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ABSTRACT
Semantic understanding of multimedia content is critical
in enabling effective access to all forms of digital media
data. By making large media repositories searchable, se-
mantic content descriptions greatly enhance the value of
such data. Automatic semantic understanding is a very chal-
lenging problem and most media databases resort to describ-
ing content in terms of low-level features or using manually
ascribed annotations. Recent techniques focus on detecting
semantic concepts in video, such as indoor, outdoor, face,
people, nature, etc. This approach works for a fixed lexicon
for which annotated training examples exist. In this paper
we consider the problem of using such semantic concept de-
tection to map the video clips into semantic spaces. This is
done by constructing a model vector that acts as a compact
semantic representation of the underlying content. We then
present experiments in the semantic spaces leveraging such
information for enhanced semantic retrieval, classification,
visualization, and data mining purposes. We evaluate these
ideas using a large video corpus and demonstrate significant
performance gains in retrieval effectiveness.

Categories and Subject Descriptors:
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms: Algorithms, Design, Experimentation

Keywords: Semantic Indexing, Model Vectors, TRECVID

1. INTRODUCTION
The increasing growth of unstructured digital media con-

tent in the form of video, audio, images, graphics, and speech
is driving the need for more effective methods for index-
ing, searching, categorizing and organizing such information.
With the falling costs for media storage, higher bandwidth,
and with the proliferation of affordable media production
devices such as digital cameras and camcorders, media man-
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agement is becoming increasingly important in a variety of
consumer, scientific, and business applications. Tools for
efficient storage and retrieval of multimedia content are ab-
solutely essential for the utilization of raw content. Recent
advances in content analysis, feature extraction and clas-
sification are improving capabilities for effectively search-
ing and filtering of multimedia content. However, a signifi-
cant gap remains between the low-level feature descriptions
that can be automatically extracted, such as colors, tex-
tures, shapes, motions, etc., and the semantic descriptions
of objects, events, scenes, people and concepts that users de-
sire. This ”semantic gap” between users’ needs and systems’
abilities has often been cited as the biggest stumbling block
in the successful application of media management in real
world problems. The problem of automatic semantic charac-
terization of multimedia content is therefore an important
research problem in data management and knowledge ex-
traction. To enable efficient multimedia understanding it is
necessary to be able to automatically tag and index content
with meta data that spans a large number of concepts. We
propose a scalable framework that relies on the definition of
a lexicon of semantic concepts, learning model representa-
tions of these concepts, detecting these concepts in videos
and then using these detection to create a semantic space.
Processing in this space can lead to many new and exciting
applications. We evaluate some applications in the context
of the NIST TRECVID benchmark effort.

1.1 Proposed approach
We propose a framework that characterizes multimedia

content using a semantic space and then permits search, re-
trieval, indexing, classification and clustering in the seman-
tic space. This results from the following processing steps:
1. Concept Lexicon Design: The first step is to design the
lexicon of concepts that need to be detected explicitly.

2. Concept Modeling: The next step is to learn low-level
feature-based representations for the concepts in the
lexicon. For this, we use machine learning with super-
vision in the form of annotated training examples.

3. Model Vector Construction: Once concept models cov-
ering the lexicon are learnt they can be applied to
the detection of the concepts in a video shot, where
each concept is detected with some level of confidence.
These confidence values can then be concatenated to
form what is hereby referred to as a model vector. The
space spanned by the model vectors is the semantic
space in which we then perform data processing.
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4. Model Vector Applications: Once a video shot is repre-
sented in terms of its model vector, several applications
are made possible. This includes semantic similarity
search, classification and clustering. In the case of
search, both the query and target documents are iden-
tically mapped to that concept space. Thus the query
can be carried out by searching the multi-dimensional
model vector space and identifying nearest neighbors.
In the case of classification and clustering the model
vectors can be treated similarly to any other low level
feature vectors such as color or texture features, etc.
However since each dimension in the semantic space
signifies a concept, the location of clusters in a sub-
space of this space assumes semantic significance and
can help build new complex concepts based on the lexi-
con concepts. Benefits of processing in semantic space,
include explicit semantic mining abilities, and fewer
user interactions needed to achieve end results.

The model vector approach can be applied to any domain
as long as a lexicon can be defined over concepts in the do-
main that can be learnt and detected. For example, we used
support vector machines (SVMs) [10] for modeling visual
concepts while the same result could be achieved with any
classifier that produces a confidence measure to help build
the model vector. The models developed then help create
the model vector representation which maps data items into
a model vector space. The advantage of the model vec-
tor representation is that it captures the concept labeling
broadly across an entire lexicon. It also captures the un-
certainty of the labels by incorporating confidence scores
rather than using simple binary labels. Finally, it provides
a compact storage-efficient representation that enables effi-
cient indexing using straightforward computation of model
vector distances. Once model vectors are extracted, complex
similarity operations can be replaced by simple and inexpen-
sive vector operations in the semantic space, which enhances
the scalability of the database system. For example, range
queries or nearest-neighbor queries with respect to complex
semantic similarity can be performed using the simple Eu-
clidean distance between model vectors. The model vec-
tor space can further be indexed using data structures and
methods designed specifically for optimized query execution
in multi-dimensional spaces (see Section 1.2). This allows
development of efficient and effective systems for similarity
searching, relevance feedback, classification, clustering and
filtering that operate at a semantic level.

1.2 Related work
The problem of multimedia semantic modeling has been

addressed in a number of ways relying on manual, semi-
automatic, or fully-automatic methods. The use of manual
annotation tools allows humans to manually ascribe labels
to multimedia documents. However, manual cataloging is a
very expensive and time consuming process. It is also sub-
jective leading to incomplete and inconsistent annotations.
Fully-automatic approaches based on statistical modeling of
low-level audio-visual features have also been investigated
for detecting generic frequently observed semantic concepts
such as indoors, outdoors, nature, man-made, faces, people,
speech, music, etc. There are two distinct schools of thought
for modeling these concepts. In one, each concept is treated
uniquely and the modeling process draws heavily on domain
knowledge, manually enforced constraints and other infor-

mation that can only be applicable for the concept at hand.
The low-level features extracted in this case are also very
specific for each such concept. The literature in this area is
rich. The other school of thought is to use generic machine
learning algorithms coupled with standard off the shelf low-
level media features and let the learning algorithm figure out
the specific feature properties that help build the model for
the concept [7]. The advantage with this latter approach is
that it is scalable to a large number of concepts. Towards
this end a variety of classification techniques have been in-
vestigated in this context based on the static or temporal
nature of the underlying media features extracted and the
concept characteristics [1, 4, 5, 6].
Indexing of multimedia documents for fast search and re-

trieval has also received much attention in the literature.
Considerable amount of work has focused on efficient index-
ing in multi-dimensional vector spaces. Approaches include
specialized data structures, such as the R-tree and its vari-
ants [3], as well as methods for indexing objects in general
metric spaces [2, 9]).
In general, computational efficiency and fast query execu-

tion are notoriously difficult to achieve in high-dimensional
spaces, such as the model vector space we propose but a
combination of sampling, dimensionality reduction and multi-
dimensional indexing techniques is typically an approach
that achieves reasonable scalability. While we realize that
scalability is a very important issue, we note that all of
the above indexing approaches can be transparently applied
once we have constructed our model vector representation,
and are thus considered complementary, and out of scope,
with respect to this paper.

1.3 Our contributions
In this paper, we propose a novel framework for describing

and indexing multimedia documents in terms of their mem-
bership to a predetermined lexicon of semantic concepts. We
investigate the extraction of semantic model vectors using
statistical modeling approaches, and taking into account un-
certainty, reliability, and relevance of the semantic detectors.
We study the properties of the model vector representation
and consider lexicon design and model vector normaliza-
tion approaches. Finally, we explore the application of the
model vector framework to semantic retrieval, classification
and clustering. We validate the proposed approaches em-
pirically and observe significant performance improvements
compared to alternative state-of-the-art methods. To sum-
marize, our specific contributions are as follows:

• A novel framework for semantic indexing of multime-
dia documents based on a model vector representation
capturing semantics across a lexicon of concepts.

• A generic approach for modeling of lexicon concepts.
• Methods for automatic model vector construction given
binary detectors for the lexicon concepts

• An intuitive semantic similarity measure which can be
computed by simple operations on model vectors.

• An application of the proposed semantic indexing frame-
work to the problems of similarity search, classification
and clustering in multimedia databases.

• Experimental validation on a large video corpus show-
ing that model vectors significantly improve retrieval
effectiveness compared to content-based retrieval and
allow for classification and clustering to be performed
in more meaningful semantic spaces.
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2. MODEL VECTOR REPRESENTATION

2.1 Notation and definitions
Let C = {l1, l2, . . . , lK} denote a lexicon of K concepts,

where lm is the label of the mth concept. We refer to lexi-
con C also as semantic basis. Let D be the set of K concept
detectors, where dm is the detector corresponding to concept
lm in lexicon C. Let cm[j] give the confidence of detection
of concept lm by detector dm in item j, where without loss
of generality we assume that cm ∈ [0, 1], and cm = 1 gives
highest value of confidence of detection of lm. We then de-
fine model vectors as follows:

Definition 1. Given a semantic basis C and correspond-
ing detectorsD, defined as above, we define theK-dimensional
model vector for item j with respect to lexicon C as

mj = 〈c1[j], c2[j], . . . , cK [j]〉 (1)

Definition 2. Given two items A and B and a semantic
basis C, we define the semantic similarity between A and B
with respect to C to be the fraction of semantic classes that
both A and B belong to, or alternatively:1

SimC(A, B) =

KX

m=1

Pr(A, B | Sm)Pr(Sm),

where Pr(A | Sm) denotes the probability that item A be-
longs to the m-th semantic class denoted by Sm.

If we assume item independence and interpret the seman-
tic detection scores cm[A] as Pr(A | Sm), then the semantic
similarity reduces simply to inner products of model vectors,
as follows:

SimC(A, B) =

KX

m=1

Pr(A | Sm)Pr(B | Sm)P (Sm)

=

KX

m=1

(cm[A])(cm[B])

= mA · mB (2)

2.2 Model vector advantages
We now list several properties and advantages of the model

vector representation:
• Model vectors index multimedia data items in a se-
mantic space

• Model vectors reduce dimensionality and provide a
compact, time and space cost-efficient representation

• They capture semantics effectively (see Section 5)
• They can be used for indexing in general metric spaces
when vector space embeddings for the database objects
are not available (e.g., semantics, audio, shapes)

• They are computationally efficient and replace com-
plex similarity measures with simple vector space oper-
ations (e.g., eliminate expensive statistical model eval-
uations during on-line query phase)

1There is a slight abuse of notation here since in effect A
and B denote both items and random variables. However,
in general the semantic similarity is well defined, and applies
both to individual objects, such as multimedia documents,
and to entire classes of objects, such as semantic categories

3. MODEL VECTOR EXTRACTION
The generation of model vectors involves two stages of

processing: (1) a priori learning of detectors and (2) concept
detection and score mapping to produce model vectors. The
output of the detectors is transformed in a mapping process
to produce the model vectors.

3.1 Learning Concept Models
The generic framework for modeling semantic concepts

from multimedia features [5] includes an annotation inter-
face, a learning framework for building models and a detec-
tion module for ranking unseen content based on detection
confidence for the models Positive examples for interesting
semantic concepts are usually rare. The concept learning
process uses ground-truth labeled examples as training data
for building statistical models for detecting semantic con-
cepts. We construct a set of K binary detectors, each cor-
responding to the presence or absence of a distinct concept
from the lexicon. We have experimented with different clas-
sification algorithms and found support vector machine clas-
sifiers to perform better for video concept modeling. Con-
cepts in our lexicon occur at global or image levels or sub-
frame levels i.e. regions. For this we extract the following
set of features from the image as well as up to 5 most domi-
nant regions in the image marked automatically by bounding
boxes proceeding image segmentation2 We used the follow-
ing descriptors: color correlogram (166-D), co-occurrence
texture (96-D), edge histogram (64-D), and moment invari-
ants for shape (6-D). For more details, see [5].

3.2 Modeling concepts using SVM classifiers
We use a training set with manually annotated and marked

regions to learn the SVM models. For the experiments in
this paper we have reported results using the radial basis
kernel function defined in Equation 3:

K(xi, xj) = e
−||xi−xj ||2

2σ2 (3)

Assuming that we extract features for color, texture, shape,
structure etc. it is important to fuse information from across
these feature types. One way is to build models for each fea-
ture type including color, structure, texture and shape and
combine their confidence scores post-detection. We also ex-
periment with early feature fusion by combining multiple
feature types at an early stage to construct a single model
across different features. Alternately we can simply con-
catenate one or more of these feature types (appropriately
normalized). Different combinations can then be used to
construct models and the validation set is used to choose
the optimal combination. This is feature selection at the
coarse level of feature types. Based on our experimentation
of early feature fusion [5] we chose to combine the features
mentioned in 3.1. Performance of SVM classifiers can vary
significantly with variation in parameters of the models. For
parameter tuning and validation purposes, we use average
precision to measure the retrieval effectiveness and detec-
tion performance. Let R be the number of true relevant
documents in a set of size S; L the ranked list of documents
returned. At any given index j let Rj be the number of rel-
evant documents in the top j documents. Let Ij = 1 if the

2In this paper we only report experiments for visual concept
models, learnt from visual features extracted from keyframes
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Concept f v Concept f v Concept f v
Airplane 185 0.1296 Animal 596 0.0156 Beach 164 0.1218
Bill Clinton 192 0.0516 Building 1273 0.0509 Car 1565 0.0487
Cartoon 262 0.0294 Cityscape 427 0.0123 Cloud 282 0.0971
Crowd 899 0.2003 Desert 79 0.0880 Face 26670 0.4776
Female Face 4010 0.1788 Fire 88 0.0032 Flower 172 0.0147
Graphics & Text 20716 0.7642 Graphics 24304 0.2727 Human 27730 0.6232
Indoors 10068 0.3742 Land 199 0.0038 Male Face 6152 0.1702
Man Made Scene 3047 0.1753 Mountain 218 0.1682 Nature Vegetation 2417 0.3731
Newt Gingrich 25 0.0017 Non-Studio Setting 23754 0.1565 Outdoors 11745 0.3839
People Event 756 0.1045 People 4773 0.1571 Person 18884 0.0969
Physical Violence 225 0.0014 Podium 80 0.0094 Riot 18 0.0079
Road 808 0.0293 Rock 124 0.0497 Sky 1333 0.1619
Smoke 55 0.0034 Snow 314 0.0183 Sport Event 1232 0.3774
Studio Setting 25696 0.8010 Text Overlay 13447 0.2626 Transportation 2738 0.0892
Tree 700 0.0547 Truck 181 0.0025 Water Body 574 0.0618
Weather News 208 0.8454

Table 1: Lexicon of 46 concepts for which visual models are built using SVMs. For each concept the number
of training samples (f) in the training set and the non-interpolated average precision ((Eq. 4) on a validation
set at the depth of 1000 documents is also reported as the validity v.

jth document is relevant and 0 otherwise. Assuming R < S,
the non-interpolated average precision (AP) is defined as

1

R

SX

j=1

Rj

j
∗ Ij (4)

We reduce parameter sensitivity and dependence on any sin-
gle feature type but data dependency is harder to deal with.

3.2.1 Lexicon
Table 1 shows the lexicon of 46 concepts that we use in

the experiments reported in this paper listed alphabetically.
An important consideration for choosing the concepts in the
lexicon is that when modeled, their performance should be
acceptable. Another aspect to consider is the effect of lexi-
con size and model vector dimensionality on retrieval effec-
tiveness (see Section 5). In many situations, it is not feasible
to model and evaluate a large number of detectors and the
size of the model vector lexicon is constrained from prac-
tical considerations, such as computational time or storage
requirements. In such scenarios, it is desirable to form a
small lexicon while maximizing its effectiveness. We there-
fore consider methods for studying the model vector space
for the purposes of reducing overlap among the semantic
concepts and maximizing their utility. We would like to pre-
serve the semantic meaning of the model vector space, and
for this it is more appropriate to do model selection, rather
than dimensionality reduction techniques such as PCA.
We consider two approaches for prioritizing dimensions

in the model vector space so that the more important ones
can be selected. The first approach, frequent model selec-
tion advocates selecting the models for the most frequently
occurring concepts. The frequency can be measured as the
number of relevant examples for the given concept in an an-
notated training set. The second approach, Robust model
selection, associates the priority for a given model with its
performance reliability, which can be measured on an in-
dependent validation set. The motivation is that the high-
performing models should be preserved.

3.3 Model vector construction
Once concept models are constructed for all the concepts

in the lexicon multimedia documents can now be analyzed,
classified and scored using each concept model. We base
the scoring on the confidence of detection of each concept.
Additionally, we allow the incorporation of detector corre-
lations in the mapping process and detector reliability and
concept relevance score in the matching process (through
score normalization and weighting).
For each of theK detectors a confidence score sk ∈ [0 . . . 1]

is produced for each multimedia document that measures
the degree of certainty of detection of concept ck. We base
the confidence score on proximity to the decision boundary
for each detector, where high confidence score is given for
documents far from the decision boundary and low scores
given when close to the boundary. Additionally, a validity
score indicates how reliable the detector is for detecting its
respective concept. The validity is calculated as the average
precision on a separate validation set which is different from
the one used to select optimal parameters.
The confidence scores ck corresponding to the models dk

are mapped to produce the model vectors.

mj = 〈c1[j], c2[j], . . . , cK [j]〉 , ∀j ∈ [1, J ]. (5)

This is followed by appropriate normalization to remove bias
and optionally by validity weighting to capture relative con-
cept importance.

4. MODEL VECTOR APPLICATIONS
Once documents are indexed into the multi-dimensional

model vector space, this enables document processing at a
semantic level while using fully automated vector-space pro-
cessing techniques. For example, documents can be com-
pared, searched, classified, clustered, visualized, or mined
by using the corresponding vector-space techniques. The
benefits of performing some of the above operations in the
semantic model vector space, as opposed to the original low-
level feature space, are validated empirically in Section 5.
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4.1 Semantic matching
The first application includes the problem of semantic

matching for similarity-based retrieval of multimedia doc-
uments. In particular, the distance between model vectors
is based on the similarity of the videos with respect to the
detector confidence scores. Neural Networks or Gaussian
Mixture Models, for example, have a natural interpretation
as posterior probabilities. Alternatively, we can consider
distance measures based on simple or weighted Euclidean
distance of model vectors. Weights can be used to capture
relative importance of concepts, reliability of concept detec-
tors, or individual user preferences.

4.2 Classification and Clustering
Once the model vector space is constructed, it can be

treated like any other feature space and we can apply the
same classification techniques that were used to learn the
models that created the model vector, recursively to the
model vector features. This will result in models learnt in
model vector spaces. We have used such methods for rare
class classification [8] and context modeling and enforce-
ment [7]. The main advantage of classification in model
vector space is improved classification system scalability, es-
pecially with respect to large lexicons. This comes from
a reduction in supervision requirements, reduction in stor-
age, computational requirements, and through leveraging of
inter-conceptual relationships.
Unlike clusters in low-level feature spaces, clusters in model

vector spaces signify semantic homogeneity. Our clustering
in this space led to the discovery of a cluster of news anchors,
sport events, outdoor crowds, etc.

5. EXPERIMENTS
The experiments in this section were performed using the

TRECVID 2003 Concept Detection Benchmark3 corpus pro-
vided by the National Institute of Standards and Technology
(NIST). This contains a development data set of approxi-
mately 60 hours of MPEG video consisting of CNN, ABC,
and C-SPAN news broadcasts. We split this into one train-
ing set of 36 hours and 3 validation sets: validation set I
of 6 hours, validation set II of another 6 hours and finally
validation set III of 12 hours. In this paper, the concept
models were trained using the training set, optimized for
parametric settings using validation set I of 6 hours and the
validity measured over validation set II of another 6 hours.
Finally, all of the model vector experiments in this section
report results on the unseen validation set III. As part of the
TRECVID 2003 effort, the entire development set was anno-
tated collaboratively by over 100 researchers using a lexicon
of more than 100 primary concepts. Of those we modeled 46
visual concepts that had sufficient support in the training
set in terms of number of relevant shots.

5.1 Evaluation methodology
The experiments below use average precision (as defined

in Eq. 4) as the performance measure for evaluation. In
the retrieval experiments, for each query topic, each rele-
vant video clip is used in turn to query the database. The
candidate images are ranked according to their similarity
to the query image, and then average precision, AP, is cal-
culated at full retrieval depth, thus effectively measuring

3http://www-nlpir.nist.gov/projects/tv2003/
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Figure 1: Retrieval effectiveness for 12 query topics us-

ing content-based retrieval vs. model based retrieval.

the area under the precision-recall curve for a given query.
The AP numbers are then averaged over all queries for a
given topic, yielding an overall average precision score for
the topic. Mean Average Precision (MAP) can then be cal-
culated as the average AP score across several query topics.
For evaluation, we consider 12 query topics, including ob-

jects, sites, and events, and a range of frequent to rare con-
cepts. The majority are outside of the 46 concepts modeled
explicitly but we have also included some overlapping ones
for comparison purposes. In particular, the set of concepts
used as query topics is as follows (numbers in parenthesis
indicate number of relevant items in validation set III):

• Airplane (96), Baseball (26), Basketball (92), Boat
(37), Briefing Room (43), Food (247), Greenery (250),
Mountain (70), Nature Vegetation (521), Rock (48),
Vehicle (415), and Waterfall (6).

Pairwise item similarity is computed as an inner product in
the feature vector space, corresponding to either low-level
visual features or model vectors (see Sections 2.1 and 4.1).

5.2 Experiment 1: MBR vs. CBR
The first experiment compares model vector based re-

trieval (MBR) to content-based retrieval (CBR). Overall,
the following descriptors are compared: 46-dimensional model
vectors, 64-dimensional edge histograms, 166-dimensional
color histograms, 166-dimensional color correlograms, and
332-dimensional visual features derived by concatenating
and normalizing color correlogram, co-occurrence texture,
and edge histogram features. Figure 1 plots the Average
Precision (AP) computed for each of the 12 topics, and the
overall Mean Average Precision scores are shown in Table 2.

Query Edge Color Correlogram+ Model
Topic Histogram Correlogram Texture+Edge Vectors
MAP 0.0519 0.0709 0.0820 0.1039

Table 2: Mean Average Precision over 12 topics for
model vector-based vs. content-based retrieval.

Generally, model vectors outperform all visual features
and result in a significantly higher Mean Average Precision.
The performance gain in MAP ranges from 25% over the
high performing 332-D visual feature to over 100% as com-
pared to the simpler edge histogram features.
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Model Selection for Dimensionality Reduction
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Figure 2: Performance of model selection methods for dimensionality reduction.

5.3 Experiment 2: Model selection
In the second experiment we investigate the effect of model

vector dimensionality on retrieval effectiveness. As described
in Section 3.2.1, we consider two main strategies for model
selection—frequent model selection and robust model selec-
tion. For comparison purposes, however, we also consider
the approach of selecting a random subset of the models,
to serve as a baseline reference point. In the experiments
below, the pseudo-random prioritization is achieved by al-
phabetical ordering of the concepts.
Figure 2 (a) compares the three model selection strate-

gies for dimensionality reduction purposes. Each strategy
is used to generate a 10-dimensional model vector from the
original 46-dimensional one, and the Average Precision is
plotted for the 12 query topics. The robust model selec-
tion strategy generally gives best performance, outperform-
ing frequent model selection by 15% in MAP over the 12
topics, and outperforming pseudo-random selection by 30%.
Figure 2 (b) on the other hand shows the effect on retrieval

performance (averaged over the 12 topics) as a function of
model vector dimensionality. It is interesting to note that
the two primary model selection strategies seem to get satu-
rated performance at about half of the original dimensional-
ity. Robust selection performs best again, and reaches 90%
of top performance with merely 30% of the dimensionality.4

6. CONCLUSIONS
We investigated a novel framework for capturing and lever-

aging semantics in multimedia databases. The model vector
approach uses a concept lexicon as a basis to provide a se-
mantic descriptor that can be used in a variety of ways for
multimedia indexing, including similarity-based retrieval, rel-
evance feedback search and semantic concept classification.

4We should note that robust/frequent model selection meth-
ods have their caveats as well. In particular, both methods
tend to favor models for generic concepts which occur most
frequently. These concepts generally have the best perform-
ing models but may not have the best discriminatory power,
or may not be the most relevant, for a given query topic.
This can perhaps explain why the random model selection
approach slightly outperformed the other two approaches
for a few specific query topics (e.g., boat, rock, and food).
In practice, we have found that model reliability is crucial
for good performance but model relevance to the query top-
ics is just as important, and a balance between the two is
therefore essential to the success of the approach.

We performed an extensive empirical study to validate the
proposed model vector construction and application approaches,
emphasizing significant retrieval performance advantages as
compared to processing in the low-level visual feature do-
main. We also considered the problem of semantic-preserving
dimensionality reduction for model vectors and studied the
effect of dimensionality on retrieval performance. Future
work includes investigating other applications of semantic
model vectors, as well as automatic methods for semantic
basis selection.
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