig. 8. The 256!256 noisy cameraman image

(PSNRZ20.57 dB) is shown in Fig. 8(a), and the segmentation

results starting at resolutions 21, 22 and 23 are shown,

respectively, in Fig. 8(b)–(d). The number of segmented

objects is, respectively, 125, 75 and 27. The influence of noise

was drastically reduced in the magnitude thresholding step, and

oversegmentation was prevented. Also, the level of detail gets

worse as J increases, as it can be observed in the face of the

cameraman.

The proposed method was also tested for images containing

inherent noise. Fig. 9 shows the segmentation a 288!352

webcam image, with starting resolutions 21, 22 and 23. The

number of segmented regions associated with these resolutions

is 109, 51 and 7. In Fig. 9(b) and (c), a finer segmentation was

achieved (clouds and details in buildings were detected). In

Fig. 9(d), a rough description of the scene was obtained

(basically, sky and buildings).

The present method was compared with the multiscale Edge

Flow segmentation technique [19]. The results of such

technique for the noisy peppers, house, cameraman and

webcam images are shown in Fig. 10 (the number of segmented

regions are, respectively, 16, 9, 9 and 14). The offset parameter

(which is related to the scale factor of segmentation) was

adjusted manually to obtain a good visual result, trying to

minimize both false positives and false negatives in the

segmentation. The offset values used to produce Fig. 10(a)–(d)

were, respectively, 10, 17, 16 and 14. A visual qualitative

comparison shows that the proposed technique produces better
Fig. 7. (a) Noisy house image (PSNRZ24.60 dB). (b)–(d) Final segmented

image starting at resolutions 21, 22 and 23.
results. For example, the window of the house was not

segmented in Fig. 10(b), and all clouds were gathered in the

same segmented region in Fig. 10(d).

The same images were also segmented using the JSEG

technique [21], and the results are shown in Fig. 11 (the

number of segmented regions are, respectively, 6, 23, 13

and 34). The scale parameter for this method was also

chosen to obtain good visual results. For images noisy

peppers, house and cameraman, the chosen scale was 3,

while for the webcam image the scale was 2. Visually, the

results produced by the new method are better than those
Fig. 9. (a) Webcam image. (b)–(d) Final segmented image starting at

resolutions 21, 22 and 23.



Fig. 11. (a)–(d) Segmentation of the noisy peppers, cameraman, peppers and

webcam images using the JSEG method.

Fig. 12. (a)–(d) Segmentation of the noisy peppers, cameraman, peppers and

webcam images using morphological filtering and watersheds.

Fig. 10. (a)–(d) Segmentation of the noisy peppers, cameraman, peppers and

webcam images using Edge Flow.

C.R. Jung / Image and Vision Computing 25 (2007) 24–33 31
obtained using JSEG. For instance, the result shown in

Fig. 11(a) is very poor (all vegetables were segmented in a

single region). Also, the window of the house was not

captured in Fig. 11(b).

A more traditional approach for watershed segmentation

was also used for comparison, consisting of pre-processing,

gradient estimation and watersheds. For pre-processing, the

morphological noise-reduction OCCO filter [37] was chosen,

and the image gradient was computed through the morpho-

logical gradient [2]. Gradient magnitudes smaller than a

fraction T of the largest magnitude were removed to reduce

oversegmentation. The selection of parameter T is tricky:

larger values of T result in less segmented regions, but weak

edges tend to be removed, and relevant objects may not be

segmented; on the other hand, smaller values of T result in

more segmented regions, but several small spurious regions

tend to appear. In this work, T was manually chosen aiming to

balance the number of segmented regions and the visual quality

of the segmented image. The result of such procedure can be

seen in Fig. 12 (the number of segmented regions are,

respectively, 312, 86, 212 and 82). As expected, segmentation

results for ‘cleaner images’ (house and webcam) are

acceptable, but several small objects we retrieved for noisier

images (peppers and cameraman). In particular, small

variations of T lead to drastic changes in segmentation results

for noisier images. For example, using TZ0.1 results in 548

regions for the peppers image, while TZ0.125 results in 312

regions.

The adaptive threshold explained in Section 3 was

developed assuming Gaussian noise. However, the proposed

technique was also tested for images containing non-Gaussian

noise, with promising results. Fig. 13(a) shows a Satellite

Aperture Radar (SAR) image, which is contaminated by
speckle noise [38]. The segmentation results starting at

resolutions 22, 23 and 24 are shown, respectively, in

Fig. 13(b)–(d). In this order, the number of segmented regions

is 80, 64 and 27. Larger initial resolutions were chosen for this

example because the original image is larger (558!558 pixels)

and noise corruption is very intense. Most of rice crops

(brighter regions) are effectively segmented from the back-

ground, specially in Fig. 13(c) and (d).



Fig. 13. (a) SAR image. (b)–(d) Final segmented image starting at resolutions 22, 23 and 24.
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The technique described in this paper was implemented in

MATLAB 6.1, and typical running time for segmenting a

256!256 image starting at resolution 22 is about 1.2 s3 in a

Pentium IV 1.6 MHz personal computer. The implementation

of Edge Flow (provided in [19]) running on the same machine

requires approximately 12.6 s to segment a 256!256 image,

and JSEG (provided in [21]) requires about 8.3 s.

7. Conclusions

In this paper, a new multiresolution technique for image

segmentation based on wavelet decompositions and watersheds

was proposed. It allows the selection of the initial resolution for

applying the watershed transform, and projects the segmenta-

tion result back into the original full resolution, without

significant loss of edge definition. The initial resolution must

be chosen in accordance with the resolution of the image, the

size of the desired objects and the amount of noise

contamination. Typically, more and smaller objects are

segmented when finer initial resolutions are selected, while

less and larger objects are obtained for coarser resolutions. A

region merging process was also suggested to further reduce

oversegmentation.
3 An efficient implementation on a compiled language is expected to improve

significantly the execution time.
Experimental results indicate that the proposed technique

performs well for both inherent and artificial noise contami-

nation. In particular, it is robust in the presence of intense noise.

The proposed method is completely adaptive: after the

selection of the initial resolution 2J, it does not require any user

defined parameter (it should be noticed that default value PZ
0.5 was used in all experiments). Other state-of-the art

segmentation techniques [7,16,17] require a manual selection

of thresholds (in the region merging stage), what may influence

the result of the final segmentation. A qualitative comparison

with other segmentation techniques that require only the

selection of the scale [19,21] indicates that the proposed

method produces equivalent or superior results in less time.

Future work will concentrate on combining the segmenta-

tion result obtained with different starting resolutions,

extending the method to color image segmentation, and

combining this approach with energy-based segmentation

techniques (to improve the smoothness of the segmented

contours in the presence of noise).
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