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Abstract 
 

In this paper, we introduce a new feature 
representation method for face recognition. The proposed 
method, referred as Kernel ICA, combines the strengths of 
the Kernel and Independent Component Analysis  (ICA)  
approaches. For performing Kernel ICA, we employ an 
algorithm developed by F. R. Bach and M. I. Jordan. This 
algorithm has proven successful for separating randomly 
mixed auditory signals, but it has never been applied on 
bidimensional signals such as images. We compare the 
performance of Kernel ICA with classical algorithms such 
as PCA and ICA within the context of appearance-based 
face recognition problem using the FERET and ORL 
databases. Experimental results show that both  Kernel 
ICA and ICA representations are superior to 
representations based on PCA for recognizing faces 
across days and changes in expressions. 
 
1. Introduction 
 

Face recognition has become one of most important 
biometrics technologies during the past 20 years. It has a 
wide range of applications such as identity authentication, 
access control, and surveillance. 

Human face image appearance has potentially very 
large intra-subject variations due to 3D head pose, 
illumination, facial expression, occlusion due to other 
objects or accessories (e.g., sunglasses, scarf, ect.), facial 
hair, and aging. On the other hand, the inter-subject 
variations are small due to the similarity of individual 
appearances. This makes face recognition a great 
challenge. Two issues are central: 1) what features to use 
to represent a face and 2) how to classify a new face 
image based on the chosen representation. This work 
focuses on the issue of feature selection. The main 
objective is to find techniques that can introduce low-
dimensional feature representation of face objects with 
enhanced discriminatory power. Among various solutions 
to the problem (see [1] for a survey), the most successful 
are the appearance-based approaches, which generally 
operate directly on images or appearances of face objects. 

Principal Component Analysis (PCA) and Linear 
Discriminant Analysis (LDA) are two powerful tools 
largely used for data reduction and feature extraction in 
the appearance-based approaches. Two face recognition 
methods, Eigenfaces [2] and Fisherfaces [3], built on the 
two techniques respectively, have been proved to be very 
successful. 

Independent Component Analysis (ICA) is a 
generalization of PCA which separates the high-order 
moments of the input in addition to the second-order 
moments utilized by PCA. Bartlett et al. [4] provided two 
architectures based on ICA, statistically independent basis 
images and a factorial code representation, for the face 
recognition task. Both ICA representations were superior 
to representations based on PCA for recognizing faces 
across days and changes in expression. A classifier [5] 
that combined the two ICA representation gave the best 
performance.  

Although successful in many cases, linear methods fail 
to deliver good performance when face patterns are 
subject to large variations due to 3D head pose, 
illumination, facial expression, and aging. The limited 
success of these methods should be attributed to their 
linear nature. As a result, it is reasonable to assume that a 
better solution to this inherent nonlinear problem could be 
achieved using non linear methods, such as the so-called 
kernel machine techniques [6][7]. 

A kernel Principal Component Analysis, recently 
proposed as a nonlinear extension of a PCA [8][9], 
computes the principal component in a high-dimensional 
feature space F, which is nonlinearly related to the input 
space. Kim et al. [10] adopted a kernel PCA as a 
mechanism for extracting facial information. Through the 
use of a polynomial kernel, higher order correlations can 
be utilized between input pixels in the analysis of facial 
images. Using SVMs as the recognizer, experimental 
results with the ORL database [11], where the images 
vary in expression and pose, showed the effectiveness of 
the proposed method. 

Yang [12] investigated the use of Kernel PCA and 
Kernel Fisher Linear Discriminant for learning low 
dimensional representations for face recognition, which 
he called Kernel Eigenface and Kernel Fisherface 



methods. He compared the performance of kernel 
methods with classical algorithms such as Eigenface, 
Fisherface, and ICA within the context of appearance-
based face recognition problem using two data sets where 
images vary in pose, scale, lighting and expressions. 
Experimental results showed that kernel methods 
provided better representations and achieved lower error 
rates for face recognition. 

In [13], Lu et al. presented a kernel machine based 
Discriminant analysis method, which combines kernel-
based methodologies with Discriminant analysis 
techniques. The new algorithm has been tested, in terms 
of error rate performance, on the multi-view UMIST Face 
Database [14]. Results indicated that the proposed 
methodology outperform other commonly used 
approaches, such as the Kernel PCA. 

Recently, Liu et al. [15] proposed a nonlinear ICA to 
model face appearance, which combines the nonlinear 
kernel trick with ICA. First, the kernel trick was 
employed to project the input image data into a high-
dimensional implicit feature space F with a nonlinear 
polynomial mapping, and then the InfoMax algorithm[18] 
was performed in F to produce nonlinear independent 
components of input data.  They proved the  effectiveness 
of the approach on a test set of the FERET database  
containing people with the same expression and acquired 
in the same session.  

In this paper we investigate a Kernel ICA approach 
proposed by F. R. Bach and M. I. Jordan [16]  for the face 
recognition problem. The considered Kernel ICA 
approach is not based on a single nonlinear function (as 
the one  proposed in [15] ) but on an entire function space 
of candidate nonlinearities.  The advantages of this 
approach over single nonlinear function,  widely shown to 
estimate Independent Component and  separate randomly 
mixed auditory signals, gave us the motivation for our 
choice.  

We compare the performance of Kernel ICA with 
classical algorithms such as PCA and ICA within the 
context of appearance-based face recognition problem 
using two different databases: FERET and ORL. In order 
to test the effectiveness of the considered algorithms,  
different experiments of recognitions were carried out on 
three test set of the FERET database: 1) same session and 
different expressions of each individual, 2) different day 
and same expressions; 3) different day and  different 
expressions. The ORL  database contains images taken at 
different times, varying the light condition, the facial 
expressions (with some side movements) and also the 
facial details (glasses/no glasses). Results showed that  
both Kernel ICA and ICA representations were superior 
to representations based on PCA especially when there 
were great variations across days and changes in 
expressions. 
 
2. Independent Components Analysis 

 
Independent Component Analysis (ICA) is a 

computational technique for revealing hidden factors that 
underlie sets of measurements or signals.  

ICA assumes a statistical model whereby the observed 
multivariate data, typically given as a large database of 
samples, are assumed to be linear or nonlinear mixtures of 
some unknown latent variables. The mixing coefficients 
are also unknown. The latent variables are nongaussian 
and mutually independent, and they are called the 
independent components of the observed data. By ICA, 
these independent components, also called sources or 
factors, can be found.  

In other words an observed data vector y = (y1,…,ym) 
is modelled by ICA as 

Axy =  (1)

where x is a latent vector with independent 
components, and where A is the m×m matrix of mixing 
parameters.  

Given N independently, identically distributed 
observations of y, Independent Component Algorithms 
estimate the mixing matrix A and thereby they recover the 
latent vector x corresponding to any particular y by 
solving equation 1.  

ICA techniques are usually performed by introducing 
proper contrast functions and relative iterative procedure 
able to optimise them.  A considerable portion of open 
literature is dedicated to define contrast functions 
associated with the estimation of the mixing matrix A by 
the Maximum Likelihood principle (ML) [17] 

)(|)det(|),;( 11 xAqAqAxp −−=  or by minimizing the 
mutual information between the components of the 
estimated latent variables yAx 1ˆˆ −=  [18][19]. Alternative 
contrast functions derived as expansion based 
approximations of the mutual information have been also 
proposed [20,21].  

The class of algorithms for Independent Component 
Analysis (ICA), recently proposed by F. R. Bach and M. 
I. Jordan, uses instead contrast functions based on 
canonical correlations in a reproducing kernel Hilbert 
space.  

Given a reproducing-kernel Hilbert space (RKHS) F 
[22], we define the F-correlation as the maximal 
correlation between the random variables ( )11 xf  and 

( )22 xf , where 1f  and 2f  range over F:  
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If the variables 1x  and 2x  are independent, then the 
F-correlation is equal to zero. Moreover, if the set F is 
large enough, the converse is also true. In [16], Bach and 
Jordan show that the converse is also true for the 
reproducing kernel Hilbert spaces based on Gaussian 



kernels. In particular, they define their first contrast 
function as ( )FF

I ρρ −−= 1log
2
1 . 

Their converse result implies that 
F

I ρ  is a valid 
contrast function; a function that is always nonnegative 
and equal to zero if and only if the variables 1x  and 2x  
are independent. 

The authors show that ρF can be interpreted in term of 
linear projections and they derived a computationally 
efficient algorithm starting from the Standard Canonical 
Correlation Analysis algorithm [23].  
 
3. Image data 
 

The face images employed for this research are two 
subset of the FERET [24] and ORL [11] face databases.  

The FERET dataset contain images of 38 individuals. 
There are four frontal views of each individual: A neutral 
expression and a change of expression from one session, 
and a neutral expression and change of expression from a 
second session that occurred three weeks after the first. 
Examples of the four views are shown in fig. 1. 
 

    
Fig. 1. Example from the FERET database of the four frontal 
image viewing conditions: neutral expression and change of 
expression from session 1; neutral expression and change of 
expression from session 2. Reprinted with permission from 
Jonathan Phillips. 
 

The algorithms are trained on a single frontal view of 
each individual. The training set is comprised of 50% 
neutral expression images and 50% change of expression 
images. The algorithms are tested for recognition under 
three different conditions: same session, different 
expression (Test Set 1); different day, same expression 
(Test Set 2); and different day, different expression (Test 
Set 3). 

Coordinates for eye and mouth locations are provided 
with the FERET database. These coordinates are used to 
center the face images, and then crop and scale to 
240×200 pixels. Scaling is based on the area of triangle 
defined by the eyes and mouth. At last, we apply the 
Histogram Equalization to improve the contrast. 

The ORL database contains ten different images of 
each of 40 distinct subjects. For some subjects, the images 
were taken at different times, varying the lighting, facial 
expressions (open / closed eyes, smiling / not smiling) and 
facial details (glasses / no glasses). All the images were 
taken against a dark homogeneous background with the 
subjects in an upright, frontal position (with tolerance for 

some side movement). Fig. 2 shows some examples of the 
ORL images.  

All the 400 images from the ORL database are used to 
evaluate the face recognition performance of our Kernel 
ICA method. Five images are randomly chosen from the 
ten images available for each subject for training, while 
the remaining five images (unseen during training) are 
used for testing. In particular, fig. 2 shows in the top two 
rows the examples of training images used in our 
experiments, and in the bottom two rows the examples of 
test images. 
 

     

     

     

      
Fig. 2. Example ORL images. In particular, the above figure 
shows in the top two rows the examples of training images used 
in our experiments, and in the bottom rows the examples of test 
images. 
 
4. A factorial face code 
 

We use Kernel ICA to find a representation in which 
the coefficients used to code images are statistically 
independent, i.e., a factorial face code. Barlow and Atick 
discussed advantages of factorial codes for encoding 
complex objects that are characterized by high-order 
combinations of features [25], [26]. 

To archive this goal, we organize the data matrix X  
so that rows represent different pixels and columns 
represent different images. Performing Kernel ICA on 
X , we find a matrix a W  such that the columns of 

WXU = are the ICA representation of training images.  
The representation code for test images is obtained by  

testtest UWX = , (3)

where testX  is the matrix of test images. 
Let N denote the number of training images, and let m 

denote the number of pixels. In our experiments and in 
most image recognition applications, especially in 
biometric ones, the number of training examples is 
limited (N<<m). Unfortunately, Kernel ICA operates well 
only if m<<N. Therefore, in order to reduce the 
dimensionality of the input, Kernel ICA is performed on 



the first M (M<<m) PCA coefficients of the face images. 
The representation for the training images is therefore 
contained in the columns of MWRU = , where RM=ETX 
and E is the matrix containing the first M PCA axes in its 
columns. 

The Kernel ICA weight matrix W  is M×M. The 
representation for test images is obtained in the columns 
of testU  as follows:  

testtest WRU = , (4)

where Rtest=ETXtest. 
The basis images for this representation consist of the 

columns of 1−= WA . 
 

5. Experimental results 
 

Face recognition performance is evaluated by the 
nearest neighbor algorithm (to the mean), which is 
defined as follows: 

( ) ( ) ktestjtestjktest bMbMb ωδδ ∈→= 00 ,min, , (5)

where 0
kM  is the mean of the training samples for 

class kω . Therefore, the image feature vector btest is 

classified to the class of the closest mean 0
kM  based on 

the similarity measure δ . Similarity measures used in our 
experiments are the Euclidean distance measure eucδ  and 
the cosine similarity measure cosδ , which are defined as 
follows:  

( ) ( )∑ −=
i

traintesttraintesteuc ii
bbbb 2,δ  (6)

( )
traintest

train
T

test
traintest bb

bbbb ⋅−=,cosδ , (7)

where .  denotes the norm operator. 
1) Experiments using the FERET dataset: The first set 

of experiments is carried out using the FERET dataset. 
Figures 3 and 4 report the face recognition performances 
with the Kernel ICA, ICA factorial code representations 
(for performing ICA, we employ the FastICA algorithm 
developed by A. Hyvärinen [27]) and PCA 
representations (the eigenface representation used by 
Pentland et al. [2]) using 36 PCA coefficients. In figure 3 
and 4 the performances have been evaluated with the Eucδ  
and the cosδ  similarity measures, respectively. The first 36 
PCs account for over 98,7% of the variance in the images.  

There is a trend for the Kernel ICA and ICA 
representation to give superior face recognition 
performance to the PCA representation. The difference in 
performance is statistically significant for Test Set 2 and 
Test Set 3, when the test and training images differ not 

only in expression but also in lighting, scale and the date 
on which they were taken. Therefore, the high-order 
relationships among pixels, estimated by Kernel ICA and 
ICA, improve notably the performance when the face 
recognition is more difficult. 
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Fig. 3. Recognition performance of the Kernel ICA, ICA 
factorial code representations and PCA representations using 36 
coefficients corresponding to the Eucδ  similarity measure. 

 
2) Experiments using the ORL dataset: The second set 

of experiments is carried out using the ORL dataset. 
Figures 5 and 6 give the face recognition performances 
with the Kernel ICA, ICA factorial code representations 
and PCA representation using 30 (41% of the variance), 
60 (58% of the variance), 120 (80,7% of the variance), 
180 (96,2% of the variance) PC coefficients. Also in these 
experiments the two Eucδ and cosδ  similarity measures 
have been used to evaluate the performances of figures 5 
and 6 respectively.  

These experimental results lead to the same finings 
obtained using the FERET: both Kernel ICA and ICA 
representations are superior to representations based on 
PCA and there isn’t a great difference in the performances 
of the Kernel ICA and ICA representations. 
The lack of a substantial difference between the 
performances of the Kernel ICA and ICA algorithms, as 
found in their mono-dimensional applications, is probably 
due to the PCA preprocessing which is necessary in order 
to reduce the dimensionality of the data. In our opinion, 
the  new orthogonal representation of the data provided 
by PCA precludes the kernel methods to improve their 
ability of represent the knowledge. In other words the 
evaluation of ICA produces the same results if it is 
applied directly after PCA or after a further 
transformation of PCA in a non-linear space (kernel 
method). 
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Fig. 4. Recognition performance of the Kernel ICA, ICA 
factorial code representations and PCA representations using 36 
coefficients corresponding to the cosδ  similarity measure. 
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Fig. 5. Recognition performance of the Kernel ICA, ICA 
factorial code representations and PCA representations using 30, 
60, 120, 180 coefficients corresponding to the Eucδ  similarity 
measure. 
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Fig. 6. Recognition performance of the Kernel ICA, ICA 
factorial code representations and PCA representations using 30, 
60, 120, 180 coefficients corresponding to the cosδ  similarity 
measure. 
 
5. Conclusion and future work 
 

A new method for face recognition has been 
introduced in this paper. The proposed method combines 
the strengths of the Kernel and Independent Component 
Analysis (ICA) approaches. Experiments results indicate 
that the performance of Kernel ICA is superior to that 
obtained by PCA, but are quite the same of those obtained 

by ICA for recognizing faces across days and changes in 
expression.  

Future work will be addressed to the experimentation 
of different preprocessing techniques for feature reduction 
in order to assess if the Kernel ICA representation, 
without PCA, will increase the performances in more 
difficult situations.  
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