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Abstract

In the near future, we can expect on-board automo-
tive vision systems that inform or alert the driver about
pedestrians, track surrounding vehicles, and read street
signs. Object detection is fundamental to the success of
this type of next-generation vision system. In this paper, we
present a trainable object detection system that automati-
cally learns to detect objects of a certain class in uncon-
strained scenes. We apply our system to the task of pedes-
trian detection. Unlike previous approaches to pedestrian
detection that rely heavily on hand-crafted models and mo-
tion information, our system learns the pedestrian model
from examples and uses no motion cues. The system can
easily be extended to include motion information. We
review our previous system, describe a new system that
exhibits significantly better performance, provide a com-
parison between using different combinations of feature
sets with classifiers of varying complexity, and describe
improvements that increase the system’s processing speed
by two orders of magnitude.

1 Introduction

The possible applications of object detection research to
practical problems are significant. The impact of this tech-
nology in automotive systems could be especially great.
We have developed a general, trainable object detection
system that can successfully find pedestrians in complex
images, without assuming any a priori scene structure [16]
[15] [17]. The technique is founded on a representation
that encodes local intensity differences. Our system learns
from examples, meaning that the object model is derived
from a set of training images of pedestrians. To enable the
architecture to detect a different class of objects, we can
change the training set of object examples; this general ar-
chitecture has successfully been applied to both pedestrian
and face detection in cluttered scenes.

Most previous systems designed to detect pedestrians
in video sequences have relied heavily on hand-crafted
models and/or motion information. Hand-crafted models
limit system portability and the assumption that all pedes-

trians are moving is clearly restrictive for a general system.
Discussions of these systems can be found in [9] [19] [12]
[11] [18] [1] [6] [21] [14] [7] [8].

Our system is based on a novel object representation
that uses projections of the object images onto a dense Haar
wavelet basis that efficiently encodes structural features at
different scales. Each wavelet coefficient corresponds to
a single feature, or basis function. The set of features we
use contains two scales of basis functions with 1326 com-
ponents. These features are used to train a Support Vector
Machine (SVM) classifier [20], which provides bounds on
the generalization error. Using this representation, we can
reliably detect pedestrians in static images with no motion
information; extensions for processing video sequences
can use motion as an additional cue.

In this paper, we build on our previous work and intro-
duce a new system that exhibits significantly better perfor-
mance, provide a comparison of the performance obtained
by using different combinations of feature sets with clas-
sifiers of varying complexity, and describe improvements
that can increase the processing speed of our system by
two orders of magnitude.

This paper is organized as follows. Section 2 describes
our base pedestrian detection system and the SVM tech-
nique. Section 3 presents several optimizations to the
system that are designed to reduce processing time so that
the system may eventually be near real-time. In Section 4,
we show the results of our system. Section 5 summarizes
our work and presents areas of future research.

2 System Architecture

This section presents an overview of our pedestrian
detection system; for more in-depth discussions of our
system, see [16] [15] [17].

2.1 Wavelet Features

One of the key issues in developing an object detection
system is what object representation to use. The ultimate
goal is a representation that yields high inter-class variabil-
ity and low intra-class variability. Figure 1 shows several



Figure 1. The top row shows examples of images of pedestrians in the training database. The
examples vary greatly in color, texture, and background. The bottom row shows the corresponding
edge maps generated by a sobel filter; fine-scale edge information does not characterize the
pedestrian class well.

example images of pedestrians from our training set. From
these images, it is clear that a pixel-based representation
would likely fail on account of the high degree of variabil-
ity in the color of the pedestrian patterns. A traditional
fine-scale edge-based representation is also not adequate;
Figure 1 clearly shows how the results of this type of pro-
cessing yields edge maps with little consistency between
the patterns and a lot of spurious information. Region-
based approaches that use color, for instance, would have
the same problems as pixel-based systems due to the lack
of consistent color information.

The representation we use overcomes these problems
by looking at intensity differences in small local regions;
essentially, finding multi-scale edges. This is imple-
mented in a computationally efficient framework called
Haar wavelets [13]. The Haar wavelet transform is run
over an image and results in a set of coefficients at several
scales that indicate the response of the wavelets over the
entire image. Different wavelets respond to vertical, hor-
izontal, and diagonally oriented intensity differences, so
what the transform yields is three sets of coefficients, one
for each of the wavelet orientations.

Since we are using color images, we run the Haar trans-
form over each color channel separately. Then, for a given
spatial location and orientation, we choose as the wavelet
coefficient the one from the three color channels that gives
the maximal response. In this way, we expect that strong
visual intensity differences will be accurately reflected in
the representation.

2.2 Feature Selection

Our training database is a set of 1848 frontal and rear
color views of pedestrians (924 plus mirror images) that
have been scaled to 128� 64 pixels and aligned such that
the pedestrian is in the center of the image. Using the
Haar wavelet representation, we look at both coarse-scale
(32 � 32 pixels) and fine-scale (16 � 16 pixels) features.

At these scales of wavelets, there are 1326 total features
for a 128 � 64 pattern.

Many of these coefficients will be irrelevant for the task
of pedestrian detection, for instance, the coefficients at the
corner areas that do not touch the pedestrian’s body. We
can obtain a more compact representation by choosing a
small subset of the coefficients that are consistently strong
or weak across the ensemble of training patterns. Average
responses for each coefficient for the three orientationsand
the two scales are shown in Figure 2 where a dark coeffi-
cient indicates consistently strong response or the presence
of an edge and a light coefficient indicates consistent weak
response, or a uniform region.

Once this statistical analysis is done, we manually
choose 29 of these coefficients that will be the features
of the pedestrian class, so each pedestrian image is repre-
sented by a 29-dimensional feature vector.

2.3 Support Vector Machine Classification

Using our 1848 pedestrian patterns and a set of 7189
negative patterns gathered from images of outdoor scenes
not containing pedestrians, we can train a classifier to dif-
ferentiate between pedestrian and non-pedestrian patterns.
To this end, we use a Support Vector Machine classifier.

Support Vector Machines is a training technique which,
instead of minimizing the trainingerror of a classifier, min-
imizes an upper bound on its generalization error. This
technique has recently received a great deal attention and
has been applied to areas such as handwritten character
recognition [3], 3D object recognition [2], text categoriza-
tion [10], and object detection [16] [15] [17]. The appeal-
ing characteristics of SVMs are a) by choosing different
kernel functions, we can implement various classifiers like
polynomial classifiers, multilayer perceptrons, and radial
basis functions, b) the only tunable parameter is a penalty
term for misclassifications, and c) as mentioned before, the
algorithm finds the separating decision surface that should
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Figure 2. Ensemble average values of the wavelet coefficients coded using gray level. Coefficients
whose values are above the average are darker, those below the average are lighter. (a)-(c) vertical,
horizontal, and diagonal coefficients at scale 32 � 32 of images of pedestrians, (d)-(f) vertical,
horizontal, and diagonal coefficients at scale 16 � 16 of images of pedestrians.

provide the best out-of-sample performance. The SVM
decision surface is obtained by solving a quadratic pro-
gramming problem; for more details on the algorithm, see
[20] [5].

2.4 Detecting Pedestrians

To detect pedestrians in a new image, we shift the 128�
64 detection window over all locations in the image. This
will only detect pedestrians at a single scale, however. To
achieve multi-scale detection, we incrementally resize the
image and run the detection window over each of these
resized images.

3 Optimizations

The original system we have described for pedestrian
detection in color images initially processed at a rate of
1 frame per 2 minutes; this was clearly inadequate for
any real-time automotive applications. We have imple-
mented several optimizations that have yielded two orders
of magnitude worth of speedups.

3.1 Reduced Set Vectors

One of the shortcomings of SVM classification is that
the computation involved in classifying a pattern can
be immense, when compared to other classification ap-
proaches with similar performance. For each pattern that
the system classifies, the following equation that encodes
the decision surface must be evaluated for our case where
we use a polynomial classifier of degree two:f(x) = � NsXi=1

�iyi(x � xi + 1)2 + b! (1)

where x is the pattern to classify, i indexes into the Ns
support vectors xi, that is, data points that are part of the
solution, yi indicates the class (f+1;�1g) of example i,
and �i is a Lagrange parameter.

For our 29-dimensional feature vectors, each classifi-
cation entails Ns � 29 multiplications (excluding the La-
grange and class multiplications). For our color system,
we obtain 331 support vectors meaning that a single clas-
sification needs over 9500 multiplications.

To overcome this computational hurdle, we use a re-
duced set method [4] to obtain an equivalent decision
surface in terms of a small number of synthetic vectors.
This method yields a new decision surface that is equiv-
alent to the original one but uses just 29 vectors, thus,
841 multiplications per classification, a significant reduc-
tion in computational overhead from the original version.
We take advantage of an exact solution by changing the
kernel from K(x;y) = (x � y)2 + 1 to the homogeneous
polynomial of degree two,K(x;y) = (x�y)2. The homo-
geneous kernel results in a kernel with less representative
power than the kernel with the +1 but our results indicate
that it is a viable alternative.

3.2 Grey Level Processing

Our use of color images is predicated on the fact that the
three different color channels (RGB) contain a significant
amount of information that gets washed out in grey level
images of the same scene. This use of color information
results in significant computational cost; the resizing and
Haar transform operations are performed on each color
channel separately. In order in improve processing speed,
we modify the system to process intensity images. By
comparing the performance to the color systems, we can
analyze exactly how much degradation in performance this
results in.

For the grey-level version, we use the same 29 wavelets
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Figure 3. ROC curves for different detec-
tion systems. The detection rate is plotted
against the false positive rate, measured on
a logarithmic scale. The false detection rate
is defined as the number of false detections
per inspected window.

that are used in the color version. What this means is that
we are doing feature selection for our grey-level system
using color images. In the future, the grey-level system’s
features should be derived from the grey-level training set.

4 Experimental Results

To gauge the performance of a detection system, it
is necessary to analyze the full ROC curve which gives
an indication of the tradeoff between accuracy and the
number of false positives. We emphasize that our ROC
curves are computed over an out-of-sample test set gath-
ered around MIT and over the Internet. Figure 3 compares
the ROC curves of several different incarnations of our
system. They are as follows:� color processing with 29 features using a homoge-

neous polynomial of degree two (to take advantage
of the reduced set method)� color processing with 29 features using a polynomial
of degree two� color processing with 29 features using a polynomial
of degree three� grey-level processing with 29 features using a homo-
geneous polynomial of degree two (to take advantage
of the reduced set method)� grey-level processing with 29 features using a poly-
nomial of degree two� grey-level processing with 29 features using a poly-
nomial of degree three

� color processing with all 1326 features using a poly-
nomial of degree two

From the ROC curve, it is clear that most of the impact
on performance comes from what features are used; the
complexity of the classifier is secondary. As expected, us-
ing color features results in a more powerful system. The
curve of the system with no feature selection is clearly
superior to all the others. This indicates that for the best
accuracy, using all the features is optimal. When classify-
ing using this full set of features, we pay for the accuracy
through a slower system. It may be possible to achieve the
same performance as the 1326 feature system with fewer
features; this is an open question, however. Examples
of processed images are shown in Figure 4; these images
were not part of the training set.

We can also extend the system to allow it to detect
frontal, rear, and side views of pedestrians. This more
complete system is trained on a set of 3600 positive and
12437 negative examples, using all 1326 features. Figure
5 shows the results of processing a video sequence from
downtown Ulm, Germany without using any motion or
tracking information; adding this information to the sys-
tem would improve results. From the sequence, we can
see that our system generalizes extremely well; this test
sequence was gathered with a different camera, in a differ-
ent location, and in different lighting conditions than our
training data.

5 Conclusion

This paper presents a description of our framework for
object detection, as applied to the task of pedestrian detec-
tion. Our system is based on obtaininga model of pedestri-
ans using a small set of local wavelet features derived from
an ensemble of training examples. We highlight the differ-
ences in using color and grey-level features and compare
the use of polynomial classifiers of different complexities.
We also present a new super-accurate detection system in
which there is no feature selection step. From these experi-
ments, we conclude that the features themselves contribute
most to performance; classifier complexity is secondary.

Pedestrian detection has many possible applications in
the areas of automotive assistance systems, image and
video database indexing, and surveillance. It is our be-
lief that trainable techniques like those presented here
will become increasingly important in developing such
systems. For practical applications, processing speed be-
comes critical; in this paper, we have described some sys-
tem optimizations – grey-level processing and a reduced
set method – that have been implemented to reduce pro-
cessing time by two orders of magnitude.
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Figure 4. Results from our pedestrian detection system. Typically, missed pedestrians are due to
occlusion or lack of contrast with the background. False positives can be eliminated with further
training.

Figure 5. Processing the “Downtown Ulm” sequence with our frontal, rear, and side view detection
system. The system uses no motion or tracking; adding this information to the system would
improve results.
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