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ABSTRACT

JPEG Image Compression Using an FPGA

by

James Rosenthal

Image compression is an important topic in commercial, industrial, and academic

applications. Whether it be in commercial photography, industrial imaging, or

video, digital pixel information can comprise considerably large amounts of data.

Management of such data can involve significant overhead in computational com-

plexity, storage, and data processing. Typical access speeds for storage mediums

are inversely proportional to capacity. Through data compression, such tasks

can be optimized.

Image and video compressors and decompressors (codecs) are implemented

mainly in software as digital signal processors have optimized instruction sets

to manage the required operations. Hardware-specific codecs can be integrated

into digital systems fairly easily, requiring work only in the areas of interface and

overall integration. Improvements in speed occur primarily because the hardware

can be tailored to the compression algorithm as well as the application. Using

an FPGA to implement a codec combines the best of two worlds: significantly

increased processing speed due to the use of customized hardware, and flexibility

to make changes and tunings of the algorithm since FPGA-based designs are
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easily modified.

The JPEG algorithm was chosen for this project as it is well defined and

highly recognizable. JPEG provides a baseline compression algorithm that can

be modified in numerous ways to fit any desired application. The JPEG specifi-

cation, released initially in 1991, does not specify a particular implementation.

A programmable hardware platform, developed in the computer architecture

laboratory at UCSB, was chosen as a substrate for this project. The baseline

JPEG compression algorithm was tailored to fit this board, using custom hard-

ware pipelining, as well as parallel data paths. The core compression design

was created using the Verilog hardware description language. THe supporting

software was written in C, developed for a DSP and the PC.

The implementation of this project was successful on achieving significant

compression ratios. The sample images chosen showed different degrees of con-

trast and fine detail to show how the compression affected high frequency com-

ponents within the images. The throughput of the design excelled in the FPGA

core. However, inherent limitations in the interface to the FPGA limited the

overall performance of the design.
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1 Introduction

1.1 Image Compression

Image compression is an important topic in the digital world. Whether it be

commercial photography, industrial imagery, or video. A digital image bitmap

can contain considerably large amounts of data causing exceptional overhead in

both computational complexity as well as data processing. Storage media has

exceptional capacity, however, access speeds are typically inversely proportional

to capacity. [8] Compression is important to manage large amounts of data for

network, internet, or storage media. Compression techniques have been studied

for years, and will continue to improve.

Typically image and video compressors and decompressors (CODECS) are

performed mainly in software as signal processors can manage these operations

without incurring too much overhead in computation. However, the complexity of

these operations can be efficiently implemented in hardware. Hardware specific

CODECS can be integrated into digital systems fairly easily. Improvements

in speed occur primarily because the hardware is tailored to the compression

algorithm rather than to handle a broad range of operations like a digital signal

processor.

Data compression itself is the process of reducing the amount of informa-

tion into a smaller data set that can be used to represent, and reproduce the

information. Types of image compression include lossless compression, and lossy

compression techniques that are used to meet the needs of specific applications.

JPEG compression can be used as a lossless or a lossy process depending on the

requirements of the application. Both lossless and lossy compression techniques
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employ reduction of redundant data.

Work in standardization has been controlled by the International Organiza-

tion for Standardization (ISO) in cooperation with the International Electrotech-

nical Commission (IEC). The Joint Photographic Experts Group produced the

well-known image format JPEG, a widely used image format. [2] JPEG provides

a solid baseline compression algorithm that can be modified numerous ways to fit

any desired application. The JPEG specification was released initially in 1991,

although it does not specify a particular implementation.

1.2 Redundancy Coding

To compress data, it is important to recognize redundancies in data, in the form

of coding redundancy, inter-pixel redundancy, and psycho-visual redundancy. [3]

Data redundancies occur when unnecessary data is used to represent source infor-

mation. Compression is achieved when one or more of these types of redundancies

are reduced. [3]Intuitively, removing unnecessary data will decrease the size of

the data, without losing any important information. However, this is not the

case for psycho-visual redundancy.

The most obvious way to reduce compression is to reduce the coding redun-

dancy. This is referring to the entropy of an image in the sense that more data

is used than necessary to convey the information. Lossless redundancy removal

compression techniques are classified as entropy coding. Other compression can

be obtained through inter-pixel redundancy removal. Each adjacent pixel is

highly related to its neighbors, thus can be differentially encoded rather than

sending the entire value of the pixel. Similarly adjacent blocks have the same

property, although not too the extent of pixels.
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In order to produce error free compression, it is recommended that only cod-

ing redundancy is reduced or eliminated. [3] This means that the source image

will be exactly the same as the decompressed image. However, inter-pixel redun-

dancies can also be removed, as the exact pixel value can be reconstructed from

differential coding or through run length coding.

Psycho-visual redundancy refers to the fact that the human visual system

will interpret an image in a way such that removal of this redundancy will create

an image that is nearly indistinguishable by human viewers. The main way to

reduce this redundancy is through quantization. Quantizing data will reduce it

to levels defined by the quantization value. Psycho-visual properties are taken

advantage of from studies performed on the human visual system.

1.3 The Human Visual System

The Human Visual System(HVS) describes the way that the human eye processes

an image, and relays it to the brain. By taking advantage of some properties of

HVS, a lot of compression can be achieved. In general, the human eye is more

sensitive to low frequency components, and the overall brightness, or luminance

of the image.

Images contain both low frequency and high frequency components. Low

frequencies correspond to slowly varying color, whereas high frequencies represent

fine detail within the image. Intuitively, low frequencies are more important to

create a good representation of an image. Higher frequencies can largely be

ignored to a certain degree.

The human eye is more sensitive to the luminance(brightness), than the

chrominance(color difference) of an image. Thus during compression, chromi-
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nance values are less important and quantization can be used to reduce the

amount of psycho-visual redundancy. Luminance data can be quantized, but

more coarsely to ensure that important data is not lost.

Several compression algorithms use transforms to change the image from pixel

values representing color to frequencies dealing with light and dark of an image,

not frequencies of light. Many forms of the JPEG compressions algorithm make

use of the discrete cosine transform. Other transforms such as wavelets are

employed by other compression algorithms. These models take advantage of

subjective redundancy by exploiting the human visual system sensitivity to image

characteristics. [1]

1.4 Transform Coding

Another form of compression technique aside from exploiting redundancies in

data is known as transform coding or block quantization. Transform coding

employs techniques such as differential pulse code modulation as well as other

predictive compression measures. Transform coding works by moving data from

spatial components to transform space such that data is reduced into a fewer

number of samples. Transform coders effectively create an output that has a ma-

jority of the energy compacted into a smaller number of transform coefficients. [8]

The JPEG image compression algorithm makes use of a discrete cosine trans-

form to move pixel data representing color intensities to a frequency domain.

Most multimedia systems combine both transform coding and entropy coding

into a hybrid coding technique. [5] The most efficient transform coding technique

employs the Karhunen-Loeve-Hotelling (KLH) transform. The KLH transform

has the best results of any studied transform regarding the best energy com-
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paction. However, the KLH transform has no fast algorithm or effective hard-

ware implementation. Thus, JPEG compression replaces the KLH transform

with the discrete cosine transform, which is closely related to the discrete fourier

transform.

Transform coders typically make use of quantizers to scale the transform

coefficients to achieve greater compression. As a majority of energy from the

source image is compacted into few coefficients, vector quantizers can be used to

coarsely quantize the components with little to no useful information, and finely

quantize the more important coefficients. A major benefit to transform coding

is that distortion or noise produced by quantization and rounding gets evenly

distributed over the resulting image through the inverse transform. [8]

1.5 Lossless Compression

Lossless compression techniques work by removing redundant information as well

as removing or reducing information that can be recreated during decompres-

sion. [2] Lossless compression is ideal, as source data will be recreated without

error. However, this leads to small compression ratios and will most likely not

meet the needs of many applications. Compression ratios are highly dependent

on input data, thus lossless compression will not meet the requirements of appli-

cations requiring a constant data rate or data size.

Lossless techniques employ entropy encoders such as Huffman encoders. Huff-

man produced an efficient variable length coding scheme in 1952. [2] Such en-

coders similar to PKZIP, a popular public domain compression program, make

use of order and patterning within data sets. This property allows entropy cod-

ing, such as run length coding, to compress data without any loss.
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Entropy encoders give a codeword to each piece of data. The codeword is of

variable length to enhance compression. The varying length is typically deter-

mined by the frequency that a certain piece of data appears. Some algorithms

generate codewords after analyzing the data set, and others use standard code-

words already generated based off of average statistics. Shorter codewords are

assigned to those values appearing more frequently, where longer codewords are

assigned to those values that occur less frequently. This is the property that the

Morse Alphabet was created off of. Applying Morse coding to the English lan-

guage, vowels such as ’e’ occur most frequently, so small codewords are assigned.

Other letters such as ’z’ and ’q’ occur much less frequently and thus are assigned

longer codewords. These same principles are the foundation for many entropy

encoders.

Run length coding, another form of entropy coding, was created to exploit

the nature of inter-pixel redundancy. As each pixel is highly correlated to its

neighbors, it can be expected that certain values will be repeated in adjacent

pixels. By encoding this data repetition as a run length, significant compression

can be achieved. When employed in lossy compression systems, run length coding

can achieve significant compression compared to lossless compression, especially

after quantization.

The best known lossless image compression algorithm is the Compuserve

Graphics Interchange Format (GIF). Unfortunately the GIF format cannot han-

dle compression of images with resolutions greater than 8-bits per pixel. Another

lossless format called the Portable Network Graphics (PNG) can compress images

with 24-bit or 48-bit color resolutions.
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1.6 Lossy Compression

The main benefit of lossy compression is that the data rate can be reduced. This

is necessary as certain applications require high compression ratios along with

accelerated data rates. Of course significant compression can be achieved simply

by removing a lot of information and hence quality from the source image, but

this is often inappropriate.

Lossy compression algorithms attempt to maximize the benefits of compres-

sion ratio and bit rate, while minimizing loss of quality. [2] Finding optimal ways

to reach this goal is a severely complicated process as many factors must be

taken into account. Variables such as a quality factor which is used to scale the

quantization tables used in JPEG can either reduce the resulting image qual-

ity with higher compression ratios, or conversely improving image quality with

lower compression ratios. JPEG, although lossy, can give higher compression ra-

tios than GIF while leaving the human observer with little to complain of loss in

quality. Minimizing the variance between source and compressed image formats,

otherwise known as Mean Square Error, is the ultimate goal for lossy compression

algorithms.

Compression induced loss in images can cause both missing image features

as well as artifacts added to the picture. Artifacts are caused by noise produced

by sources such as quantization, and may show up as blocking within the image.

Blocking artifacts within an image can become apparent with higher compression

ratios. The edges are representative of blocks used during compression, such as

8x8 blocks of pixels, used in JPEG. Strangely, artifacts such as noise or ringing

may actually improve the subjective quality of the image. [2] Noise can cause

contouring which shows up in gradual shading regions of the image, while ringing

is apparent at sharp edges. JPEG unfortunately does not do well with computer-
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generated graphics.

1.7 Color Space

Compression also can come from the way color is represented within pixel data

values. Monochrome images simply use one number to indicate the luminance

of the sample. [1] In order to represent color within an image several values are

used. There are several formats used to represent color, the two most common

being RGB and Luminance/Chrominance, which both employ three-value pixel

representations.

The RGB format represents a colored image in three separate parts. Each of

the three samples represent the same image, just the relative proportions of red,

green, and blue for each given pixel. [1] These are primary colors so any color or

shade can be produced by a combination of red, green, and blue intensities. This

is known as additive coloring.

The other most commonly used format is luminance(Y), along with two

chrominance components (Cr and Cb). Cr and Cb represent the chrominance,

or color difference within the sample. Actually there are three components to

chrominance, Cr, Cb, and Cg for red, blue, and green chrominance. However,

Cg can be derived from Y, Cr, and Cb. Thus only two components need be

compressed as the image translator can infer the third based upon the other two.

The two chrominance values make up a two-dimensional vector, where the phase

gives the hue, and the magnitude gives color saturation. Chrominance is the

color quality of light defined by its wavelength.

Using luminance and chrominance has major advantages for compression in

comparison to RGB. Most importantly luminance and chrominance values are
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separated rather than being incorporated in the same value such as RGB. RGB

includes both values in each respective color. As the human visual system is less

sensitive to color, the chrominance values can be further reduced in compression

techniques while not severely altering the image as seen by a human observer.

Luminance values alone can recreate an accurate monochrome image.

1.8 JPEG Compression

JPEG compression is defined as a lossy coding system which is based on the

discrete cosine transform. However, there are several extensions to the JPEG

algorithm to provide greater compression, higher precision, and can be tailored

to specific applications. [3] It can also be used as a lossless coding system that

may be necessary for applications requiring precise image restoration. JPEG has

four defined extension modes: sequential DCT based, progressive DCT based,

lossless, and hierarchical mode.

1.8.1 Sequential DCT Based

The sequential DCT based mode of operation comprises the baseline JPEG algo-

rithm. This technique can produce very good compression ratios, while sacrificing

image quality. The sequential DCT based mode achieves much of its compres-

sion through quantization, which removes entropy from the data set. Although

this baseline algorithm is transform based, it does use some measure of predic-

tive coding called the differential pulse code modulation (DPCM). After each

input 8x8 block of pixels is transformed to frequency space using the DCT, the

resulting block contains a single DC component, and 63 AC components. The

DC component is predictively encoded through a difference between the current
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DC value and the previous. This mode only uses Huffman coding models, not

arithmetic coding models which are used in JPEG extensions. This mode is the

most basic, but still has a wide acceptance for its high compression ratios, which

can fit many general applications very well.

1.8.2 Progressive DCT Based

Progressive DCT based JPEG compression actually uses two complimentary cod-

ing methods. [9] The goal of this extension is to display low quality images during

compression which successively improve. The first method for such a technique

is known as spectral-selection. This implies that data is compressed in bands.

The first band contains DC components and a very few AC components to get

an image that is somewhat discernable. The second method employed is known

as successive approximation. This method at first will grossly quantize the coeffi-

cients after the DCT, which will result in a small data set, which will incur large

amounts of blocky artifacts during decompression. The following scans will con-

tain information about the difference between the quantized and non-quantized

coefficients, using finer quantization steps. This will allow the image to slowly

come into focus during decompression. Again, this method is used in applications

where these features are desired.

1.8.3 Lossless Mode

Quite simply, this mode of JPEG experiences no loss when comparing the source

image, to the reproduced image. This method does not use the discrete cosine

transform, rather it uses predictive, differential coding. As it is lossless, it also

rules out the use of quantization. This method does not achieve high compression

ratios, but some applications do require extremely precise image reproduction.
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1.8.4 Hierarchical Mode

The hierarchical JPEG extension uses a multi-stage compression approach, with

prediction, and can use the encoding methods from the progressive, sequential

or lossless modes of operation. The strategy is to down sample the image in each

dimension. Then code this data set using one of the three methods discussed,

lossless, sequential, or progressive. The resulting encoded data stream is to be

decoded, and up-sampled to recreate the source image. Then the process encodes

the difference between the recreated image and the source. This process can be

repeated multiple times.
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2 Baseline JPEG Compression

The baseline JPEG compression algorithm is the most basic form of sequential

DCT based compression. By using transform coding, quantization, and entropy

coding, at an 8-bit pixel resolution, a high-level of compression can be achieved.

However, the compression ratio achieved is due to sacrifices made in quality.

The baseline specification assumes that 8-bit pixels are the source image, but

extensions can use higher pixel resolutions. JPEG assumes that each block of

data input is 8x8 pixels, which are serially input in raster order. Similarly, each

block is sequentially input in raster order.

Baseline JPEG compression has some configurable portions, such as quan-

tization tables, and Huffman tables, which can individually be specified in the

JPEG file header. By studying the source images to be compressed, Huffman

codes and quantization codes can be optimized to reach a higher level of com-

pression without losing more quality than is acceptable. Although this mode of

JPEG is not highly configurable, it still allows a considerable amount of com-

pression. Furthermore compression can be achieved by subsampling chrominance

portions of the input image, which is a useful technique playing on the human

visual system.

2.1 Level Shift

In order to make the data fit the discrete cosine transform, each pixel value is

level shifted by subtracting 128 from its value. The result of this is 8-bit pixels

that have the range of -127 to 128, making the data symmetric across 0. This is

good for DCT as any symmetry that is exposed will lead toward better entropy
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compression. Effectively this shifts the DC coefficient to fall more in line with

value of the AC coefficients. The AC coefficients produced by the DCT are not

affected in any way by this level shifting.

2.2 Discrete Cosine Transform

The discrete cosine transform is the basis for the JPEG compression standard.

Ahmed, Natarajan, and Rao originally proposed use of the DCT in 1974, and

it has become the most popular transform for image and video coding.[1] Many

compression techniques take advantage of transform coding as it decorrelates

adjacent pixels from the source image. For JPEG, this allows for efficient com-

pression by allowing quantization on elements that are less sensitive. The DCT

algorithm is completely reversible making this useful for both lossless and lossy

compression techniques.

The DCT is a special case of the well known Fourier transform. Essentially

the Fourier transform in theory can represent a given input signal with a series

of sine and cosine terms. The discrete cosine transform is a special case of the

Fourier transform in which the sine components are eliminated.[4] For JPEG, a

two-dimensional DCT algorithm is used, which is essentially the one-dimensional

version evaluated twice. By this property there are numerous ways to efficiently

implement a software or hardware based DCT module.[1] The DCT is operated

two dimensionally taking into account an 8 by 8 block of pixels. The resulting

data set is an 8 by 8 block of frequency space components, the coefficients scaling

the series cosine terms, known as basis functions. The first element at row 0

and column 0, is known as the DC term, the average frequency value of the

entire block. The other 63 terms are AC components which represent the spatial
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frequencies that compose the input pixel block, by scaling the cosine terms within

the series.

There are two useful products of the DCT algorithm. First it has the ability

to concentrate image energy into a small number of coefficients. Second, it mini-

mizes the interdependencies between coefficients.[1] These two points essentially

state why this form of transform is used for the standard JPEG compression

technique. By compacting the energy within an image, more coefficients are left

to be quantized coarsely, impacting compression positively, but not losing qual-

ity in the resulting image after decompression. Taking away inter-pixel relations

allows quantization to be non-linear, also affecting quantization positively. DCT

has been effective in producing great pictures at low bit rates and is fairly easy

to implement with fast hardware based algorithms.[3]

Transform Coding

Transform coding is widely used among compression algorithms. By taking im-

ages from the spatial domain to the frequency domain, it makes the data more

amenable to compression.[1] Different techniques in transform coding yield dif-

ferent results. Some have exceptional performance at the cost of computational

complexity. Others are easy to compute, but lose in the compression aspect. For

instance, a well known transform is the Karhunen-Loeve-Hotelling transform.

This method gives the best performance by compacting energy efficiently into

a minimal coefficient set. However, this technique is computationally inefficient

especially during the reverse transform.[1]

The DCT is one of many transform functions that is widely used among im-

age compression algorithms. This particular one was chosen for its ability to

decorrelate image pixels within the spatial domain, as well as being an orthogo-
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nal transform. An orthogonal transform such as the DCT has the good property

that the inverse DCT can take its frequency coefficients back to the spatial do-

main at no loss. However, implementations can be lossy due to bit limitations,

especially apparent in those algorithms in hardware. The DCT as determined

by Ahmed, Natarajan, and Rao was discovered to be particulary close the KLH

transform, in terms of performance.[1] The DCT does win in terms of compu-

tational complexity as there are numerous studies that have been completed in

different techniques for evaluating the DCT.

The discrete cosine transform is actually more efficient in reconstructing a

given number of samples, as compared to a fourier transform. By using the

property of orthogonality of cosine, as opposed to sine, a signal can be periodically

reconstructed based on a fewer number of samples. Any sine based transform is

not orthogonal, and would have to take fourier transforms of more numbers of

samples to approximate a sequence of samples as a periodic signal. As the signal

we are sampling, the given image, there is actually no real periodicity. If the

image is run through a fourier transform, the sine terms can actually incur large

changes in amplitude for the signal, due to sine not being orthogonal. DCT will

avoid this by not carrying this information to represent the changes.[2]

Basis Functions

The DCT is a one dimensional process that has 8 basis functions, which represent

the frequency domain. Each basis function is the pixel pattern that results when

that particular DCT coefficient is set to its maximum value and all the other

coefficients are set to zero.[2] The DCT essentially correlates the input image

with each of the basis functions. In the case of JPEG, a two-dimensional DCT

is used, which correlates the image with 64 basis functions, shown in figure 2.1.
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At this point the transform has taken the input image and changed it into values

within that scale each of the basis functions, to represent the input image. In

the frequency domain, the new frequency values are highly separable, and can

be quantized more efficiently without losing the spatial correlations that would

be susceptible to the human visual system.

Figure 2.1: DCT Basis Functions
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2.3 Zigzag Scanning

The zigzag process is an approximate ordering of the basis functions from low

to high spatial frequencies. This process will give more compression by putting

more order in the entropy.[2] Essentially our lower-frequency components, which

describe the gradual luminance changes, are more important to the human vi-

sual system than the high frequency changes. By ordering the more important

coefficients in the beginning of the 8x8 block, we can expect more runs of zeros

later after quantization, toward the end of the 8x8 block. This will aid in further

compression in the entropy encoding that will be discussed later.

2.4 Quantization

Quantization is an extremely important step in the JPEG compression algo-

rithm, as it removes a considerable amount of information, thus reducing the

entropy in the input data stream. Unfortunately, quantization is irreversible

making Baseline JPEG lossy.[6] Quantization alone, is essentially a lossy com-

pression technique. However, quantization does benefit the compression process,

regardless of the lossy artifacts that are produced. The high frequency AC co-

efficients typically will become zero, which aids in entropy coding. Quantization

is intended to remove the less important components to the visual reproduction

of the image.[1]

Baseline JPEG allows for custom quantization tables to be defined within the

encoded file headers. The quantization tables can be linear or non-linear. How-

ever, quantization is most effective when less important elements are quantized

more coarsely. Larger quantization values will result in visual artifacts. Non-zero

AC coefficients after quantization are worse for compression, but will suppress
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blocking artifacts in the reconstructed image. Blocking artifacts indicate high

spatial frequencies caused by an absence of AC coefficients.[6] Essentially, quan-

tization, when used effectively, will result in high compression, with minimal loss

in quality.

Types of Quantizers

Quantizers can either be linear or non-linear. Linear quantization is when input

values map to a set of evenly distributed output values. This is adequate when

a high level of precision is required across the entire range of possible input

values.[1] Non-linear modes treat each input value differently.

Scale Factor

The scale factor is often a main parameter to control image quality and com-

pression in an image codec.[1] The change in the factor will adjust the number

of steps in the resulting quantized value. Larger quantization steps will lead to

greater distortion and a smaller resulting data set. The smaller the steps will

distort less, but will create a larger resulting data set.[6]

Tables

Tables essentially determine the quality of the output image. Fortunately, in the

baseline JPEG algorithm, custom tables are allowed as long as they are defined

in the compressed JPEG file headers. The tables should take into account that

the human visual system is less sensitive to amplitude errors at higher frequency

coefficients. Thus, those should be quantized coarsely.[2] For better performance,

different tables are used for quantizing luminance and chrominance data sets.

This is because the human visual system is more sensitive to brightness changes,

18



rather than color difference. The DCT process concentrates the energy of the

data set into the upper left hand corner coefficients of the 8x8 block, and the

quantization matrix will emphasize this.[2]

2.5 DC Differential Coding

To further add to the compression sequence, a process called differential pulse

code modulation, or DC differential coding is used to reduce the entropy of the

data set. Essentially, this process allows the first DC value of the first block to

be passed through to the entropy coding module. Afterward, the value passed is

a difference between the current block DC value and the previous block. This is

done in raster order throughout all blocks of the image.

Adjacent blocks in a given image contain a high degree of similarity in both

color and luminance. This makes the DC differential coding perform in a better

way, by reducing more entropy in the data stream. After the first block, the

DC terms after the difference module, will become zero or close to zero in many

cases. This simple step actually adds to the compression substantially. Much

like quantization, this step is used to reduce entropy in the data stream.

DIFF = DCi −DCi−1 (2.1)

2.6 Entropy Coding

Entropy is a measure of disorder and unpredictability. The degree of entropy

can be used as a measure of the information carried by the message.[2] Up to
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this point the input image has run through the DCT process, followed by zigzag-

ging to approximately organize the data stream with more entropy toward the

beginning of the stream. Then this stream was quantized, and run through the

DC differencing in an effect to reduce entropy in the data stream. All of these

processes both add to compression, and more importantly, make the data stream

ready for entropy coding.

2.6.1 Run Length Coding

The first step in entropy coding is known as run length coding. This is a simple

thought that is accomplished by assigning a code, run length and size, to every

non-zero value in the quantized data stream. The run length is a count of zero

values before the non-zero value occurred. The size is a category given to the

non-zero value which is used to recover the value later. The DC value of the

block is omitted in this process. Additionally, with every non-zero value a mag-

nitude is generated which determines the number of bits that are necessary to

reconstruct the value. It will indicate possible values in the size category that

can be correct.[2] Run Length coding is a basic form of lossless compression.

Essentially, this process is a generalization of zero suppression techniques.

Zero suppression assumes that one symbol or value appears often in a data

stream.[5] After quantization the goal is that most high frequency components,

which are less important to the human visual system, are set to zero. The zigzag

process organized the sequence to have the lower frequency components which

are less likely to be zero in the first part of the data stream. This effectively has

organized the data to have larger runs of zeros, especially at the end, making the

run length coding very efficient.
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2.6.2 Huffman Coding

Huffman coding is a technique which will assign a variable length codeword to

an input data item. Huffman coding assigns a smaller codeword to an input that

occurs more frequently. It is very similar to Morse code, which assigned smaller

pulse combinations to letters that occurred more frequently. Huffman coding

is variable length coding, where characters are not coded to a fixed number of

bits.[5]

This is the last step in the encoding process. It organizes the data stream into

a smaller number of output data packets by assigning unique codewords that later

during decompression can be reconstructed without loss. For the JPEG process,

each combination of run length and size category, from the run length coder, are

assigned a Huffman codeword.

2.7 Error

The baseline JPEG algorithm is a lossy compression algorithm. It is expected

that decompression will lead to artifacts that are introduced by factors such as

error in the JPEG compression process. Starting with the discrete cosine trans-

form, the transform is in itself a lossless process. However, when implemented if

there are a finite number of bits used, such as in hardware, there will be trunca-

tion in the output data. Although this does not explain all artifacts and errors in

the reproduced image, it does add to the problem. Quantization adds a majority

of the error in the reconstructed image, as the process is irreversible. The DC

differential coding, and entropy coding are lossless as well.

Error in reconstructed images are mainly artifacts due to quantization. In

quantization we give up more information on high frequency components, which
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are less important to the human visual system, but still there is a non-zero

amount of information lost. Errors in images typically come in the form of blocky

artifacts around high frequency components, sharp edges, high amounts of color

difference, and areas of fine detail. Fortunately the baseline JPEG algorithm

still holds enough of the information to make the error between the source and

resulting images acceptable to the human eye.

2.8 JPEG File Construction

The JPEG header format is necessary for several reasons. The headers both

define the image type, size, quality, and more importantly it has information

that the decoder must use to correctly reproduce the image. The headers are

prescribed by the JPEG File Interchange Format specification, otherwise known

as JFIF. The format has several header sections, each of which begins with

a two-byte header, which is a unique symbol that will not be mistaken. The

file structure allows for multiple scans of entropy coded segments, each which

could use different Huffman tables, and such. There is a number of optional

components to the header associated with JPEG files. Figure 2.2 depicts the

minimum required set of headers which are used for Baseline JPEG.

Markers are used to define the header segments. A marker will always begin

with the first byte as 0xFF, and the second byte defines which type of marker

it is. The first byte is uniquely identified by the decoder as a header marker.

To ensure that a marker is not mistakenly created in the entropy encoded bit

stream, whenever a 0xFF is encountered, a byte 0 byte (0x00) is stuffed into the

data stream after 0xFF. This is known as zero stuffing. The minimum required

headers for Baseline JPEG Compression are shown in table 2.1.
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Figure 2.2: High Level File Structure

Marker Symbol Description

0xFFD8 SOI Start of Image Marker

0xFFE0 APP0 Application Specific Marker

0xFFDB DQT Define Quantization Table Marker

0xFFC0 SOF Start of Frame Marker

0xFFC4 DHT Define Huffman Table Marker

0xFFDA SOS Start of Scan Marker

0xFFD9 EOI End of Image Marker

Table 2.1: JPEG File Markers
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2.8.1 Application Specific Data Header

The application specific data header, shown in figure 2.3, is used to define that

this file is compliant to the JPEG File Interchange Format, and gives some

specific image details. This header is useful as it gives a format that can allow

the JPEG bitstreams to be exchanged between a wide variety of platforms and

applications. Additionally, a thumbnail image can be defined and included in

this header, but this is not a requirement of the Baseline JPEG specification.

Figure 2.3: Application Specific Header

APP0 Header - 2 Bytes

Application specific marker APP0, 0xFFE0. This uniquely defines the applica-

tion specific header.

Length - 2 Bytes

Total Length of header including two bytes used to specify length, but does not

include header APP0.

Application Identifier - 5 Bytes

Specifically identifies JFIF through ASCII hex codes, 0x4A46494600.
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Version Identifier - 2 Bytes

Specifies major and minor version numbers for JFIF, currently version 1.01

(0x0101).

Density Units - 1 Byte

Specifies units used to give pixel densities in the following entries. 0 signifies

density given in pixels. 1 denotes density given in dots per inch. 2 specifies

density given in dots per cm.

X Density - 2 Bytes

Horizontal pixel density in units specified.

Y Density - 2 Bytes

Vertical pixel density in units specified.

X Thumbnail

If a thumbnail is defined in this header segment, this specifies the horizontal pixel

count of the thumbnail.

Y Thumbnail

If a thumbnail is defined in this header segment, this specifies the vertical pixel

count of the thumbnail.

RGBn - 3n Bytes

24-bit RGB values given for thumbnail. (n) is given as X thumbnail * Y thumb-

nail. If X or Y Thumbnail entries are 0, this section is not necessary.
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2.8.2 Define Quantization Table Header

The define quantization table header segment, shown in figure 2.4, is used to

define both a quantization table for luminance components and chrominance

components. This marker is only used in DCT based JPEG algorithms.

Figure 2.4: Define Quantization Table Segment

DQT Header - 2 Bytes

Define quantization table marker DQT, 0xFFDB. This uniquely defines the quan-

tization table header segment.

Length - 2 Bytes

Length of quantization definition segment including the 2-byte length specifica-

tion, but not including the two byte marker DQT.
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Table Definition - Element Precision - 4 bits

For each table definition in this header segment, this defines the element precision.

0 = 8 bit precision, 1 = 16-bit precision.

Table Definition - Table Identifier - 4 bits

This gives each table definition a unique identifier. The decoder will use this info

to apply the correct quantization table to the decoded data.

Table Definition - Quantization Element

There will be 64 elements defined per table, given in the precision specified above.

Next Table Definition

The next table definition follows the same format as the first definition, but

will be assigned a different identifier, potentially different precision, and likely

different quantization elements.

Tables

The quantization tables used for baseline JPEG compression can be customized,

but there are prescribed tables in Annex K of Recommendation T.81, from the In-

ternational Telecommunications Union. These tables for luminance and chromi-

nance are shown in tables 2.2 and 2.3 respectively.
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16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Table 2.2: Luminance Quantization Table

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

Table 2.3: Chrominance Quantization Table
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2.8.3 Frame Header Segment

SOF is the start of frame marker, which is unique for each type of JPEG im-

plementation. This header segment defines parameters that apply to all scans

within the frame.

Figure 2.5: Start of Frame Header Segment

SOF Marker - 2 Bytes

The start of frame marker defined by the unique two byte segment 0xFFC0. This

marker actually has several flavors which specify start of frame for the different

modes of JPEG operation.

Length - 2 Bytes

This field defines the length for the frame header in bytes. It includes the 2 bytes

used to define the length, but not the two bytes used for the marker.

Precision - 1 Byte

Defines the sample precision used for this type of JPEG compression algorithm.

For baseline, this is 8-bit, specified by the value 0x08.
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Dimension Y - 2 Bytes

Defines the aspect ratio in number of rows. The vertical aspect ratio.

Dimension X - 2 Bytes

Defines the number of samples per row. The horizontal aspect ratio.

Components - 1 Byte

Defines the number of components in this frame. This is typically 1 for grayscale

images and 3 for color images, as we have luminance, and two chrominance

components in each color scan.

Component Identifer - 1 Byte

This defines an identification number for this frame component that is going to be

specified. The following entries relate to this component identification, including

the quantization table identifier.

Horizontal Sampling - 4 bits

This applies to the component being specified, but can be used to give a factor

which states a 1:1, 2:1, or other sampling factor. This is useful for chrominance

components which can be subsampled to create a smaller data set to compress.

Vertical Sampling Factor - 4 bits

This applies to the component being specified, but can be used to give a factor

which states a 1:1, 2:1, or other sampling factor. This is useful for chrominance

components which can be subsampled to create a smaller data set to compress.
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Quantization Table Selector - 1 Byte

Defines which quantization table will be used for this component. These were

defined in the define quantization table header segment.

2.8.4 Huffman Table Definition Segment

DHT is the marker for the define Huffman table segment of the header, as shown

in figure 2.8.4. This segment will define each component of the Huffman table

for the particular frame components that are used. Huffman coding efficiency

can be improved with custom tables, which are allowed to be specified within

this header segment.

Figure 2.6: Define Huffman Table Segment

Define Huffman Table Header - 2 Bytes

Defines the Huffman table header segment uniquely with the marker DHT (0xFFC4).

This segment will define all of the values that make up the Huffman codeword

tables.
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Length Definition - 2 Bytes

This defines the length of the Huffman table segment of the headers. It is a length

in bytes, including the 2 bytes used for the length definition, and not including

the two byte marker DHT.

Table Class - 4 bits

This defines the type of table, 1 for AC or 0 for DC.

Table Identification - 4 bits

This defines an identification for the table, 0 or 1. There will be two tables

for luminance components, one for DC and one for AC. Similarly, the chromi-

nance components together have two tables, one for AC and one for DC. Further

elaborate table definitions can be used in custom applications.

Number of Huffman codes of Length i - 1 Byte

There are 16 length categories consisting Huffman codes. This defines the number

of codes within category i.

Value Associated with Huffman Code - 1 Byte

This has a definition associated with each Huffman code within each length

category. Each of these are the elements within the Huffman table.
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Huffman Tables

DC Luminance Huffman Coefficients

Run/Size Code Length Code Word

0 2 00

1 3 010

2 3 011

3 3 100

4 3 101

5 3 110

6 4 1110

7 5 11110

8 6 111110

9 7 1111110

10 8 11111110

11 9 111111110

Table 2.4: DC Luminance Huffman Coefficients

DC Chrominance Huffman Coefficients

Run/Size Code Length Code Word

0 2 00

1 2 01

2 2 10

3 3 110

Continued on the next page.
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DC Chrominance Huffman Coefficients

Run/Size Code Length Code Word

4 4 1110

5 5 11110

6 6 111110

7 7 1111110

8 8 11111110

9 9 111111110

10 10 1111111110

11 11 11111111110

Table 2.5: DC Chrominance Huffman Coefficients

AC Luminance Huffman Coefficients

Run/Size Code Length Code Word

0/0 (EOB) 4 1010

0/1 2 00

0/2 2 01

0/3 3 100

0/4 4 1011

0/5 5 11010

0/6 7 1111000

0/7 8 11111000

0/8 10 1111110110

0/9 16 1111111110000010

Continued on the next page.
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AC Luminance Huffman Coefficients

Run/Size Code Length Code Word

0/A 16 1111111110000011

1/1 4 1100

1/2 5 11011

1/3 7 1111001

1/4 9 111110110

1/5 11 11111110110

1/6 16 1111111110000100

1/7 16 1111111110000101

1/8 16 1111111110000110

1/9 16 1111111110000111

1/A 16 1111111110001000

2/1 5 11100

2/2 8 11111001

2/3 10 1111110111

2/4 12 111111110100

2/5 16 1111111110001001

2/6 16 1111111110001010

2/7 16 1111111110001011

2/8 16 1111111110001100

2/9 16 1111111110001101

2/A 16 1111111110001110

3/1 6 111010

3/2 9 111110111

Continued on the next page.
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AC Luminance Huffman Coefficients

Run/Size Code Length Code Word

3/3 12 111111110101

3/4 16 1111111110001111

3/5 16 1111111110010000

3/6 16 1111111110010001

3/7 16 1111111110010010

3/8 16 1111111110010011

3/9 16 1111111110010100

3/A 16 1111111110010101

4/1 6 111011

4/2 10 1111111000

4/3 16 1111111110010110

4/4 16 1111111110010111

4/5 16 1111111110011000

4/6 16 1111111110011001

4/7 16 1111111110011010

4/8 16 1111111110011011

4/9 16 1111111110011100

4/A 16 1111111110011101

5/1 7 1111010

5/2 11 11111110111

5/3 16 1111111110011110

5/4 16 1111111110011111

5/5 16 1111111110100000

Continued on the next page.
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AC Luminance Huffman Coefficients

Run/Size Code Length Code Word

5/6 16 1111111110100001

5/7 16 1111111110100010

5/8 16 1111111110100011

5/9 16 1111111110100100

5/A 16 1111111110100101

6/1 7 1111011

6/2 12 111111110110

6/3 16 1111111110100110

6/4 16 1111111110100111

6/5 16 1111111110101000

6/6 16 1111111110101001

6/7 16 1111111110101010

6/8 16 1111111110101011

6/9 16 1111111110101100

6/A 16 1111111110101101

7/1 8 11111010

7/2 12 111111110111

7/3 16 1111111110101110

7/4 16 1111111110101111

7/5 16 1111111110110000

7/6 16 1111111110110001

7/7 16 1111111110110010

7/8 16 1111111110110011

Continued on the next page.
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AC Luminance Huffman Coefficients

Run/Size Code Length Code Word

7/9 16 1111111110110100

7/A 16 1111111110110101

8/1 9 111111000

8/2 15 111111111000000

8/3 16 1111111110110110

8/4 16 1111111110110111

8/5 16 1111111110111000

8/6 16 1111111110111001

8/7 16 1111111110111010

8/8 16 1111111110111011

8/9 16 1111111110111100

8/A 16 1111111110111101

9/1 9 111111001

9/2 16 1111111110111110

9/3 16 1111111110111111

9/4 16 1111111111000000

9/5 16 1111111111000001

9/6 16 1111111111000010

9/7 16 1111111111000011

9/8 16 1111111111000100

9/9 16 1111111111000101

9/A 16 1111111111000110

A/1 9 111111010

Continued on the next page.
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AC Luminance Huffman Coefficients

Run/Size Code Length Code Word

A/2 16 1111111111000111

A/3 16 1111111111001000

A/4 16 1111111111001001

A/5 16 1111111111001010

A/6 16 1111111111001011

A/7 16 1111111111001100

A/8 16 1111111111001101

A/9 16 1111111111001110

A/A 16 1111111111001111

B/1 10 1111111001

B/2 16 1111111111010000

B/3 16 1111111111010001

B/4 16 1111111111010010

B/5 16 1111111111010011

B/6 16 1111111111010100

B/7 16 1111111111010101

B/8 16 1111111111010110

B/9 16 1111111111010111

B/A 16 1111111111011000

C/1 10 1111111010

C/2 16 1111111111011001

C/3 16 1111111111011010

C/4 16 1111111111011011

Continued on the next page.
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AC Luminance Huffman Coefficients

Run/Size Code Length Code Word

C/5 16 1111111111011100

C/6 16 1111111111011101

C/7 16 1111111111011110

C/8 16 1111111111011111

C/9 16 1111111111100000

C/A 16 1111111111100001

D/1 11 11111111000

D/2 11 1111111111100010

D/3 16 1111111111100011

D/4 16 1111111111100100

D/5 16 1111111111100101

D/6 16 1111111111100110

D/7 16 1111111111100111

D/8 16 1111111111101000

D/9 16 1111111111101001

D/A 16 1111111111101010

E/1 16 1111111111101011

E/2 16 1111111111101100

E/3 16 1111111111101101

E/4 16 1111111111101110

E/5 16 1111111111101111

E/6 16 1111111111110000

E/7 16 1111111111110001

Continued on the next page.
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AC Luminance Huffman Coefficients

Run/Size Code Length Code Word

E/8 16 1111111111110010

E/9 16 1111111111110011

E/A 16 1111111111110100

F/0 (ZRL) 11 1111111001

F/1 16 1111111111110101

F/2 16 1111111111110110

F/3 16 1111111111110111

F/4 16 1111111111111000

F/5 16 1111111111111001

F/6 16 1111111111111010

F/7 16 1111111111111011

F/8 16 1111111111111100

F/9 16 1111111111111101

F/A 16 1111111111111110

Table 2.6: AC Luminance Huffman Coefficients

AC Chrominance Huffman Coefficients

Run/Size Code Length Code Word

0/0 (EOB) 2 00

0/1 2 01

0/2 3 100

0/3 4 1010

Continued on the next page.
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AC Chrominance Huffman Coefficients

Run/Size Code Length Code Word

0/4 5 11000

0/5 5 11001

0/6 6 111000

0/7 7 1111000

0/8 9 1111110100

0/9 10 1111110110

0/A 12 111111110100

1/1 4 1011

1/2 6 111001

1/3 8 11110110

1/4 9 111110101

1/5 11 11111110110

1/6 12 111111110101

1/7 16 1111111110001000

1/8 16 1111111110001001

1/9 16 1111111110001010

1/A 16 1111111110001011

2/1 5 111010

2/2 8 11110111

2/3 10 1111110111

2/4 12 111111110110

2/5 15 111111111000010

2/6 16 1111111110001100

Continued on the next page.
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AC Chrominance Huffman Coefficients

Run/Size Code Length Code Word

2/7 16 1111111110001101

2/8 16 1111111110001110

2/9 16 1111111110001111

2/A 16 1111111110010000

3/1 5 11011

3/2 8 11111000

3/3 10 1111111000

3/4 12 111111110111

3/5 16 1111111110010001

3/6 16 1111111110010010

3/7 16 1111111110010011

3/8 16 1111111110010100

3/9 16 1111111110010101

3/A 16 1111111110010110

4/1 6 111010

4/2 9 1111110110

4/3 16 1111111110010111

4/4 16 1111111110011000

4/5 16 1111111110011001

4/6 16 1111111110011010

4/7 16 1111111110011011

4/8 16 1111111110011100

4/9 16 1111111110011101

Continued on the next page.
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AC Chrominance Huffman Coefficients

Run/Size Code Length Code Word

4/A 16 1111111110011110

5/1 6 111011

5/2 10 1111111001

5/3 16 1111111110011111

5/4 16 1111111110100000

5/5 16 1111111110100001

5/6 16 1111111110100010

5/7 16 1111111110100011

5/8 16 1111111110100100

5/9 16 1111111110100101

5/A 16 1111111110100110

6/1 7 1111001

6/2 11 11111110111

6/3 16 1111111110100111

6/4 16 1111111110101000

6/5 16 1111111110101001

6/6 16 1111111110101010

6/7 16 1111111110101011

6/8 16 1111111110101100

6/9 16 1111111110101101

6/A 16 1111111110101110

7/1 7 1111010

7/2 11 11111111000

Continued on the next page.
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AC Chrominance Huffman Coefficients

Run/Size Code Length Code Word

7/3 16 1111111110101111

7/4 16 1111111110110000

7/5 16 1111111110110001

7/6 16 1111111110110010

7/7 16 1111111110110011

7/8 16 1111111110110100

7/9 16 1111111110110101

7/A 16 1111111110110110

8/1 8 11111001

8/2 16 1111111110110111

8/3 16 1111111110111000

8/4 16 1111111110111001

8/5 16 1111111110111010

8/6 16 1111111110111011

8/7 16 1111111110111100

8/8 16 1111111110111101

8/9 16 1111111110111110

8/A 16 1111111110111111

9/1 9 111110111

9/2 16 1111111111000000

9/3 16 1111111111000001

9/4 16 1111111111000010

9/5 16 1111111111000011

Continued on the next page.
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AC Chrominance Huffman Coefficients

Run/Size Code Length Code Word

9/6 16 1111111111000100

9/7 16 1111111111000101

9/8 16 1111111111000110

9/9 16 1111111111000111

9/A 16 1111111111001000

A/1 9 111111000

A/2 16 1111111111001001

A/3 16 1111111111001010

A/4 16 1111111111001011

A/5 16 1111111111001100

A/6 16 1111111111001101

A/7 16 1111111111001110

A/8 16 1111111111001111

A/9 16 1111111111010000

A/A 16 1111111111010001

B/1 9 111111001

B/2 16 1111111111010010

B/3 16 1111111111010011

B/4 16 1111111111010100

B/5 16 1111111111010101

B/6 16 1111111111010110

B/7 16 1111111111010111

B/8 16 1111111111011000

Continued on the next page.
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AC Chrominance Huffman Coefficients

Run/Size Code Length Code Word

B/9 16 1111111111011001

B/A 16 1111111111011010

C/1 9 111111010

C/2 16 1111111111011011

C/3 16 1111111111011100

C/4 16 1111111111011101

C/5 16 1111111111011110

C/6 16 1111111111011111

C/7 16 1111111111100000

C/8 16 1111111111100001

C/9 16 1111111111100010

C/A 16 1111111111100011

D/1 11 11111111001

D/2 16 1111111111100100

D/3 16 1111111111100101

D/4 16 1111111111100110

D/5 16 1111111111100111

D/6 16 1111111111101000

D/7 16 1111111111101001

D/8 16 1111111111101010

D/9 16 1111111111101011

D/A 16 1111111111101100

E/1 14 11111111100000

Continued on the next page.
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AC Chrominance Huffman Coefficients

Run/Size Code Length Code Word

E/2 16 1111111111101101

E/3 16 1111111111101110

E/4 16 1111111111101111

E/5 16 1111111111110000

E/6 16 1111111111110001

E/7 16 1111111111110010

E/8 16 1111111111110011

E/9 16 1111111111110100

E/A 16 1111111111110101

F/0 (ZRL) 10 1111111010

F/1 15 111111111000011

F/2 16 1111111111110110

F/3 16 1111111111110111

F/4 16 1111111111111000

F/5 16 1111111111111001

F/6 16 1111111111111010

F/7 16 1111111111111011

F/8 16 1111111111111100

F/9 16 1111111111111101

F/A 16 1111111111111110

Table 2.7: AC Chrominance Huffman Coefficients

The Huffman tables shown in figures 2.4, 2.6, 2.5, and 2.7, define the ta-

bles prescribed by Annex K of the JPEG specification given by the International
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Telecommunications Union. The tables defined prescribe the DC luminance Huff-

man table, AC luminance Huffman table, DC chrominance Huffman table, and

the AC chrominance Huffman table, respectively.

2.8.5 Start of Scan

The scan header segment, shown in figure 2.7, defines parameters for the entropy

coded data segment. The parameters define which quantization table to use,

which Huffman tables to use, and how many components are used in the scan.

For Baseline JPEG compression, this header will appear three times, one for

each of the image components, luminance, while the other two times occur for

the chrominance components.

SOS Header - 2 Bytes

This marker, SOS, uniquely defines the start of the scan. The scan it refers to is

the entropy coded data that is from the JPEG encoder. The start of scan marker

is defined by the hex 0xFFDA.

Figure 2.7: Start of Scan Segment
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Length - 2 Bytes

As in other header segments, the length is two bytes which define how long the

header segment is in bytes, including the 2 bytes used for specifying length, but

not including the 2-byte marker SOS.

Number of Scan Components - 1 Bytes

This defines how many image components are contained within the current scan.

This value is equal to the number of sets of scan specifications, which follow in

this header segment. JPEG allows for component interleaving, in which Y, Cr,

and Cb can be interleaved. For interleaving all 3 components, this byte would

be set to 3. For single component scan, such as in Baseline JPEG, this value is

set to 1.

Scan Component Selector - 1 Byte

This is the header for a specific component, which will be followed by that com-

ponent’s specified tables. This will match one of the components identified in

the frame header.

DC Entropy Coding Table Selector - 4 Bits

This code will specify which of the DC entropy tables, specified in the define

Huffman table segment are to be used by the decoder for the DC terms in this

component.

AC Entropy Coding Table Selector - 4 Bits

This code will specify which of the AC entropy tables, specified in the define

Huffman able segment are to be used by the decoder for the AC terms in this
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component.

Start of Spectral or Predictor Selection - 1 Byte

This is used for other DCT based algorithms for selecting the first DCT coefficient

to be coded in the scan. For the Baseline algorithm, all components, 0-63, of the

DCT are encoded, so this value is set to 0.

End of Spectral Selection - 1 Byte

This as defines the last DCT coefficient in the block to be coded in the scan. For

the Baseline algorithm, all components, 0-63, of the DCT are encoded, so this

value is set to 63.

Successive Approximation Bit Position High - 4 Bits

This specifies the point transform used in the preceding scan. It is set to zero

for the baseline algorithm. This is used for JPEG modes of operation such as

progressive.

Successive Approximation Bit Position Low - 4 Bits

This specifies the point transform used before coding the band of coefficients

specified by the spectral selection. It is set to zero for sequential DCT processes.

2.8.6 Entropy Coded Scan

Each entropy coded scan is preceded by a start of scan header segment. The scan

will either be the luminance portion, or one of the two chrominance portions.

Each entropy coded output of the encoder is variable length, composed of two

parts. The two components are placed adjacent to one another in a stream. The
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first portion of the data segment is the Huffman code which can be ranging in size

from 2 bits to 16 bits. The second portion, which occurs after the Huffman code,

is the magnitude value that comes from the run length encoder. The magnitude

value ranges from 0 to 11 bits. So overall each of the combined variable coded

output can be from 2 to 27 bits.

At any byte aligned boundary in the data stream, an occurrence of the 1

byte 0xFF can occur. As the 0xFF marker is specifically defined for a marker,

the JPEG specification calls for zero stuffing in the following byte. This means,

any occurrence of 0xFF in the entropy encoded data stream, will be followed by

the byte 0x00. The decoder knows to ignore the 0xFF00, as this constitutes an

illegal marker.

2.8.7 End Of Image

After the entropy encoded scan is complete. The end of image marker, EOI,

specified by 0xFFD9, is appended. This marker is unique to the JPEG file

format, and will be interpreted as end of image by the decoder.
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3 System Overview

The system architecture for this project has been divided into three main areas,

which can be seen in the high level block diagram in figure 3.1. The major por-

tions of this design are easily divided into three sections, PC, DSP, and FPGA.

The DSP and FPGA both reside on the PLogic PCI card, whereas the PC in-

terfaces to the PLogic PCI card over the PCI bus. Although these sections are

fairly separable, they interact heavily and are dependent on each other to fulfill

the baseline sequential JPEG compression algorithm. The FPGA, is the heart,

encoding input image data into a compressed output, used to create a JPEG

image file. The DSP handles transactions between the PC and FPGA core, pro-

viding the interface to take raw pixel inputs from an input file, and command

the FPGA to encode the input data. The DSP is also responsible to collect the

Figure 3.1: High Level System Overview
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output and assemble an entropy encoded bit stream for use in the JPEG file

structure. The PC is responsible for collecting input data, grabbing the output

data stream, and assembling the output file.

3.1 FPGA Overview

The FPGA is composed of two main systems. First is the FIFO interface to the

DSP. The FIFO interface is designed to allow for high speed data transactions

in an asynchronous environment. Additionally an interrupt source state

Figure 3.2: FPGA Core Overview
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machine is associated with the FIFO interface to assist in a sort of handshaking

between the DSP and FPGA. The second portion of the design is the JPEG

encoding core. The JPEG encoder core runs on a 25 MHz clock and is fully syn-

chronous, pipelined in stages, and employs parallel computation to help increase

throughput.

3.1.1 Module Design

Each of the JPEG modules is designed with a common interface. The motivation

behind this is to allow for dropping functional blocks into different codec designs.

Figure 3.3: Module Design
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Signal Active Edge In/Out Description

en High Input Global enable line to module.

rst Low Input Asynchronous active low reset.

dstrb High Input Data strobe active when data input.

din High Input Data input.

clk High Input Module clock.

doe High Output Data output enable active at data output.

dout High Output Data output.

Table 3.1: Module I/O

Additionally, it allows for ease of understanding how the blocks will communicate

together. The interface consists of a clock, data strobe, data input, data output,

and output data strobe, along with a global enable line. The enable line can

allow the module to remain in its state regardless of clocks and inputs, but for

this project, that effect is unused. The scheme consists of a clocked input which

applies the data strobe on the same clock edge as the valid data input. By this

scheme for streaming, or bursting, the data strobe is held high for every clock

that there is valid data at the input of the module.

Figure 3.4 shows the timing for data input to any of the JPEG modules

designed for this project. Enable (en) is an active high signal, data strobe (dstrb)

is active high, and reset (rst) is active low. As figure 3.4 shows, enable is active,

reset is inactive, and data strobe goes active in line with the positive edge of

the clock (clk). On that same clock edge that the data strobe, the data input is

active as well, allowing the module to latch the data.
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Figure 3.4: Module Input Timing

Figure 3.5 shows the data output of the module. The data output enable

signal (doe) goes active on the same positive edge of the clock that valid data is

output.

Figure 3.5: Module Output Timing
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3.1.2 JPEG Encoder Core

The JPEG encoder core consists of four main modules which, although sepa-

rable, are all necessary to work together to comply with the JPEG encoding

specification. The units employed are for discrete cosine transform, quantization

and rounding, differential pulse code modulation, and entropy coding. Some of

these modules are pipelined and some are comprised of parallel data paths. Each

module is fully synchronous, and are designed to have a common interface as

described in section 3.1.1. At the output of the final stage of JPEG encoding,

is a data stream assembler, which takes two variable length outputs from the

entropy coder and combines them in a common format understood by the DSP.

The baseline JPEG compression algorithm requires an 8-bit pixel resolution

for the data input. The other requirement is that the DCT based algorithm must

produce an entropy coded output consisting of two variable length words. This

data output must fit the JPEG file stream requirement. Quantization tables

and Huffman tables can be specified within the JPEG file headers, and can be

customized for better results based off of studies on a given data set. For this

project, the tables used were prescribed by Annex K of the JPEG specification.

The tables, stored as lookup tables that can easily be moved to block RAMs

included within the Xilinx FPGA, and can be changed to fit certain applications.

This exercise was left for future development.

Forward Discrete Cosine Transform

The forward discrete cosine transform module is designed with a high level of

parallelism to allow high throughput transformation of 8x8 blocks of pixels. The

DCT unit takes 8-bit inputs and can accept data in bursts or data streaming.

This in fact allows for a degree of freedom in how this module is to be used.
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Figure 3.6: DCT High Level

The forward discrete cosine transform equation is shown in equation 3.1. An

array of lookup tables were implemented such that the only unknown variable is

the current pixel, f(x,y). There are 64 separate lookup table modules designed,

each of which assume a fixed value for u and v, from (u,v) = (0,0) to (u,v) =

(7,7). Each of the 64 lookup tables have 64 elements, one for each value of x

and y, from (x,y) = (0,0) to (x,y) = (7,7). These lookup tables are all in parallel

of one another, which helps increase the throughput of each block. Each lookup

table is associated to a multiply-accumulate unit, which is used for computing

the summation term of equation 3.1.

F (u, v) =
1

4
CuCv

7∑

x=0

7∑

y=0

f(x, y) cos
(2x + 1)uπ

16
cos

(2y + 1)vπ

16
(3.1)

Cu, Cv =





1√
2

for u, v = 0

1 otherwise
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Figure 3.7: DCT Multiply Accumulate Module

There are 64 multiply accumulate modules working in parallel. At every data

input the x and y count is incremented to pull out the appropriate cosine term

for the multiplication. The data input is multiplied with the cosine term from

the lookup table one clock cycle later. This design is shown in figure 3.7. The

parallelism designed in the DCT unit allows for either bursty data inputs, or
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data inputs serially input every clock cycle. After 64 data inputs, 64 outputs are

produced in parallel.

Simulation Results

Number of clocks = 3 + 64 ∗ n (3.2)

Where n is the number of blocks.

The results of this module are quite impressive. As the DCT module over-

all has a high degree of parallelism, and can support streaming data inputs, a

high throughput can be achieved. Assuming the best possible scenario of inputs

streaming in constantly, a result of parallel outputs will be produced 67 clocks

after the first data input of the 64 element block. As more data is streamed in,

the next set of outputs is produced 64 clocks later. This scheme implies that

parallel outputs are produced 64 clocks after the first element of the block is in-

put, with an additional 3 clocks to fill the pipe on the first block, as described in

equation 3.2. Due to rounding in the cosine tables, and the multiply-accumulate

unit, the data outputs are off by at most 0.5 from the actual value. Fortunately

this error is masked in the quantization unit.

Zigzag Unit

The zigzag unit takes 64 parallel inputs from the DCT unit, on a positive edge,

active high data strobe signal. On this clock edge all 64 parallel inputs are stored

into an array memory. Every subsequent clock cycle will output one of the values,

in a zigzag order. The zigzag unit both serializes the DCT parallel output and

reorders the data in a zigzag fashion, as shown in figure 3.8.
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Figure 3.8: Zigzag Process

Quantization and Rounding

The quantization and rounding module will quantize each of the DCT zigzag coef-

ficients, and round the result to the nearest whole number. This unit is pipelined

with 12 stages, which supports 12-bit inputs, suitable for the DCT output. The

division takes place by using a signed by unsigned non-restoring divider. The

algorithm will initially use the dividend as the quotient, shift it and based on

the sign, will add or subtract the divisor. This process is repeated to produce

a quotient and remainder. The remainder is not important as the purpose of

quantization is to scale the data element to be on a specific quantization level.

The signed by unsigned non-restoring divider, at the lowest level is an un-

signed non-restoring divider. The module where this is instantiated has a shift

register which stores the sign of the what the quotient will be. After the sign is

applied to the quotient, the least significant bit is used to round the result. This

is because the radix point of the result lies one bit left of the least significant

bit. If the least significant bit is equal to one, the quotient is rounded up, and

similarly rounded down if the least significant bit is zero. This architecture is

depicted in figure 3.9.
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Figure 3.9: Quantization and Rounding

The design can accept data bursts or streaming data inputs. Once a valid

data input is signaled by the data strobe signal, the twelve stage pipe will advance

every clock until the output is produced. The data strobe signal is placed in its

own pipe which also advances at every clock signal. The data output enable

signal is produced at the end of the data strobe pipe. So when the quotient
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is completed and output, the data output enable signal is also active. Using

this design, streaming data can be accepted due to the pipeline, which advances

every clock cycle. This allows a new quotient to be computed in each of the pipe

stages. In the higher level module, the sign bit will align with the output of the

unsigned divider, and apply the correct sign. This works well as the input to the

module is from the DCT zigzag unit, which will output an element every clock.

In parallel to the quantization divide and round unit, are two quantization

tables stored statically in a memory array. The two modules are for luminance

and chrominance values, stored in a zigzag fashion, to correctly account for the

DCT elements that had already been zigzagged. An additional input of one

bit to the quantization module specifies whether to use data elements from the

luminance or chrominance tables. The divide and round unit provides a count

value, which specifies which value to lookup from the table and output. This

value is used as the divisor in the division calculation.

The output of the quantization module is an 11-bit number, with the radix

point occurring directly after the LSB. In contrary, the input 12-bit number from

the DCT unit has the radix point before the LSB. This is due to the rounding

that the unit does.

Results After each input, the output will be available 18 clock cycles later.

The throughput of this pipelined design is taken advantage of in the higher level

JPEG module. The DCT output produces 64 parallel outputs to the zigzag unit

on one clock cycle. Each subsequent clock cycle, an element is output from the

zigzag module, into the quantization unit. After the first element is input to the

clock cycle, the first output of the quantization unit is 18 clock cycles later. Each

clock after that gives another output from the pipeline, until the entire block of

64 elements is quantized.

64



Differential Pulse Code Modulation

The differential pulse code modulation, or DPCM, module is fairly straightfor-

ward. The module expects 64 sequential inputs, in either a streaming mode or

bursty. The module will take the first element, the DC offset term, and subtract

the DC term from the previous block from the new term. All AC values are

passed through. A counter internal to the module ensures that the DC differenc-

ing only occurs on the first element input to the module. This was shown earlier

in equation 2.5.

Entropy Coding

The entropy coding module consists of two interrelated modules, as shown in

figure 3.10. The run length encoder and the Huffman encoder modules are

packaged together as the outputs are variable length, and need to be output in

phase with one another. The data input initially goes to the run length encoder,

which is looking for runs of zeros in the stream of AC data elements. There are

two outputs of the run length encoder, one of which gets assigned a Huffman

codeword, and another which is assembled in line with the Huffman output.

The entropy coding unit is not predictable on when outputs will be produced.

The best case is to have only a DC term, and every AC term of the block is 0.

This would output only one piece of data from the run length encoder, which only

requires one Huffman code. There would be two outputs for the entropy unit, one

for the DC term, and then one for the AC run of zeros. Worst case there are no

zero terms in the entire block. Although this is worst for compression, it is best

for throughput. No zero components would result in the fastest computation,

as it would not have to calculate runs of zeros. The worst possible input would

result in a 74 clock cycles from the first input to the final output.
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Figure 3.10: Entropy Encoder

Run Length Encoding The run length encoder is a fairly simple concept

which looks for runs of zeros in the data stream. The run length encoder will

output an amplitude value, a size category for the amplitude, and a run length of

zeros. Every coefficient that equals zero, increments an internal counter, which
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counts the run of zeros. Every nonzero coefficient input to the run length encoder

will output a set of values. The run length value output specifies the number of

zeros which occurred in the data stream before the nonzero value.

The run length encoder design consists of two modules, one which calculates

the amplitude, size category, and an intermediate run length value, which may be

passed on to the other module. The size category and run length are each 4 bits,

and the amplitude output is 12 bits. The amplitude value is based on the data

input. If positive, the MSB is cut off, and stored as the amplitude output. If the

data input is negative, 1023 is added and stored as the amplitude output. The

size category is based on the absolute value of the data input. The size category

specifies how many bits from the LSB, are required to reproduce the original

data input. It is a confusing process, but simply put the size value will specify

the number of bits required to represent the original value. The amplitude is a

way to determine which of the values within the size category is the original data

element.

Quantization and zigzag preparation makes the data stream exceptionally

well fit for run length encoding. The data toward the end of the stream contains

less imporant AC coefficients which are heavily quantized and likely to contain

runs of zeros. As the long run of zeros at the end of the stream will likely exceed

16, which is the maximum value represented by the 4 bit run length output. This

is where the second module is used, the run length zero block detector. If there

are greater than sixteen zeros before the next nonzero element, the modules will

output a (run length, size) = (16, 0), and then output the nonzero value with

its size and run length (without the 16 previously specified). This module will

correctly output the end of block stream, when the remaining components are

zero with a (run length, size) = (0,0).
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Huffman Encoding The run length and size values from the run length en-

coder are input to the Huffman encoder and assigned a Huffman codeword. The

Huffman codewords are stored in four separate lookup tables, for AC and DC

components of luminance and chrominance. The appropriate lookup table is se-

lected based on inputs to the module. The Huffman module is arguably the most

simple module in this entire JPEG design. It will output the Huffman codeword,

1 clock cycle after the input, the output will be produced.

Output Formatting

The two important outputs of the entropy coding modules are the Huffman

codeword, and the run length amplitude output. The amplitude output is known

as the variable length integer, VLI. The Huffman module output a variable length

codeword, VLC. This combination of variable length components need to be

placed adjacent to one another in the entropy coded output stream. The variable

length codeword comes first, as it is required to find the size category to see how

many bits that follow in the data stream are required to recreate the amplitude

value. The 5 MSB of this output specify the size in bits of the entropy encoded

data, both the VLI and VLC. The output formatting procedure takes only 1

clock cycle.

Figure 3.11: Output Format
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3.1.3 Modular Addressing

As the JPEG design was modularized, there was a fair level of testability designed

into it, as shown in figure 3.12. Through the control register, the input and

output module can be selected. This was a very useful debugging tool. In fact,

the entire module can be bypassed if a specific address is set in the control

register.

Figure 3.12: Modular Addressing

3.1.4 Status and Control Registers

For visibility and controllability into the design, status and control registers were

added. The control register is a general purpose register that has numerous bits

that are used for enabling and disabling certain functions. Status registers are

used to represent the current state of the system.
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Address Input Output

3’b000 FDCT Entropy Encoder

3’b001 FDCT FDCT

3’b010 FDCT QNR

3’b011 QNR QNR

3’b100 QNR Entropy Encoder

3’b101 Entropy Encoder Entropy Encoder

3’b110 INVALID INVALID

3’b111 BYPASS BYPASS

Table 3.2: Modular Addressing Table

Control Registers

Figure 3.13: Encoder Control Register

Bit Position(s) Description

16 Luminance(0) / Chrominance(1)

15:13 Modular Address

12:0 Total of blocks input

Table 3.3: Encoder Control Register
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Figure 3.14: Interrupt Control Register

Bit Position Description

1 Enable Interrupt 4 (Read Interrupt)

0 Enable Interrupt 5 (Write Interrupt)

Table 3.4: Interrupt Control Register

Status Registers

Figure 3.15: Encoder Status Register

Bit Position(s) Description

4:2 Modular Address

1 Encoder End of Image

0 Encoder End of Block

Table 3.5: Encoder Status Register

71



Figure 3.16: Encoder Count Status Register

Bit Position(s) Description

31:19 Encoder Block Count

18:0 Encoder Input Count

Table 3.6: Encoder Count Status Register

Figure 3.17: FIFO Status Register

Bit Position(s) Description

7:6 Output FIFO Read State

5 Output FIFO Full

4 Output FIFO Empty

3 Output FIFO Ready for Read

2 Input FIFO Full

1 Input FIFO Empty

0 Input FIFO Ready for Write

Table 3.7: FIFO Status Register
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Figure 3.18: FIFO Address Register

Bit Position(s) Description

31:24 Output FIFO Write Address

23:16 Output FIFO Read Addresses

15:8 Input FIFO Write Address

7:0 Input FIFO Read Address

Table 3.8: FIFO Address Register

Figure 3.19: Interrupt Status Register

Bit Position(s) Description

28 Interrupt 4 Enable

27 Interrupt 5 Enable

26:19 Interrupt 4 Count

18:0 Interrupt 5 Count

Table 3.9: Interrupt Status Register
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3.1.5 FIFO Interface

The FIFO interface was designed for numerous reasons. First, the 100 MHz clock

on the external memory interface of the DSP, is out of phase from the FPGA 25

MHz clock. This causes issues of metastability when latching data into registers.

If a setup or hold time is violated, there is a potential for incorrect data being

input to the encoder. The second reason for a FIFO interface, is to allow for

streaming data as fast as possible into the encoder. As the FPGA clock is slower

than the DSP EMIF clock, there is the ability to write faster than the FPGA

JPEG encoder can accept data. Similarly, the DSP must read from the FPGA

JPEG encoder, while servicing writes. Keeping the writes ahead of the reads can

help performance by taking advantage of the pipelining in the design. Thus, the

valid data may build up in the FIFO, so when reads commence they can be read

in sequential clock cycles.

FIFO Structure

There are two FIFOs used in the design, one for writing to the JPEG encoder,

and one for reading from the JPEG encoder. Each FIFO has the same structure,

but each is wrapped in a different higher level module. The higher level module

is designed to help deal with the asynchronous interface to the DSP, for reading

from and writing to the FPGA.

The FIFO is composed of a 256x32 dual port Block RAM, built into the Xilinx

Virtex FPGA, located on the PLogic PCI card. There are several block RAMs

available for use, in configurable sizes, which can be instantiated by macros. The

FIFO design has an address pointer module, which keeps track of the read and

write addresses during transactions. These address pointers are used to produce

empty and full flags.
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Figure 3.20: FIFO Structure

The address pointer module will increment the pointer for a write, after a

write occurs. Similarly, the address will increment for reads, after a read cycle

completes. These addresses are directly connected to the dual port block RAM.

One port of this RAM is used for writing only, and the other is used for reading

only. When the write pointer is at address 255, the last of the FIFO, another write

will move the pointer back to address 0. Similarly for reads, this wraparound

occurs.

The flags module easily can tell if the FIFO is full or empty. For the empty

flag to be set active high, the addresses must be equal, otherwise, it is low,

meaning the FIFO is not empty. Detection of the FIFO being full is a little
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tricky as full would indicate the write pointer is 255 locations ahead of the read

pointer. With the wraparound from location 255 to location 0, a full state could

be achieved in two ways. First, if the read pointer is at address 0, and the write

pointer is at location 255. If a wraparound has occurred, then the write pointer

is potentially less than the read pointer. If it is less by 1, then we know that 255

levels are filled, thus requiring the full flag to be set active high. If 256 levels

were written to, the address pointers would be equal, which the logic designed

will show the FIFO is empty and not full. In order for ease of design, it was

decided to make the FIFO 255 levels deep rather than 256, which would require

more logic for determination of empty and full flags.

Input FIFO

The input FIFO is used for servicing writes to the JPEG encoder. As the DSP

to FPGA interface is asynchronous, some care needs to be taken to ensure each

write is correctly written to the FIFO. There are multiple ways errors can occur.

First, there can be metastability in the latching of data caused by setup and

hold times being violated. Asynchronously latching the data on the write enable

signal allows the data to be latched without worry of any metastability cases.

However, this data must be transferred to the synchronous portion of the design,

before another data element is written.

At the same time the data is asynchronously latched, a bit is toggled. A

synchronous register is in parallel with the asynchronous register. Along with

the synchronous register, there is a synchronous toggle bit. Every edge of the

FPGA clock, the toggle bits are compared. If the bits are not equal, then the

data is transferred from the asynchronous register into the synchronous register.

At this point the synchronous bit is then toggled. The data is then written to

the FIFO on the next active edge of the FPGA clock.
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Figure 3.21: Asynchronous Write State Machine

Output FIFO

The output FIFO is used to store data outputs from the JPEG encoder, until

they are read by the DSP. The reads are coming from an asynchronous interface

and due to this, there must be care taken to not violate the timing parameters

of the DSP. The read from the FIFO will take approximately one FPGA clock

cycle, which is too long for the DSP timing to correctly adjust for. A read state

machine was designed into the output FIFO to take care of this problem.

Every time the output FIFO is not empty, one data element is read and

stored in a register, which can be accessed via the external memory bus. A

synchronous toggle bit is associated with the read register. When the read from

the DSP commences, an asynchronous toggle bit is inverted. At the next edge

of the FPGA clock, the asynchronous toggle bit is compared to a synchronous
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Figure 3.22: Asynchronous Read State Machine

toggle bit, and if equal, then a new element is read from the FIFO into the read

register, as long as the FIFO is not empty.

3.1.6 Interrupt Driven Interface

In order to make best use of the FIFO interface, it would be important to get data

to and from the FPGA as fast as possible. Of course, as fast as the asynchronous

interface state machines on the input and output FIFOs will allow. The two

ways explored in this design were using a programmed I/O method from the

DSP, and the other is to utilize the DMA controller within the DSP. The DMA

controller can be interrupt driven to transfer data to and from the DSP or other

addressable locations.

The read state machine associated with the output FIFO produces a ready

78



for read signal, which when active states that another read can commence, and

the current data has been read from the FIFO into the temporary read register.

Similar to the ready for read signal, the write state machine associated with

the input FIFO will generate a ready to write signal after the previous write is

transferred into the FIFO.

Using a programmed I/O approach, the DSP will have to poll status registers

in between reads and writes to make sure a valid read or write can safely occur.

This process is very costly as after every read or write the processor must be

involved. If using the DMA approach, with interrupts driving the DMA, the

processor intervention can be avoided. There is an interrupt control register

which can enable external interrupts 4 and 5, which correspond to the DMA

read channel and DMA write channel respectively.

The two state machines associated with the input and output FIFOs are used

to initiate interrupts. The input FIFO will issue a ready for write signal, which if

interrupt 5 is enabled, will generate an interrupt on that channel. If the output

FIFO ready for read signal is active, and interrupt 4 is enabled, an interrupt is

generated on that channel.

The two external interrupts are assigned priorities. The read interrupt, is

given the higher priority interrupt as there will be far less reads than writes. It

is possible if writes were given higher priority, that the reads would never be

serviced, and the FIFO would run the risk of being overfilled, which could result

in lost data.
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3.2 DSP Overview

The DSP program uses a real time operating system supported by the DSP called

DSP BIOS. This realtime operating system has configurable interrupt channels

with interrupt service routines, a configurable 4 channel DMA structure, as well

as several other features that were not all used in this design. Some structures

were defined to store status and control for the imaging functions that interact

with the FPGA for configuration and for running the compression sequence.

3.2.1 DSP FIFO Server

The PC is able to communicate with the DSP over the PCI bus. There is a set of

FIFOs on each side of the PCI bus which interact with each other for transferring

commands and data between the PC and DSP. The PC can issue two commands

via the FIFOs. The first command is called “put record”, which allows the PC

to place an specific code which defines an action, with arguments. The second

command is called “get response”, which attempts to read a response from the

DSP via the other FIFO.

The “put record” commands have several valid action codes, some of which

give a response, which the PC will get by issuing the “get response” command.

There were numerous action and response codes used in this project, however,

the ones in the tables listed are the only ones used for actual operation of the

JPEG encoder design. Upon issuing an action code, there may be one to several

arguments along with it. The arguments are used, for instance, to specify an

element of a register to read or to modify.

Some action codes require a response code to be sent afterward to read the

FIFO from the DSP to get the requested information. The response packets may
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Action Code Description

ACT RESET 1 Complete system reset, FPGA, and DSP structures.

ACT WRCTRL 3 Write to image control structure,

update FPGA control structure.

ACT ENCODE 6 Run encode image function.

Assemble FPGA output into data stream.

ACT GETCTRL 8 Request read of image control structure.

ACT GETSTAT 14 Request read of status registers.

ACT TESTBLOCK 15 Run various test functions, used in development.

ACT READFPGA 16 Read 1 word from FPGA, display on UART.

ACT READADDR 18 Read FPGA FIFO addresses, display on UART.

Table 3.10: DSP FIFO Server Action Codes

include numerous data elements which could be an element from a control or

status register, or data which gives information on the encoding process. If the

response packet is not received, or an incorrect response code is received, an error

is generated.

3.2.2 Action Codes

ACT RESET

This action code is to complete a full system reset. This includes giving a hard-

ware reset to the FPGA, re-initializing the DSP to PC FIFOs, clearing the image

status structures, and initializing 512KBytes of SDRAM.
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ACT WRCTRL

This action code is used to change a single coefficient in the image control struc-

ture. There are two arguments given when this action code is issued. The first

argument specifies the element within the structure to change. This is so a

pointer to the structure can be adjusted, such that the write will occur to the

correct element. The second argument is the data write into the control register

element. The final thing this action will do is update the control register on the

FPGA, with the new data written to the DSP control structure. This is followed

up by updating the FPGA control register by calling the function update creg().

ACT ENCODE

This action code is to run the FPGA encode function, using DMA control, which

is discussed later. The encode action has 3 arguments. The first and second

provide the image aspect ratio in pixels. The third argument provides the image

component type, either luminance or chrominance. These values are updated in

the control structure, and then the control register on the FPGA. This action

will first run a function called encodeImage(). A response is given to the PC

with the number of 32-bit words in the encoded data stream.

ACT GETCTRL

This action code will pass back the entire image control structure stored on the

DSP. This is representative of what is on the FPGA control register, and what

additional elements are used in configuring DSP portions of this design.
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ACT GETSTAT

This action will first read the FPGA status registers to update the DSP status

structure, and then it will pass back the entire status structure to the PC via a

response packet.

ACT TESTBLOCK

This action code is general purpose used for development purposes only. It

was used for debugging DMA transfers, using programmed I/O methods, and

SDRAM tests.

ACT READFPGA

This action will read one element from the FPGA address 0, which is the output

FIFO address. The output will be displayed across the UART. This function is

primarily used for debugging and development.

ACT READADDR

This action is used to read the FIFO address pointers for both the input and

output FIFO of the FPGA. The results are written across the UART. This action

was used for development purposes.

3.2.3 Response Codes

There are only few response codes used in this project. Each are used for retriev-

ing data regarding status, control, and

RSP IMGSTRUCT

This response code contains the entire image control structure in it’s packet.
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Response Code Description

RSP IMGSTRUCT 50 Response with image control structure.

RSP GETSTAT 52 Response with status coefficient requested.

RSP ENCODE 54 Response with number of 32-bit words in

the assembled image stream.

Table 3.11: DSP FIFO Server Response Codes

RSP GETSTAT

This response code contains the entire image status structure in its packet.

RSP ENCODE

This response gives the number of 32-bit words to read from SDRAM, after

encoding and the assembly of the image data stream.

3.2.4 Control Structures

The image control structure consists of 7 elements all of which will get set in the

FPGA control register, upon running a function called update creg(). Only five

of these elements were actually implemented in the FPGA. There is an entry for

quality factor, which is meant for scaling the quantization tables to finer or more

coarse values. This was not implemented in the FPGA, but can be added in the

future. The other element unused was a clock divide enable, which would instruct

the FPGA clock DLL to use a slower division of the FPGA 25MHz clock. This

ideally was for slowing down things to debug stages, but this proved unnecessary,

even during development.

The elements used, are pixel aspect ratio in x, pixel aspect ratio in y, the image
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type (luminance or chrominance), and two for selecting the module addresses for

input and output of the JPEG encoder.

3.2.5 Status Structures

The status structure contains 19 elements. These are all updated upon the

ACT GETSTAT action code being issued by the PC. Also, various programmed

I/O functions that were used for debugging, call this function. The elements in

this structure are listed in the table 3.12

3.2.6 External Memory Interface

The DSP external memory interface is where both the FPGA and SDRAM are

located. This memory interface shares a common bus amongst all the elements.

Each element is byte addressable across the memory bus. This means a single

byte can be written to if desired, but this has repercussions as the data bus is

32-bits wide. What is done for this project is to start at an address, and for each

successive write, the address is incremented by 4.

FPGA

The FPGA is located on the CE1 memory space of the DSP external memory

interface. The address is location 0x01400000, which translates to address 0

on the FPGA. Address 1 on the FPGA would be 0x01400004, and so on. The

address space extends from 0x01400000 onto 0x017FFFFF.

SDRAM

The SDRAM is located at address 0x02000000 for CE2, and another SDRAM is

located at address 0x03000000 for CE3. The CE3 memory space is unused for
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Element Description

0 Module address for testability in JPEG encoder.

Mirrors control register.

1 End of image, specified by JPEG encoder.

2 End of block, specified by JPEG encoder.

3 Number of blocks output of encoder.

4 Number of elements input to encoder.

5 Output FIFO read state machine state.

6 Output FIFO full flag.

7 Output FIFO empty flag.

8 Output FIFO ready for read.

9 Input FIFO full flag.

10 Input FIFO empty flag.

11 Input FIFO ready for write flag.

12 Output FIFO write address.

13 Output FIFO read address.

14 Input FIFO write address.

15 Input FIFO read address.

16 Interrupt enable flags for read and writes.

17 Number of interrupts generated on channel 4.

18 Number of interrupts generated on channel 5.

Table 3.12: DSP Status Structure Elements
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the JPEG project. The CE2 address space from 0x02000000 to 0x02FFFFFF, is

split in two, for source image pixel data, and for the encoded data stream. From

location 0x02000000 to 0x023FFFFF, the source data can be stored. Currently,

storing one 8-bit pixel per 32-bit location in SDRAM, there is still plenty of room.

Similarly, from location 0x02400000 to 0x02FFFFFF, the output data stream is

stored. The output data stream is continuous data across the 32-bit locations.

This provides more than enough room for a large output data stream.

3.2.7 Programmed I/O Interface

The programmed I/O interface functions were programmed mainly for debugging

and development purposes. However, there are a few functions that are called

from the FIFO server, and are still very useful in the actual mode of operation.

Programmed I/O methods are in fact slower than the DMA implementation

for reasons such as utilizing the processor rather than the DMA unit which is

separate, and having to run by polling status registers, rather than interrupt

driven.

Function - void write0 sdram()

This function is intended to clear out SDRAM. It was implemented early on in

development to ensure that only valid data from the current encoding procedure

is stored in SDRAM. This is done at system resets to ensure that SDRAM is

cleared prior to encoding processes.

Function - void write fpga(int addr, int data)

This function has two arguments given, for an address and for data to write. The

address supplied is for which location on the FPGA the data is to be written.
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Function Description

write0 sdram() Clear 512Kbytes of SDRAM

write fpga() Write a single 32-bit value to an FPGA address.

read fpga() Read a single 32-bit value from an FPGA address.

write mult fpga() Write an array to an FPGA address.

read mult fpga() Read multiple 32-bit words from the FPGA.

write src() Write a single 32-bit element to SDRAM addressed

from 0x02000000

read src() Read a single 32-bit element from SDRAM addresses

starting at 0x02000000.

write mult src() Write multiple 32-bit words to the SDRAM addresses

offset from 0x02000000.

read mult src() Read multiple 32-bit words to SDRAM address

offset from 0x02000000.

write enc() Write 1 32-bit word to an FPGA address.

read enc() Read 1 32-bit word from an FPGA address.

write mult enc() Write multiple 32-bit words to FPGA.

read mult enc() Read multiple 32-bit words from FPGA.

update status() Update DSP status structure, by reading FPGA

status registers.

update creg() Update FPGA control registers from DSP

control structure.

assemble image() Assemble data stream from variable length encoder

outputs

encode image() Encode image using DMA architecture.

Table 3.13: DSP Programmed I/O Functions
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Function - void read fpga(int addr, int *data)

This function has two arguments supplied, one for an address to read from, and

the other is a pointer to where to store the data. The address given is assumed

to be offset from the FPGA base address 0x01400000.

Function - void write mult fpga(int addr, int *data, int length)

This function has 3 arguments given. One is an address to write every value to.

The second argument is a pointer to the array of data to be written. The final

argument is how many data elements to write. Simply this function runs a loop

calling write fpga() a number of times specified by the length argument.

Function - void read mult fpga(int addr, int *data, int length)

This function has 3 arguments given. The first argument is the address from

which to read the values from the FPGA. This address is assumed to be offset

from the FPGA address 0x01400000. The second argument given is a pointer to

the array on which to write the data read from the FPGA. The third argument is

the number of data elements to read. This function simply runs the read fpga()

function in a loop a number of times specified by the third argument given,

length.

Function - void write src(int addr, int data)

This function has two arguments provided. The first is the address to write

to in the first half of SDRAM CE2 space, offset from 0x02000000. The second

argument is the data to write to that location.
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Function - void read src(int addr, int *data)

This function has two arguments given. The first is the address to read from in

SDRAM CE2 space, offset from 0x02000000. The second argument is a pointer

to the location where the data read will be stored.

Function - void write mult src(int addr, int *data, int length)

This function has three arguments provided. The first argument is the starting

address to write, offset from 0x02000000, SDRAM CE2 space. Each incremental

write increases to the next 32-bit location. The second argument given is a

pointer to the array of data to write into SDRAM. This function calls write src

in a loop, which will run a number of times specified by the third argument

length.

Function - void read mult src(int addr, int *data, int length)

This function has three arguments given. The first argument is the starting

address to write, offset from 0x02000000, SDRAM CE2 space. Each subsequent

read in this function will be incremented to the next 32-bit location in SDRAM.

The second argument is a pointer to the array of data to write to these locations.

This function will run a loop calling the read src() function a number of times

specified by the third argument length.

Function - void write enc(int addr, int data)

This function will write a 32-bit value to the second half of SDRAM CE2, offset

from address location 0x02400000. The first argument given is the address to

write to offset from that location. The second argument is the data to write.
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Function - void read enc(int addr, int *data)

This function is meant to read from the second portion of SDRAM CE2, offset

from the address location 0x02400000. The first argument given is the address

to read from, offset from that location. The second argument is a point to the

data to store the value read.

Function - write mult enc(int addr, int *data, int length)

This function is to write multiple values to the second half of SDRAM CE2, offset

from address 0x02400000. The first argument given in the starting address to

write to. Each subsequent write will increment by 4 bytes. The second argument

is a pointer the array of data to write. This function will run the write enc()

function in a loop a number of time specified by the third argument length.

Function - read mult enc(int addr, int *data, int length)

This function is to read multiple data elements from the second half of SDRAM

CE2, offset from address 0x02400000. The first argument given is the starting

address to begin reading. Each subsequent read will increment by 4-bytes from

the previous read address. The second argument is a pointer to the data array

to write to. This function runs the read enc() function in a loop a number of

times specified by the third argument length.

Function - void update status()

This function will poll the FPGA status registers to determine the current state

of the system. The status registers read are the encoder status register at location

1, the encoder counts register at location 2, the FIFO flags register at address 3,

the FIFO address pointer register at address 4, and the interrupt status register
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at register 5. These reads will update the DSP status structure described in

section 3.12.

Function - void update creg()

This function will use the DSP control register to update the FPGA control

register. The modular address, image type, and image block count values are

updated on the FPGA.

Function - int assemble image()

The purpose of this function is to assemble an image stream into a sequence of 32-

bit words stored into SDRAM CE2. Returned from this function is the number of

32-bit words in SDRAM that were used for this image stream. The function will

go through each variable length encoded data segment from the JPEG encoder

output, and find the size of the data output specified by the 5 most significant

bits. The size will determine how many bits to shift over a temporary 32-bit

word which is storing the stream. Once the size exceeds the 32-bit boundary of

the temporary integer, that 32-bit integer is written to SDRAM, the address is

incremented, and the rest of the entropy encoded data not yet in the bitstream is

appended to the next temporary integer being prepared to write. This function

executes in a loop based on a value from the DMA read structure. This function

will not work for programmed I/O methods for this reason. The value in the

DMA structure is the final address written to in SDRAM. This value is used to

determine how many reads should be done, until the entire stream is assembled.
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Function - int encode image()

This function will enable the two interrupts on the FPGA for driving the DMA

unit transfers. A semaphore is then posted to wait until the encoding is complete.

Once the DMA channel interrupt service routine posts a semaphore, signifying

completion of encoding and transferring data to SDRAM, the assemble image()

function is run. A time stamp is collected before interrupts are enabled, and

after the semaphore is posted. This value is returned, and signifies the number

of high resolution clocks it took to encode the image component.

3.2.8 DMA Interface

The DSP has a DMA controller in parallel with its core. The DMA unit can

operate on the external memory interface bus, to transfer data elements to and

from the DSP internal memory, or between external memory devices. Each of the

four DMA channels have nine level FIFOs associated to buffer memory transfers.

These channels can be configured to operate on a wide number of interrupts.

This works well for this design, allowing the external memory interrupts driven

by the FPGA to trigger memory transfers between the DSP and FPGA. Each of

these DMA channels labeled zero through three. These channels operate where

channel zero is highest priority for transfers, and channel three is lowest priority.

The DMA channels can be configured to increment the source and or desti-

nation address, within its configuration registers. These addresses can be con-

figured to increment based upon an element size for 8-bits to 32-bits. Otherwise

the address can be configured to remain static.

The DMA unit also has a transfer count register which keeps track of the

number of elements, and frames of elements transferred. The transfer register

gives 16-bits for frames, and 16-bits for elements. Once the element count reaches
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0, the frame count is decremented, and the element count is reloaded by one of

the global reload registers, which specifies how many elements are within a frame.

Each individual DMA channel can be setup to transfer an element or a frame

on a synchronizing event. These elements can be an interrupt generated by an-

other DMA channel, an external interrupt, a timer interrupt, as well as other

sources. This is particularly helpful in transferring elements based on interrupts

generated on the external interrupt line from the FPGA. These synchroniza-

tion events can be tied to the DMA transfer operating between the FPGA and

SDRAM.

The DMA channels can also be configured to generate an interrupt based

upon different events. For instance, the last transfer in a frame, defined in the

transfer counter register, can generate a DMA channel interrupt. There can be an

interrupt generated on the completion of the second to last frame. The ability to

use different conditions to trigger interrupts gives a higher level of configurability

for these DMA channels.

The general approach taken for this DMA strategy is to give the reads from

the FPGA higher priority than writes, as writes will happen much more fre-

quently, and we do not want to risk overfilling the output FIFO. The interrupt

state machines associated with the input and output FIFOs generate external

interrupts that trigger the DMA channels for data transfers.

DMA Channel 1 - Write FPGA

DMA channel 1 is configured to take care of writing data stored in SDRAM,

into the FPGA. As described before, the source data is stored in the first half

of the CE2 memory space, address locations 0x02000000 - 0x023FFFFF. This

DMA channel is configured to transfer 32-bit elements, incrementing the source
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address, but not changing the destination address. Unfortunately, there are two

set backs to the DMA implementation, inherent to the PLogic PCI card design.

As the design has an imperfect interface with two asynchronous clocks, we need

to be sure of each element being transferred successfully. This facilitated the

design of the read and write state machines on the FPGA. By this notion, the

write DMA channel is configured to only transfer 1 element at every interrupt

trigger. In the DMA channel interrupt service routine, it will calculate how many

elements are left to transfer, and as long as that does not equal zero, it will load

the transfer register with the value to make one element transfer. This channel

is triggered off of external interrupt 5, generated by the FPGA input FIFO write

state machine. Upon a trigger, the DMA channel will transfer one element from

SDRAM to the FPGA input FIFO.

DMA Channel 0 - Read FPGA

DMA channel 0 is configured to take care of reads from the FPGA output FIFO.

The reads are stored to the second half of the CE2 address space from 0x02400000

to 0x02FFFFFF. The DMA channel is configured to transfer 32-bit elements, in-

cremenenting the destination address, but not the source address. The DMA

channel is set to transfer a maximum of 65,535 (0xFFFF) 32-bit elements, but

additional work could allow for a greater number to be handled. This was deter-

mined as acceptable as 640x480 images tested, used significantly less transfers.

The channel is higher priority than the write channel, and is triggered to transfer

off of a higher priority interrupt, external interrupt 4, produced by the FPGA

output FIFO read state machine.
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3.3 PC Overview

The PC level of this design can be separated into three sections, all of which

interact with each other. The lowest level section interacts with the DSP via

a FIFO interface, as well as direct addressing to DSP registers, and the DSP

external memory interface. The level above this deals with constructing the

output JPEG image file, and similarly the input file. The highest level is a TCL

interface to the C libraries. TCL was chosen for its ability to create a simple

command driven, or graphical interface through buttons, and response windows.

Figure 3.23: PC Overview

3.3.1 PLogic Interface

The PLogic FIFO interface functions mirror the FIFO interface on the DSP. The

PC is meant to issue a “put record” command which send the action codes from

table 3.10, which will be interpreted by the DSP FIFO server. The PC will then

issue a get response command and wait for the DSP to send a response packet.
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In addition to the FIFO interface, there are low level DSP related functions for

accessing DSP registers and the DSP external memory interface. These functions

all operate through the DSP memory map. Through functions read DSPreg(),

write DSPreg, read DSPblock, and write DSPblock(). These functions are useful

in determining status of the DMA channels, such as checking the transfer register,

and the source and destination registers. The block transfer functions are useful

for storing source image data into SDRAM, and reading the encoded variable

length data, or the assembled encoded image bitstream from SDRAM.

3.3.2 Imaging

There were several functions implemented to handle the understanding of the

input image, sending it to the encoder, calling the encode process, retrieving

the output, assembling the JPEG headers, and producing the output file. All of

these functions were fairly simple to put together as they are high level functions

within this design. The tricky part really has to do with the JPEG headers.

Getting the JPEG headers correct is an important part of the design, as the

entropy coded bitstream could be correct, but incorrect headers will result in an

erroneous image output stream read by a decoder.

Image Input

The first step for the PC interface is to open a known type of input file, parse

it, and send it to SDRAM. The supported input image format for this design

was chosen to be the PPM format, which stands for portable pixel map. This

is a fairly easy to understand format. There are four parameters which describe

the file type. The first parameter is either P5 or P6, which defines a grayscale

(luminance only), or a color image, respectively. The second number defines the
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pixel resolution. The values used for baseline JPEG compression in this design

are 8-bit, so the value in the input file here is 255, to represent 256 values starting

from 0. The last two values specify the horizontal and vertical pixel resolutions.

The values for horizonal and vertical pixel ratios are stored to the DSP control

register, through a “put record” command.

The grayscale images, denoted by the P5, will have one value per pixel, to

specify the luminance intensity, where 0 is white, and 255 is black. If this is

a P6 image, for color, there are three values used; one for luminance, and the

other two for chrominance. When parsing the input file, a temporary output

file is created to store a list of hex pixel values. There will be one created for

luminance in both cases of color and grayscale images. For color images, there

are also temporary files created for the two chrominance components. This was

necessary as the three components are each encoded in their own steps.

Encoding Process

For color images the encoding procedure is run three times. This is to handle

each of the input components separately, rather than being interleaved. The

encoding process will read 64 pixel components in a loop, from one of the files

created during the parsing operation discussed in section 3.3.2. Using one of the

block transfer functions, these values are stored to SDRAM. This process goes

on until the file is read completely, and transferred into SDRAM. At this point,

the DSP control register is updated with the pixel aspect ratios, and the image

component type, luminance or chrominance.

Prior to running the encoder on the FPGA the image headers are assembled.

Just as described in section 2.8, the headers are stored to an output file. After

the header portion is completed, the actual encoding cycle is run, and the output
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bitstream is stored into the output file.

The actual encode cycle on the FPGA is run once the “put record” command

is given with the action code to encode the image. This is followed with a

“get response” command, which will wait for a response from the DSP. The

DSP response contains an integer specifying how many words must be read from

SDRAM to obtain the assembled entropy encoded data stream. This integer will

be used to run a loop and read SDRAM in blocks of 64 elements, until completed.

After this data is written to the output file, the end of image marker is written

and the file is closed.

3.3.3 TCL Interface

The entire PC level design was wrapped in a DLL which could be interpreted

through a TCL command line input. This was chosen as a suitable scripting

language as it is fairly easy to mock up a development interface. Buttons were

easily configured to run low level PC functions, or even communicate directly

Figure 3.24: TCL Interface
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to the DSP, or FPGA. The DSP has a UART feedback channel, which was

interpreted in TCL and allowed for helpful low level feedback from the DSP

regarding state, or data elements in small transactions. This interface provided

a means to test via modular addressing, as well as feedback of the control and

status registers.

In the end, a simple script was created, to call the encode image function,

assuming that the input PPM image file was in the appropriate place. The output

file is generated in a known location as well. This file could be decoded using

any image viewer on a computer that can open JPEG files, such as an internet

browser.
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4 Discussion

The core FPGA design had impressive results as described throughout the system

overview sections. In simulation on the FPGA, assuming we had streaming inputs

and outputs, the encoder takes 162 cycles for the first block, and as long as the

data stream is constant, it will take an additional 64 cycles per block after the

first. This means that a 640x480 grayscale image would take 307,298 cycles,

which at 25MHz is 12.29ms. This is roughly one fourth of the time that is

necessary to make motion JPEG at 24 frames per second. As this core design is

fully synchronous, it should give the same result in implementation.

However, that is not the complete story. Unfortunately, some limitations

inherent to the PLogic PCI design do not provide an interface for fully streaming

inputs and outputs. The DSP external memory interface, which facilitates data

transfers between the FPGA and DSP, is operating on a different clock than the

FPGA core. In order to ensure reliable data transfer the interrupt driven DMA

controller was used for transferring data to and from the FPGA FIFO interface.

At the same time, on this bus, the DSP must service the SDRAM refresh rates

and such.

Blocks FPGA Time DSP Time

1 98.84 us 99.4 us

2 193.64 us 194.76 us

4 383.72 us 385.78 us

8 755.96 us 768 us

16 1535.24 us 1535.94us

Table 4.1: Block Encoding Results
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Table 4.1 above shows some statistics taken for actual encoding time from

input to output of the FPGA. The FPGA reports the number of clocks it took

from the first output to an end of block or end of image signal depending on

what is asked for. The DSP uses its high resolution timers to collect a sample of

when the encode process started, and when it completed. These times imply that

the pipelining in the design is not being taken advantage of. It also shows that

when more reads are requested from the FPGA, through interrupts, the writes

are likely staggered such that the data input is not streaming. This is another

design flaw where the output FIFO is only used as a single level, or dual level

FIFO at best.

Aside from the disappointments in speed at the lower level, there were also

deficiencies designed in at the higher levels. At the PC level, parsing the input

and creating the output files, although trivial, added to the completion time.

Also, being only able to read 64 elements at a time, and write 64 elements at a

time to SDRAM definitely added time. It seems as if there is greater time taken

in setting up, and creating an output, than the actual encoding process.

The results of this design in terms of compression were quite impressive.

Three different test images were used to get a good range of image types from

those that would expect less compression and those that would expect greater

compression based upon the image details. It can be seen that around high

frequency components that artifacts will occur.

4.1 Future Work

In the process of developing this project, there were several ideas that were never

integrated into the design. As this is the JPEG baseline algorithm, there are
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Image Aspect Ratio Input(Bytes) Output (Bytes) Compression

baboon 200x200 120,015 9,411 12.75

lena 512x512 786,448 31,262 25.16

peppers 512x512 786,448 28,033 28.05

Table 4.2: Compression Results

many extensions. The building blocks used in this design can be utilized in the

JPEG extensions, as well as other compression algorithms. Also, there are many

optimizations which can be performed on this design to improve throughput.

Interleaving Image Components Currently, the way this implementation

runs is to encode the image components sequentially. This can potentially lower

the time required to encode a color image.

Sub-sampling Chrominance Components The chrominance components

are currently encoded at a 1:1:1 ratio. This can be modified to fit a different

compression scheme such as 4:2:2. This would further improve compression,

with potentially minimal loss in quality.

Custom Tables By studying a known data set, quantization tables can be

optimized to further compress the data in the image. These tables could be

loaded through the DSP rather than being static as they are now. This could

improve compression, and would only require some design changes on the FPGA,

and the supporting software interface on the DSP and PC. Similarly, the Huffman

tables could be optimized for a given data set, based on analysis of the source.
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Quality Factor The quantization tables can be scaled according to a quality

factor selected by the user. This has a direct impact on compression ratios. This

will allow a user to set the desired level of compression for a given application.

JPEG Extensions and Other Algorithms These components used for the

baseline JPEG algorithm can be applied to other types of compression sequences.

The JPEG extensions such as hierarchical mode, and progressive mode, can

use some blocks from this encoder to fit those specifications. Similarly other

compression algorithms such as JPEG2000 use similar techniques, but in the

case of JPEG2000 the DCT is replaced by a discrete wavelet transform.

FPGA Interface Optimization Work needs to be done to optimize the FIFO

interface to the encoder. This interface must be improved to help achieve higher

throughput, as right now, the current interrupt driven DMA transfers are sub-

optimal, as seen from the experimental results in table 4.1.

Motion JPEG Motion JPEG is arguably the most interesting application to

this project. Simulation results show that the throughput of the FPGA encoder

core is fast enough to achieve motion JPEG required speeds. This project would

likely require a daughter circuit board to mate to the I/O of the FPGA pinned

out on the PLogic PCI card. This daughter board would likely have a camera,

and memory, which could allow for multiple data paths in sending data to the

encoder, and retrieving data to store into memory.

104



Figure 4.1: Image: Baboon Source

Figure 4.2: Image: Baboon Result
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Figure 4.3: Image: Lena Source

Figure 4.4: Image: Lena Result
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Figure 4.5: Image: Peppers Source

Figure 4.6: Image: Peppers Result
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