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Abstract. Smart homes for the aging population have recently started
attracting the attention of the research community. One of the problems
of interest is this of monitoring the activities of daily living (ADLs) of the
elderly aiming at their protection and well-being. In this work, we present
our initial efforts to automatically recognize ADLs using multimodal in-
put from audio-visual sensors. For this purpose, and as part of Integrated
Project Netcarity, far-field microphones and cameras have been installed
inside an apartment and used to collect a corpus of ADLs, acted by
multiple subjects. The resulting data streams are processed to generate
perception-based acoustic features, as well as human location coordinates
that are employed as visual features. The extracted features are then pre-
sented to Gaussian mixture models for their classification into a set of
predefined ADLs. Our experimental results show that both acoustic and
visual features are useful in ADL classification, but performance of the
latter deteriorates when subject tracking becomes inaccurate. Further-
more, joint audio-visual classification by simple concatenative feature
fusion significantly outperforms both unimodal classifiers.

1 Introduction

Automatic recognition of human activities of daily living (ADLs) is deemed a
crucial component of behavior pattern analysis systems. In the scope of the
European-Union funded Netcarity Integrated Project [1], such a system would
enable automatic assistive services for the elderly, providing the opportunity to
increase their independence at the home environment. There are many exam-
ples of other potential applications of ADL recognition beyond elderly care, e.g.
safety systems and services, security systems, situation-aware human-computer
interfaces, etc. It is expected that the significance of ADL recognition technol-
ogy will grow over time as sensor technology progresses and computational power
increases.
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Among the various types of sensors that could be used to capture ADL in-
formation at home, we are interested in far-field microphones and cameras, due
primarily to their unobtrusiveness and low cost. Using such sensors requires
robust processing of the acquired signals, which constitutes a very challenging
problem in realistic, unconstrained smart home environments. On the micro-
phone side, for example, the task of ADL recognition becomes closely related to
the field of acoustic scene analysis. The majority of previous research on that
topic has mainly aimed at the recognition of short time-span, simple acoustic
events in both smart office [2,3] and smart home environments [4,5]. ADLs, in
contrast, constitute long time-span, complex activities.

In recent work [6], we have started to investigate the problem of ADL recog-
nition using far-field microphones inside smart homes. There, the ADLs were
modeled either as monolithic acoustic segments or as structured elements that
can be decomposed into a sequence of shorter characteristic acoustic events.
The former approach achieved the best results, when used in conjunction with
an SVM classifier built on GMM supervectors [6]. However, this work did not
take into consideration visual information, available through camera sensors.
This could potentially impact performance, since the visual modality is gen-
erally known to help a number of perception technologies in smart spaces by
complementing audio information [3]. Recently, for example, the visual modal-
ity has been successfully employed to recognize longer-span human activity in
the office environment, jointly with audio information [7]. There, unconstrained
realistic data was captured by one camera and microphone per room in a five-
room environment. The classification used hidden Markov models and detected
four basic office activities, namely “paperwork”, “phone call”, “meeting”, and
“Nobody in the Office”.

Motivated by the above, in this paper we extend our prior work [6], by
investigating the use of visual information in addition to far-field acoustic input
for recognizing ADLs inside smart homes. For this purpose, we use ADL data
acted by a number of subjects, recorded under realistic conditions using far-field
microphones and cameras inside an apartment that has been set up as a smart
home by Netcarity partner site FBK in Trento, Italy [8]. In this initial effort
to incorporate visual information, we propose the use of human 3D location
information as visual features, taking advantage of recent advances in multi-
camera tracking [9]. Furthermore, we investigate the use of bimodal information,
i.e. both acoustic and visual features, demonstrating significant performance
improvements over both audio-only and visual-only systems, even though we
utilize a relatively simple feature fusion approach. Note that since the emphasis
of the paper is on extracting and incorporating visual information for ADL
recognition, we limit ourselves to the use of relatively simple statistical methods
—namely Gaussian mixture model classifiers. More complex modeling approaches
could of course be used, leading potentially to further improvements [6, 7].

It is worth reiterating that the problem of ADL recognition in unconstrained
realistic home environments using far-field audio-visual sensors is extremely chal-
lenging. For example, ADLs may overlap, multiple subjects may be present, and
there typically exists significant variability in the background acoustic noise and



Fig. 1. A schematic diagram of the smart home used in the ADL corpus collection [§],
depicting the audio-visual sensor locations (upper right). Example views of the three
cameras are also shown.

changing spatio-temporal illumination conditions. In addition, ADLs are long
and of complex structure, and they are typically characterized by “acoustically
sparse” audio data with poor distinctive acoustic footprint. Therefore, and in
order to simplify the complexity of the ADL recognition problem, we limit our-
selves to a small set of six ADL classes, as discussed in Section 2. Furthermore,
we assume that the temporal boundaries of ADLs are a-priori known, so the
problem practically reduces to that of classification (instead of detection).

The remainder of the paper is structured as follows: Section 2 describes the
data corpus, and Section 3 details our approach to ADL classification, including
single-modality feature extraction and audio-visual fusion. Section 4 is devoted
to the experiments, and finally Section 5 concludes with a summary of results
and a brief discussion.

2 The Netcarity ADL Corpus

For our experiments we employ a specially designed audio-visual corpus of
ADLs [8], collected as part of the Netcarity project [1]. The data was recorded
in a real apartment, where two rooms — the living room and the kitchen — were
equipped with a total of six T-shaped omni-directional microphone arrays with
four microphones per array, thus providing 24 audio channels, as well as three



ADL || training set test set
class ||# seg.| dur. ||# seg.| dur.
EAT || 128 |83.44 | 32 |82.34
RDG| 128 |66.06 | 32 |71.22
TVW( 128 [97.24| 32 |97.52
IRN || 64 |96.85| 16 |98.04
CLN || 64 |65.38|| 16 |66.66
PHN| 64 |104.49|| 16 [103.62
total || 576 |84.42| 144 |85.67

Table 1. Data statistics for the training and test sets of the ADL corpus [8] used in
the experiments in Section 4. Number of segments (# seg.) and their average duration
(dur.) in seconds are depicted for each of the six ADL classes of interest.

cameras (two in the living room and one in the kitchen) with relatively wide
fields of view. Each audio channel provided data at 16 bits per sample and a
48 kHz sampling rate, whereas the cameras yielded 640x480-pixel frames at ap-
proximately 10 frames per second. Fig. 1 depicts a schematic diagram of the
apartment, with the microphone array and camera positions indicated by “x”
marks and squares, respectively. Example video frames from the three cameras
are also shown.

The collection was organized into 20 sessions, each about 1.5 hour long. Each
session contained one main subject performing a prescribed set of 12 activities,
randomly repeated four times. In order to obtain a realistic acoustic environ-
ment, three of these 12 activities were performed by the main subjects, while
an interfering subject conducted other activities (e.g. the main subject could be
watching TV, while the interfering subject was having a phone conversation).
All 20 collected sessions are employed in our experiments: 16 sessions are used
for training and 4 sessions for testing. Due to the fact that each subject appeared
in one session only, this yields a speaker-independent training-testing scenario.

For the ADL classification experiments we limit ourselves to six classes:
“eating-drinking” (EAT), “reading” (RDG), “ironing” (IRN), “cleaning” (CLN),
“phone answering” (PHN), and “TV watching” (TVW). There exist 720 seg-
ments for these ADLs — 576 in training and 144 in the test set. Their detailed
occurrence statistics in the two sets are depicted in Table 1.

3 Feature Extraction and ADL Classification

Gaussian mixture models (GMMs) are used to model the feature vector dis-
tribution for each ADL. In all audio-only, visual-only, and audio-visual classi-
fication, these vectors are available at a rate of 100 frames per second, and,
during training, they are used to estimate six models (one per class) by means
of the expectation-maximization algorithm. At testing, maximum-a-posteriori
estimation is employed to determine the most likely ADL, assuming feature in-
dependence and equal ADL priors.



3.1 Acoustic Processing

To extract audio features, the signal from a single only microphone is used.
For this purpose a centrally located microphone is selected, so that the average
distance to the events happening in the apartment is minimal. From this signal,
13-dimensional perceptual linear prediction (PLP) coefficients with segment-
level cepstral mean subtraction applied are used as acoustic feature vectors. Each
ADL segment is represented by a sequence of PLP feature vectors, extracted at
10 Hz from a 25 ms Hamming-windowed signal, with 15 ms overlap between
successive audio segments.

3.2 Visual Processing

In addition to audio signals, visual analysis of a scene can provide us with a
rich set of features to detect ADLs. For the specific task of ADL recognition
in a natural environment, we originally employed two separate detectors that
generate both high-level (person tracking) and low-level (body activity) features.
However, in this paper, we only utilize the positional information relating to the
target’s 3D location.

To detect position, a multi-camera particle filter tracker is used. At each filter
update it generates a number of 3D position hypotheses for each target using
the previous estimate and a simple motion model. For each new hypothesis a
coarse 3-dimensional shape model is projected onto each of the calibrated camera
frames, and color histograms are extracted from the identified image regions. The
position hypothesis is then scored according to how well the extracted histograms
match a previously acquired color model of the target. Position hypotheses with
low scores are rejected, while those with high scores are maintained. The accuracy
of the tracking depends greatly on the quality of the target model, which was
acquired automatically as a new target entered the larger room (living room).
More details can be found in [9].

Visual subject tracking provides the system with a location output at a vari-
able frame rate, which on average is 10 frames per second. Before the features
are used by the GMM classifier, they are upsampled to the same frequency as
the audio, i.e 100 Hz, by means of linear interpolation. Due to difficulties expe-
rienced during the video acquisition process (chunks of missing frames and some
non-synchronized sections) and strong changes in the color temperature of the
lighting (sunlight and incandescent sources), the visual tracking of the subjects
varied greatly in accuracy and consistency. In some situations the tracker was
not able to detect the subject, mainly because the timestamps of the images
delivered by the two cameras were misaligned, or the target showed low contrast
with the background. Consequently, the tracking was not initialized and no po-
sitional data is available for ADL classification. Additionally, there is no subject
tracking in the kitchen room, as only a single camera was available.

In order to assess the impact of the loss of visual tracking on the classification
accuracy, for the visual modality, we designed five “nested” data sets for our
experiments. These data sets were created from the original data by dropping



# Gaus.|Acc. (%)||# Gaus.|Acc. (%)

1 40.97 500 54.86
2 49.31 1000 56.25
4 50.00 2000 56.94
8 49.31 4000 57.64

20 52.08 8000 53.47
100 52.78 16000 | 51.39

Table 2. ADL classification accuracy (Acc, %) using audio-only information, for var-
ious GMM classifiers with different numbers of Gaussian mixture components (#
Gaus.). The best achieved result, 57.64% audio-only accuracy, is highlighted.

ADL segments with various relative amounts of lost visual tracking. This yielded
a so-called “100%” data set, as well as “90%”, “50%”, “10%”, and “0%" sets, the
“100%” one containing all ADL segments, the “90%” one only segments whose
tracking loss was less than 90% of the total segment duration, and so forth.
Details on the size of these sets are given in the last two rows of Table 3.

3.3 Audio-Visual Fusion

In our joint audio-visual ADL classification experiments, we use simple concate-
native feature fusion of audio and visual features. This is straightforward to
implement, since both audio and visual features are available at 100 Hz (the
latter after interpolation). This process yields 16-dimensional joint audio-visual
vectors (13 dimensions correspond to PLP features and three to the visual ones).

4 Experiments

Table 2 depicts audio-only ADL classification results using various GMM classi-
fiers trained on PLP features. The best classification accuracy is 57.64%, achieved
by a 4000-mixture GMM.

Table 3 depicts visual-only classification results using various GMM classi-
fiers, reported on the various nested data sets discussed above. Note that we
always match the training with the test set — e.g. when a GMM classifier is
trained on a “10%” reduced training set, it is also tested on a “10%” reduced
test set. Here, we observe a clear trend of the “peak” accuracy across the data
sets — it moves towards fewer GMM components for the data sets with fewer
data. We also observe that the classification accuracy rapidly increases as the
data set gets “cleaner”. In other words, lost tracking takes a toll on visual-only
ADL classification performance.

Finally, Table 4 depicts ADL classification results using the joint audio-visual
features on the full data set (“100”). Clearly, the best result (65.97% accuracy)
is significantly better than both audio-only (57.64%) and visual-only (46.53%)
results.



Training/Testing Sets

# Gaus.| “100” “90” “50” “10” “0”
1 31.94 43.00 44.87 50.98 65.62
2 43.75 49.00 48.72 45.10 40.62
4 38.19 57.00 47.44 58.82 59.38
8 43.06 50.00 53.85 52.94 59.38
16 |46.53 48.00 46.15 58.82 56.25
32 |45.83 45.00 46.15 54.90 46.88
50 |40.97 44.00 39.74 50.98 43.75
100 |40.97 44.00 41.03 52.94 43.75

Tr. seg. | 576 427 324 226 159

Ts. seg. | 144 100 78 51 32

Table 3. Visual-only ADL classification accuracy using various GMMs, trained/tested
on a nested sequence of data sets with improving tracking accuracy, moving from the
left-most column (full data set) to the right one. The number of segments on the
training (Tr.) and test sets (Ts.) are also shown for each condition.

5 Conclusions

Our experiments on the ADL classification show that combining the audio and
visual data streams in a multimodal fusion improves the classification accuracy
over the ADL classification for each modality separately. Each modality has its
own shortcomings: most of the ADLs do not provide acoustic footprint distinctive
enough and the data are acoustically sparse making most ADLs seem acoustically
similar. Visual data provide much more relevant ADL information, but a larger
complexity of the visual data may cause problems extracting the ADL relevant
information which is also the case of our work. Moreover the visual data have
usually limited coverage in a sense that not all the smart home space is covered,
there may be the occlusions etc. This too happens in our work, where there
is no visual tracking available in one room. Audio and visual streams are thus
complementing each other. We have shown that GMM modeling of the ADL

# Gaus.|Acc. (%)||# Gaus.|Acc. (%)
1 43.75 100 64.58
2 42.36 500 62.50
4 56.25 1000 61.81
8 57.64 2000 61.11
50 65.97

Table 4. ADL classification accuracy, %, using joint audio-visual features for various
numbers of GMM components on the full (“100”) data set. The best achieved result of
65.97% is highlighted and is clearly significantly better than the audio-only accuracy
of 57.64% and visual-only accuracy of 46.53% (see Tables 2 and 3, respectively).



classes is capable to combine information from both streams effectively and
improve the classification accuracy.
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