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Abstract

In lossy image compression schemes utilizing the discrete cosine transform (DCT), quantization of the DCT

coefficients introduces error in the image representation and a loss of signal information. At high compression

ratios, this introduced error produces visually undesirable compression artifacts that can dramatically lower the

perceived quality of a particular image. This paper provides a spatial domain model of the quantization error

based on a statistical noise model of the error introduced when quantizing the DCT coefficients. The resulting

theoretically derived spatial domain quantization noise model shows that in general the compression noise in the

spatial domain is both correlated and spatially varying. This provides some justification to many of the ad hoc

artifact removal filters that have been proposed. More importantly, the proposed noise model can be incorporated

in a post-processing algorithm that correctly incorporates the spatial correction of the quantizer error. Experimental

results demonstrate the effectiveness of this approach.
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I. I NTRODUCTION

Artifacts in compressed images are well-known phenomena, both in the scientific and con-

sumer communities. In order to compensate for these artifacts, one must have a thorough un-

derstanding of them. This paper derives statistical descriptions of the quantization noise that, in

addition to providing important insight into the origins of compression noise, can also be readily

applied in a post processing algorithm to remove the artifacts.

Blocking is one of the most common forms of compression artifact, and many attribute its

existence to the inability of the block DCT to include correlations between blocks. While there

is truth to this, the blocking phenomenon can also be explained by considering the compression

of a single block only, which is the approach taken here: Only a single block of the image to

which the DCT is applied is examined, and results are derived for that block. As will be seen,

results for a single block prove sufficient to explain blocking artifacts, as well as compression

noise in general.

Section II provides the basics of the DCT and establishes notation used in the remainder of

the paper. A review of other explicitly or implicitly proposed noise models, including both

their advantages and limitations, is presented in Section III to provide motivation for this work.

Sections IV and V derive a statistical description of the noise introduced by quantization of
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DCT coefficients. In particular, Equation (12) gives the Gaussian distribution of the spatial-

domain quantization error, with autocovariance given by (9). The spatial-domain autocovari-

ance depends on frequency-domain characteristics of the image, as described by Equations (13)

and (19). A discussion of the work is provided in Section VI, where an explanation for the

existence of blocking artifacts is proposed, including where one can expect their presence or

absence. Section VI also includes experimental results that demonstrate the principles put forth

in this paper. An example application of the work is presented in Section VII, where the DCT

quantization noise model is used in a post-processing algorithm to remove compression artifacts.

Concluding remarks are given in Section VIII.

II. T HE DISCRETECOSINE TRANSFORM

In one dimension, the signal to be transformed is denotedz[n], 0 ≤ n < N , which is also

represented by the length-N column vectorz. The elements of the DCT matrixH = {H[k, n]}

are defined as

H[k, n] =


1√
N
, k = 0, 0 ≤ n < N,√

2
N

cos
[
π(2n+1)k

2N

]
, 1 ≤ k < N,

0 ≤ n < N.

(1)

The DCT ofz is theny = Hz. Since the DCT is a real unitary transform,H−1 = Ht and the

inverse DCT (IDCT) is described byz = Hty. Lettinghtk denote thekth row of H,

z =
N−1∑
k=0

hky[k]. (2)

Equation (2) gives a series representation of the vectorz in terms of the DCT basis vectorshk

and the DCT coefficientsy[k]. Any one-dimensional (1-D) signal of lengthN can be represented

by a sum of theseN basis vectors of different frequencies, where each basis vector in the sum

is scaled by the DCT coefficienty[k].

In a DCT-based compression scheme, the DCT coefficients are quantized rather than the ac-

tual signalz. The quantized DCT coefficients areyq = Q[y], whereQ[·] is the quantization

operator. Quantization is a non-linear operation that results in a loss of information; only scalar

quantization is considered here, where each element ofy is individually quantized. Scalar quan-

tization is a many-to-one mapping that transforms intervals of real numbers[qki , q
k
i+1) to single

real numbers. The superscript “k” accounts for the possibility of different quantization intervals
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for different frequency coefficients, and the subscript “i” indicates theith quantization level.

Transform coefficients that are in these intervals are typically mapped to the midpoint of the

interval, so thatyq[k] = 1
2
(qki + qki+1) for qki ≤ y[k] < qki+1.

The recovered signalzq is found by performing the inverse DCT on the quantized frequency

values,zq = Htyq. Two quantities of interest in this paper are the quantization errors in both

the spatial and the frequency domains. The vectorez = zq − z will represent the error in the

spatial domain, andey = yq − y will represent the error in the frequency domain. Note that the

quantization error in the spatial domain can be expressed as

ez = Ht[yq − y] =
N−1∑
k=0

hk (yq[k]− y[k]) . (3)

Equation (3) gives the basis representation of the quantization error: The quantization error is

the sum of the errors of each frequency coefficient multiplied by the corresponding DCT basis

vector.

The two-dimensional (2-D) DCT is simply a separable extension of the DCT in one dimen-

sion. Here, the matrixZ represents the 2-D image block, withY,Zq,Yq,EZ andEY defined

analogously to the 1-D case.

As for the 1-D case, one can write a basis representation forN × N image blocks. If the

N ×N basis images are defined asHk,l = hkh
t
l , then

Z =
N−1∑
k=0

N−1∑
l=0

Hk,lY[k, l]. (4)

Figures showing the basis vectors and images defined by (2) and (4) can be found in many

standard image processing textbooks.

Quantization of the 2-D DCT coefficients is performed as for the 1-D case, with a resulting

spatial-domain quantization error of

EZ =
N−1∑
k=0

N−1∑
l=0

Hk,l (Yq[k, l]− Y[k, l]) , (5)

which gives the basis-image representation of the quantization error: The quantization error is

the sum of the errors of each transform coefficient multiplied by each of the 2-D DCT basis

images. This way of looking at the quantization error in compressed images has also been

considered in [3,4].
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On some occasions it will be convenient to use vector notation to represent images. When

using this vector notation, the vectorz of lengthN2 will represent the image blockZ, where

z[lN + k] = Z[k, l]. This is equivalent to stacking the individual columns ofZ into a single

vector. The matrixH is then defined as the Kronecker product ofH with itself,H = H ⊗H.

TheN2 ×N2 matrixH is the 2-D DCT matrix for image blocks in vector format. Denoting the

various image matrices from before with this stacked-column vector notation, the results can be

summarized asy = Hz, z = Hty, andzq − z = Ht(yq − y).

From (3) and (5), the spatial-domain error introduced by image compression is dependent

on two key factors: The DCT basis vectors, and the frequency-domain error introduced by

quantization of the DCT coefficients. Statistics of the spatial-domain quantization noise given

statistics of the frequency-domain quantization noise will be examined in Section IV, followed

by statistics of the noise in the frequency domain in Section V. First, however, other proposed

models for image compression noise will be examined.

III. R EVIEW OF OTHER NOISE MODELS

While the quantization error is a deterministic function of the input image, in many practical

applications once the quantized signalyq is calculated, the input imagey is discarded, and thus

explicit information about the quantization error is lost. A commonly used theoretic tool for

modeling the error signal is to treat it as a random quantity [5]. Treating the error as random

provides an understanding of how the error behaves, including how much the error will vary at

different pixel locations and the spatial correlation between errors. Such understanding further

provides the theoretical framework for formulating effective schemes for alleviating the error.

This statistically-based model of the error signal is referred to as a quantization noise model

since the error signal represents unwanted information in the resulting image representation.

Characterizing DCT quantization noise is an important task if one wishes to attempt to remove

the noise, and many of the noise models in the literature have been proposed as part of post-

processing schemes. In the Bayesian post-processing scheme of [6], the authors make use of a

quantization constraint set (QCS), which is the set of all images that would re-compress to agree

with the (quantized) received data. The QCS constraint is applied in the algorithm by clipping

reconstructed DCT coefficients to force them to lie within the quantization limits defined by

the compression. Use of the QCS is equivalent to assuming a uniform distribution of the DCT
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coefficients—DCT coefficients of reconstructed images can lie anywhere within the quantization

levels, with no preference for exactly where as long as they do not go outside the quantization

limits.

Although not explicitly considering noise or probabilistic methods, the projection onto convex

sets (POCS) post-processing methods [7] implicitly use the same noise model as in [6]. One of

the convex sets used in the POCS algorithm in [7] is the very QCS used in [6]. Thus, although

based on very different theories, the Bayesian and POCS methods in [6, 7] assume identical

noise models.

One criticism of the QCS is that it is often too big, i.e., the variety of images that lie within

the QCS is too large, and the QCS fails to model the actual compression noise adequately.

Figure 1 demonstrates this concept, where the limitations of the QCS are apparent. While both

Figs. 1(c) and 1(d) lie within the QCS, they are both poor visual estimates of the original image

in Figure 1(a). The reason for this inadequacy can be seen by considering the following: Many

images (or portions of images) are quite often smooth, i.e., they have most of their energy

concentrated at low frequencies, with little energy at high frequencies. This situation provides

an example where the uniform noise model fails: If a quantized high-frequency coefficient of

a “smooth” image is observed to be zero, then modeling the original coefficient as varying

uniformly throughout the entire quantization interval will not be accurate. Rather, the model

should incorporate the idea that the original coefficient was quite close to zero, and in fact did

not vary far from zero.

An interesting extension of the POCS post-processing theory is given in [8], where the authors

address the limitation just described for the QCS. The authors introduce a narrow quantization

constraint set (NQCS), which is a subset of the QCS defined to make the constraint set “tighter.”

The NQCS essentially assumes the same uniform model as in [6,7], but the interval of each DCT

coefficient is artificially made smaller.

Pointing out limitations of the QCS, Meier et al. [9] chose to adopt a compression noise model

exclusively in the spatial domain. They assumed independent and identically-distributed (IID)

Gaussian random variables for the quantization noise. Mateos et al. [10] also use IID Gaussian

noise, but only for the block boundary pixels that they process. The noise models of these prob-

abilistic methods are mathematically equivalent to a constrained least squares framework [11].
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(a) (b)

(c) (d)

Fig. 1. Different images that each lie in the same quantization constraint set of a P-frame of theforemansequence:

(a) the original image; (b) compressed image with standard de-compression; (c) compressed image that has

been smoothed subject to quantization constraints; and (d) compressed image that has been sharpened subject

to quantization constraints.

These methods just mentioned bypass the problem of the QCS methods: The actual amount of

assumed noise can be controlled by adjustment of the variance of the Gaussian noise, which can

effectively prevent over-smoothing in a post-processing scheme.1 However, since these methods

do not consider the actual compression process, they do not accurately predict the quantization

noise. Furthermore, the IID assumption cannot actually model the spatial correlation present in

the quantization noise.

Post-processing schemes that use the QCS or NQCS do not have explicit spatial-domain noise

models, but rather work in the frequency domain. The main advantage of using a quantization

constraint set is that it explicitly considers the method of compression, and hence provides a

noise model closer to reality than simple IID Gaussian noise in the spatial domain. However, as

mentioned earlier, the QCS methods have a severe limitation in that the constraint sets are too

large. An additional disadvantage of QCS based methods is that the resulting post-processing al-
1Equivalently, a regularization parameter can be varied to control the amount of smoothing to perform, where the regularization

parameter affects thea priori smoothness assumed for the image.
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gorithms generally require multiple transformations between the frequency-domain and spatial-

domain representations of the image during post-processing, which is a computationally expen-

sive task,

Yang et al. [12] also use a noise model in the spatial domain, but do not derive actual quan-

tization noise statistics, choosing rather to work with a training procedure to determine noise

characteristics experimentally. They donot assume identical distributions—based on a training

procedure, their algorithm determines noise vectors that approximate the shape of the compres-

sion noise, which often has large magnitude near block boundaries. This effectively suggests

that quantization noise is higher near block boundaries than in block interiors.

DCT quantization noise has also been studied in contexts other than post-processing. Peterson

et al. [4,13] studied the effects of quantization noise, but they were primarily concerned with the

visibility of this noise to human observers and do not consider the statistics of the noise itself.

Yovanof and Liu [14] examine DCT spatial-domain quantization noise experimentally, but do

not consider the possibility of spatially-varying noise or correlated noise.

Limitations of a spatially-invariant quantization noise model are shown in Fig. 2. The figure

plots the mean squared pixel error for each8 × 8 block of the320 × 288 claire sequence. The

sequence was compressed according to the H.263 standard [15] with a constant quantization pa-

rameter (QP) of12, using only I-frames. If the quantization noise were in fact spatially invariant,

the averaged noise for each8× 8 block would be approximately flat. This is clearly not the case

for the plot in Fig. 2, which actually suggests that the quantization error is higher for pixels near

block boundaries, and especially high at block corners.

Two important conclusions can be drawn from this section’s review of DCT quantization noise

models. First, those frequency-domain noise models that make use of the QCS can be inadequate

due to the potentially large sets that result. In addition, the spatial-domain noise models were

limited as well—the IID assumption does not accurately model actual compression noise. In

the next section a spatial domain quantization noise model is proposed that actually models the

compression noise and which can be effectively used within a post-processing algorithm.

IV. QUANTIZATION NOISE STATISTICS

One reason that the DCT is utilized in image compression is its ability to approximately

decorrelate the type of signals found in image data [16]. That is, while the typical image signal
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Fig. 2. Average quantization error variance for each block of the320 × 272 claire sequence compressed using

I-frames only, with H.263 quantization parameter 12.

is highly correlated, the DCT coefficientsy[k] are approximately uncorrelated. This property

can be used to approximate the DCT coefficientsy[k] as uncorrelated random variables. For

relatively high-rate situations (rather small quantization bin sizes), it is well established that the

quantization errors are also uncorrelated [17, 18]. For lower-rate situations it is also possible to

show that, given some mild conditions, the quantization errors in the DCT domain are uncorre-

lated.

For the reasons just outlined, the DCT-domain quantization errors are assumed to be uncor-

related random variables. Considering the one-dimensional case first, the covariance matrix

Key = E [(yq − y)(yq − y)t|yq] is then diagonal, with itsN non-zero elements equal to the

quantization noise variances of the individual frequency-domain coefficients,σ2
ey

[k]. Note that

the expectation forKey is conditioned onyq, implying that the quantity describes the expected

error after receiving the compressed image data. For notational convenience, the conditioning

on the received data will not be explicitly written in the remainder of this paper (foryq or zq),

but will rather be implicitly assumed.

Suppose for the moment thatKey is known; it is then simple to determine statistics of the

error in the spatial domain. Of primary interest here is the autocovariance

Kez = E
[
(zq − z)(zq − z)t

]
= HtKeyH. (6)
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Fig. 3. One-dimensional basis vectors of the spatial-domain quantization error variance for sequences of length 8.

The horizontal axis of each plot corresponds to spatial locationn and the frequencies start withk = 0 for the

top left and continue tok = 7 for the bottom right.

Equation (6) includes information about the autocovariance of the spatial-domain error vector,

but another quantity of interest is the variance of the individual spatial-domain errors. The

variance ofez[n] is found asσ2
ez

[n] = Kez [n, n], or in summation notation

σ2
ez

[n] =
N−1∑
k=0

H2[k, n]Key [k, k] =
N−1∑
k=0

H2[k, n]σ2
ey

[k], (7)

whereH2[k, n] is the square of the(k, n)th element ofH. Based on this equation, a new trans-

formation matrixM is defined, with elementsM[k, n] = H2[k, n]. Letting mt
k denote thekth

row of M,

σ2
ez

=
N−1∑
k=0

mkσ
2
ey

[k]. (8)

Here,σ2
ez

is the vector representing the error variance ofzq, which is also equivalent to the

diagonal ofKez . The vectorsmk form a basis for the error variance ofzq: The error variance can

be found by summing each error variance basis vector scaled by the corresponding frequency-

domain error variance. Error variance basis vectors for sequences of length 8 are shown in Fig. 3.

Transform-domain coefficients with large quantization error variances cause their corresponding

basis vectors to contribute more to the overall spatial-domain error variances. In general, this

leads to spatial-domain error variances that vary withn, the spatial location. Also, note from (6)

that in general the spatial-domain quantization noise is correlated.

To represent the autocovariance of the noise in two dimensions, it is helpful to use the stacked-

column notation introduced earlier, where the random vectorsz, y, zq, yq, ez andey are formed

by stacking the columns of their respective random images. As before, assume for the moment

that the covariance matrix of the 2-D frequency-domain quantization noise is a known diagonal

matrixKey , whoseN2 diagonal elements are taken from the individual frequency-domain error
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variancesσ2
EY

[k, l]. The covariance matrix of the spatial-domain error can then be written as

Kez = E
[
(zq − z)(zq − z)t

]
= HtKeyH. (9)

TheN2 × N2 matrix Kez contains autocovariance information of the spatial-domain error

image, but the individual error variances at theN2 locations are also of interest. These individual

variances are the diagonal elements ofKez . Switching back to 2-D notation, they can be written

in a form similar to (7),

σ2
EZ

[m,n] =
N−1∑
k=0

N−1∑
l=0

H2[l,m]H2[k, n]σ2
EY

[k, l]. (10)

Choi and Kim also include this equation in their paper on artifact reduction [19], but make no

mention of the error covariance as described here.2

The basis-image representation for the quantization error variance of the DCT in two dimen-

sions can be found by defining a set of imagesMk,l = mkm
t
l , with elementsMk,l[m,n] =

H2[l,m]H2[k, n] and observing

Λ =
N−1∑
k=0

N−1∑
l=0

Mk,lσ
2
EY

[k, l]. (11)

Here,Λ is theN × N array of error variances in the spatial domain. Thus the variance of the

spatial-domain errors due to quantization with the 2-D DCT consists of a sum of the error basis

images defined above, where each basis image is scaled by the error variance of its corresponding

2-D DCT coefficient. Figure 4 shows the error variance basis images forN = 8. Note that the

error variance image will in general be spatially varying inm andn, as discussed previously for

the 1-D case, and from (9) the error will in general be correlated.

Finally, from (5) each spatial-domain noise term is a linear combination of independently

distributed random variables (64 of them, when using the8 × 8 block DCT), allowing the

spatial-domain quantization noise to be approximated as a0-mean Gaussian random vector with

autocovariance matrixKez ,

p (ez) =
1

(2π)
N
2 |Kez |

1
2

exp
{
−1

2
etzK

−1
ez

ez

}
. (12)

(Note that the errorsey are assumed zero-mean here.)
2The authors do not make explicit use of (10) in their artifact reduction algorithm, but rather include it in an explanatory sense.
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Fig. 4. Two-dimensional DCT error variance images for8 × 8 image blocks. The basis images are placed with

increasing horizontal frequency from left to right, and increasing vertical frequency from top to bottom. Basis

image values are ordered with0 at black, and increase as the image gets brighter.

As a final note for this section, it is important to recognize that although the spatial-domain

error is modeled as Gaussian, the frequency-domain error is not: Indeed, the two errorsez

andey are related by the DCT; however, the Gaussian approximation forez arises due to the

summation of the many individual error terms ofey. The following section discusses the actual

(non-Gaussian) statistical behavior of the frequency-domain error.

V. DCT-DOMAIN QUANTIZATION ERROR

In the previous section the autocovariance matrix of the spatial-domain quantization noise was

derived, and depended on the frequency-domain quantization noise, which was assumed known.

Here this missing quantity is provided. For the sake of brevity, only the two-dimensional case is

discussed.

A simple model for frequency-domain quantization noise is based on the uniform distribution.

If the original random variable representing the(k, l)th DCT coefficient is denoted asY[k, l],

then it is quantized asYq[k, l] = Q [Y[k, l]]. If a realizationYq[k, l] is observed such thatYq[k, l]

lies in the quantization interval[qk,li , q
k,l
i+1), then the uniform model simply says that the quantiza-

tion error(Yq[k, l]−Y[k, l]) is distributed uniformly in the interval
[
qk,li − Yq[k, l], q

k,l
i+1 − Yq[k, l]

)
.

From an intuitive point of view, the uniform model says that an original frequency coefficient

Y[k, l] was equal to any of the values in this quantization range with equal probability. For the

uniform model, the DCT-domain quantization error of the(k, l)th coefficient can be expressed
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as

σ2
EY

[k, l] =
(qk,li+1 − q

k,l
i )2

12
. (13)

Using the uniform model makes analysis simple, for the variance of a uniform random vari-

able is easy to calculate. Furthermore, the uniform model satisfies the conditions mentioned at

the beginning of Section IV for the uncorrelatedness ofEY. However, although the uniform

model makes analysis much simpler, it is not necessarily always appropriate. In many ways, the

uniform model is similar to using the QCS constraints, and as a result can suffer from some of

the same limitations as that approach.

Experimental simulations also suggest that using a uniform noise model can result in poor

estimates of quantization noise. Rather than assuming uniform DCT-domain quantization noise,

prior knowledge of the DCT coefficients can be incorporated in the model, which can yield

results that are more accurate. By first considering an image model in the spatial domain, the

desired result in the frequency domain will become available.

A model commonly used for the AC components of an image blockZ makes use of the

separable autocorrelation function

E [Z[m,n] Z[i, j]] = σ2
Z ρ
|m−i|
1 ρ

|n−j|
2 , (14)

where the parametersρ1 andρ2 are the one-step correlations in the vertical and horizontal di-

mensions,σ2
Z is the variance of the image blockZ, and the DC component of the block has

been subtracted out, so thatE [Z] = 0. Using such a model, the variance of the(k, l)th DCT

coefficient can be expressed as [16]

σ2
Y[k, l] = σ2

Z

[
HK1H

t
]
k,k

[
HK2H

t
]
l,l
, (15)

whereKx are defined as

Kx =



1 ρx ρ2
x · · · ρN−1

x

ρx 1

ρ2
x

. ..
...

... ρx

ρN−1
x · · · ρx 1


. (16)
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From (15) the variance, or energy, of each DCT coefficient is known provided thatρ1, ρ2, andσ2
Z

are known. In practice, these parameters can be estimated from the observed data, or assumed

to be knowna priori.

The nature of the distributions of the DCT coefficients is of high importance for determining

frequency-domain quantization noise. There is precedence for using a Laplacian model for

DCT coefficients in images and video [20, 21]. The variance of a Laplacian random variable

with parameterλ is σ2 = 2
λ2 , and the Laplacian parameter for the(k, l)th coefficient is found as

λk,l =

√
2

σ2
Y[k, l]

, (17)

and the distribution ofY[k, l] becomes

pY[k,l](y) =
λk,l
2

exp {−λk,l|y|} . (18)

If the quantized DCT coefficientYq[k, l] = yq is observed to lie in the interval[qk,li , q
k,l
i+1),

then the distribution ofY[k, l] givenYq[k, l] = yq is zero outside the quantization interval and

γpY[k,l](y) inside the quantization interval, whereγ is a constant that ensures the distribution

integrates to unity. Thus,

σ2
EY

[k, l] = γ
∫ qk,li+1

qk,li

(yq − y)2pY[k,l](y) dy, (19)

which can be determined in closed form via integration by parts.

Equations (13) and (19) give two possible methods for determining the frequency-domain

quantization noise. The method of (13) uses a uniform distribution for the DCT coefficients,

which is equivalent to assuming equal probability for all coefficients that lie inside the quan-

tization limits. Alternatively, the equation in (19) was derived based on a prior model for the

image.

Experimental simulations have suggested that by themselves, neither (13) nor (19) accurately

predict the spatial-domain quantization noise. For quantized DCT coefficients that are observed

to be zero, the Laplacian model indeed works well. However, when non-zero quantized DCT

coefficients are observed, the Laplacian model seems to be inappropriate and the uniform model

works better.3 Using the uniform model for non-zero coefficients can be viewed as approximat-

ing the tails of the Laplacian with a uniform distribution, rather than the exponentially decaying
3The work reported by Lakhani [22] also seems to support this: The author reports only marginal improvements from an

algorithm that decodes non-zero DCT coefficients based on a Laplacian model.
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tail. Using different distributions depending on whether or not the observed quantized coeffi-

cient is zero essentially says that the expected energy of the DCT coefficients is concentrated

near zero, and when known to be away from zero (i.e.,Yq[k, l] 6= 0), the energy is expected to be

more evenly distributed. Such a distribution also satisfies the conditions mentioned at the begin-

ning of Section IV that ensure the errorsEY are uncorrelated, whereas using only the Laplacian

model does not necessarily do so.

VI. I NTERPRETATION AND IMPLICATIONS

Consider the 1-D error variance basis vectors of Fig. 3. If the DCT quantization errors were

equal for each frequency, then the basis sum of (8) would result in equal variance at each spatial

location. However, in general the DCT quantization errors will not be equal at each frequency.

For example, for relatively smooth signals more signal energy will be contained in the low-

frequency coefficients, with decreasing energy as the frequency increases. The high-frequency

coefficients are quantized to zero, but since they have little energy, they contribute very little

quantization noise. However, the low-frequency coefficients contribute considerable quantiza-

tion noise. Thus, the sum of (8) will have higher weights for the low-frequency components, and

a quick consultation with Fig. 3 suggests that this will result in higher error variance for loca-

tions near the boundaries. This simple argument accounts for the presence of blocking artifacts,

and has been pointed out before by Choi and Kim [19]. Note also from Fig. 3 that errors in the

high-frequency components contribute little to the error right at the block boundaries.

On the other hand, consider signals that do contain significant high-frequency content, such

as textured regions of an image. For these cases the situation described above is reversed, and

examples can easily be constructed for which pixels near the boundaries may actually have less

error variance than pixels near the middle.

The 2-D case is a ready extension of the case in one dimension, with similar arguments for

the existence or absence of blocking artifacts as in one dimension. While not as obvious as

the 1-D case, the error variance basis images of Fig. 4 exhibit the same properties as the basis

vectors in Fig. 3: High error at block boundaries for low-frequency components, and low error at

block boundaries for high-frequency components. From (15), positive values of the correlation

parametersρ1 andρ2 lead to concentrations of signal energy at low frequencies, which leads to

increased error near block boundaries. Similarly, negative values of the correlation parameters
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Fig. 5. Predictions for 2-D error variance as a function of spatial location usingρ1 = ρ2 = 0.8, σ2
Z = 25, QP = 12,

and assuming non-zero DCT coefficients only in locations (0,0), (0,1), and (1,0).

lead to concentrations of signal energy at the high frequencies, leading to quantization errors

that are lower at block boundaries than in block interiors. As an example, consider the plot in

Fig. 5 that shows the 2-D spatial-domain error variance predicted by the proposed model when

ρ1 = ρ2 = 0.8, σ2
Z = 25, QP = 12, and only the three lowest-frequency components are

quantized to non-zero values (H.263-style quantization is used). These parameters correspond

to a relatively smooth image, and the results of the figure confirm the intuitive belief that the

error variance is large at block boundaries and block corners, as was true for the example in

Fig. 2. (Note however that one cannot expect the two figures to coincide perfectly, because the

results in Fig. 2 were averaged over all blocks in a sequence, and the prediction in Fig. 5 is for a

particular block with specific characteristics.)

This analysis gives theoretic justification for many of the ad hoc post processing algorithms

that attempt to remove blocking artifacts. Many of these algorithms perform selective smoothing

at block boundaries, where more smoothing is applied in regions that are deemed “smooth,” and

less or no smoothing in regions that are “not so smooth.” Filtering block edges like this makes

perfect sense in light of the discussion on the presence or absence of blocking artifacts.

Extensive tests have been performed for DCT compression noise in one dimension, and the

results support the discussions of this paper—quantization noise in the spatial domain is un-

doubtedly spatially varying and correlated, with a strong dependence on the quantization inter-

vals and on the original signal statistics. Figure 6 shows results obtained experimentally for the

February 23, 2004 DRAFT



17

(a) (b) (c)

Fig. 6. Experimentally observed quantization error covariance matrices for 1-D image scan lines of length 8 in the

176× 144 foremansequence. These results have been accumulated and averaged for all vectors with non-zero

entries in the lowest (a) one, (b) two, and (c) five DCT frequency coefficients. Each of these three results was

obtained based on over 60,000 observations.

1-D case, where a number of length-8 image scan lines from the176 × 144 foremansequence

have been compressed and the error for vectors with various patterns of zero/non-zero quantized

DCT coefficients was recorded. Quantization intervals of length6.0 were used for the DCT

coefficients, with the exception of values in the range(−6.0, 6.0), which were quantized to0.

The plot in Fig. 6(b), for example, shows the covariance of the quantization error for all obser-

vations that had non-zero quantized values only in the two lowest-frequency DCT coefficients.

The covariance was computed using the standard estimation formula,

K̂ =
1

W

W−1∑
i=0

eie
t
i, (20)

where for the case of Fig. 6(b)ei, i = 0, . . . ,W − 1 are the errors of all the observations

that had non-zero DCT coefficients in the two lowest-frequency components, and zero DCT

coefficients otherwise. Note that by computing the covariance like this the statistics of the noise

are assumed constant for a particular pattern of quantized zero/non-zero DCT coefficients, and

that the statistics may vary with different patterns.

There are several observations to make about the results in Fig. 6. One important note con-

cerns the diagonal elements, for these are the values corresponding to the variance of the quan-

tization error at each of the eight spatial locations. Both (a) and (b) of the figure correspond
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to relatively smooth vectors, since only the one or two lowest frequencies were observed to be

non-zero. For both of these cases, it is obvious that the error variance is significantly higher at

the vector boundaries, supporting the arguments made earlier in this section. Another observa-

tion from these two plots is that they both have significant values in the non-diagonal elements,

meaning that the error is most definitely not independent.

The plot in part (c) of Fig. 6 is also instructive to examine. Plot (c) has results for vectors

that contained considerably more high-frequency energy than in (a) and (b), and its differences

with these two are apparent. Details of plot (c) are difficult to see due to the varying nature of its

data, and therefore these data are also explicitly tabulated in Table I. From the table, it is quickly

apparent that the variances of the error near the vector boundaries are considerably less than

those in the vector interior. As a final note, the quantization error is also clearly not independent.

Similar experiments were conducted for the 2-D case. The same conclusions, that the spatial-

domain errors due to quantization are correlated with a spatially-varying variance, can be drawn.

This is expected since the 2-D case is simply a separable extension of the case in one dimension.

Covariance matrices in two dimensions are not presented because the results are difficult to

visualize due to the necessity of using the stacked-column notation, and in the end they do not

provide significantly more information than that of the 1-D results already presented.

VII. A PPLICATION: ARTIFACT REMOVAL

In this section, the noise model introduced in this paper is incorporated in a post-processing

scheme to remove compression artifacts. The probabilistic description of DCT quantization

noise derived in previous sections is well suited to a stochastic image restoration formulation,

and that is the path followed here. In this formulation, the quantization noise model becomes

a likelihood term that ensures that the final image estimate agrees with the observed data. The

restoration method is Bayesian, in the sense that the formulation introduces ana priori term to

smooth out compression artifacts.

For other methods of artifact reduction in compressed images, the reader is directed to many

of the references cited previously in different contexts, in particular [2,6–12,19,22]
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TABLE I

ENTRIES FOR THE COVARIANCE MATRIX INFIG. 6(C).

Estimated Covariance Matrix

3.87 -1.70 0.82 0.60 -0.89 0.03 0.71 -0.41

-1.70 6.58 -2.03 -0.78 1.69 -0.34 -1.05 0.65

0.82 -2.03 4.96 -0.81 -0.25 0.72 -0.48 0.11

0.60 -0.78 -0.81 5.51 -1.95 -0.41 1.92 -1.01

-0.89 1.69 -0.25 -1.95 5.32 -0.65 -0.86 0.62

0.03 -0.34 0.72 -0.41 -0.65 4.86 -2.08 0.86

0.71 -1.05 -0.48 1.92 -0.86 -2.08 6.67 -1.79

-0.41 0.65 0.11 -1.01 0.62 0.86 -1.79 3.86

A. MAP Estimate

A maximuma posteriori(MAP) criterion is used for this work, which seeks the solution

ẑ = arg max
z
p (z|zq) , (21)

= arg max
z
p (z) p (zq|z) . (22)

The latter probability of this last equation is the likelihood term, whereas the former is thea pri-

ori term for the frame under consideration. The likelihood term is formed by considering (12):

sincezq = z + ez, zq|z is a Gaussian random variable with meanz and autocovarianceKez .

Strictly speaking,zq is a deterministic function ofz; however, as mentioned at the beginning

of Section III it is more productive to treat the errors as random quantities, where the random

quantities are described according to the error analysis of previous sections. For the likelihood

term, the uniform frequency-domain noise model described by (13) is chosen instead of the

Laplacian model of (19). This avoids the added complexity and difficulty of accurately esti-

mating the parametersρ1, ρ2, andσ2
Z on a block-by-block basis. As will be seen, using the

uniform model provides good post-processing results while demonstrating the effectiveness of

the proposed quantization noise model.

Note that the vectors in (22) correspond to entire images, whereas previously they only de-

noted individual image blocks. Thusp (z) will be a prior probability for the entire image, and

p (zq|z) is constructed on a block-by-block basis according to the noise model introduced in pre-

vious sections. Note thatKez in this case will have a block-diagonal structure, with blocks equal
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to the error covariances for each individual image block within the image;Key is constructed

analogously, and consists of the error variances of all DCT coefficients in the image. The no-

tationD andDt represents the block DCT and IDCT, which are block-diagonal matrices that

perform the DCT and IDCT on each individual block of an image vector. Each matrix within

the block-diagonalD is the 2-D DCT matrixH; the block IDCT consists of repetitions ofHt

along its diagonal.

The prior model will be based on the Huber-Markov Random Field (HMRF), which has been

used extensively in image and video processing; for examples, see the references [6, 23, 24].

The Huber function is a convex function that has edge-preserving properties relative to a simple

quadratic. Details of the HMRF can be found in the above references, and is given here without

excessive discussion,

p (z) =
1

G
exp

{
−λ

∑
c∈C

ρT
(
dtcz

)}
, (23)

whereG is a normalizing constant,λ is a regularization parameter, and the Huber functionρT (·)

is defined as

ρT (u) =

 u2, |u| ≤ T,

T 2 + 2T (|u| − T ), |u| > T.
(24)

Thec of (23) are local groups of pixels called cliques, andC is the set of all such cliques, which

depends on the neighborhood structure of the MRF. Here, the vectorsdc are chosen to extract

the differences between a pixel and its neighbors, such that (23) simplifies to

p (z) =
1

G
exp

−λ
M−1∑
n=0

∑
m∈Nn

ρT (z[n]− z[m])

 , (25)

whereNn is the index set of neighbors for thenth pixel, andM is the number of pixels in the

image. The inner summation in (25) is over each pixel in the neighborhood ofn. A neighborhood

consisting of the eight nearest neighbors of a pixel is used in this example.

Maximizing the term in (22) reduces to

ẑ = arg min
z

[λr(z) + s(z)] , (26)

where

r(z) =
∑
c∈C

ρT
(
dtcz

)
, (27)

s(z) =
1

2
(z− zq)

tK−1
ez

(z− zq). (28)

February 23, 2004 DRAFT



21

The optimization problem in (26) is solved using a gradient descent algorithm [25]. The

gradient of the objective function is

g(z) = λ∇r(z) +∇s(z), (29)

where the individual gradients of the two terms with respect to the vectorz are, after substituting

for Kez ,

∇r(z) =
∑
c∈C

dcρ
′
T

(
dtcz

)
, (30)

∇s(z) = DtK−1
ey
D(z− zq). (31)

Both of these terms have importance, and warrant further examination. The gradient term in (30)

has larger values for large differences indtcz, thus encouraging smoothness. Note, however, that

the first derivative of the Huber function has a maximum magnitude of2T , which effectively

prevents the gradient from becoming too large, and thus prevents excessive smoothing of image

edges in the final result.

The effect of Equation (31) is such that DCT frequency components that have larger variance

(due to the larger quantization intervals in (13)) do not affect the gradient as much as DCT

frequency components with lower variance (due to smaller quantization intervals in (13)). Thus

the proposed noise model automatically adjusts for different quantizers—if the quantization

parameters decrease for certain regions of the frame (due to, for example, some sort of region-

of-interest coding [26]), the model accounts for this by having lower quantization noise for those

regions. Similarly, if the quantization parameters change from frame to frame, the quantization

noise for each frame follows accordingly. This is a much more realistic model than assuming

IID noise throughout each frame.

Denoting the estimate ofz at iterationw asz(w), the gradient descent algorithm forms the new

estimate as

z(w+1) = z(w) − α(w)g
(
z(w)

)
, (32)

whereα(w) is a step size that ideally reduces the objective function by as much as possible. The

step size is determined by a simple one-dimensional search algorithm that finds the bestα(w)

in a pre-defined search range, where the search is performed at a pre-determined resolution.

The iterations of (32) continue until improvements in the objective function fall below a small

threshold.
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TABLE II

COMPARISONPSNRRESULTS FOR POST-PROCESSING SEVERAL SEQUENCES COMPRESSED

ACCORDING TO THEH.263STANDARD AT 30 FPS USING ONLYI-FRAMES.

Sequence Size Frames QP1 λ ∆PSNR, dB2

proposed3 O’Rourke3 Annex J

foreman 176× 144 0–275 16 0.00075 +1.12 +0.33 +0.38

foreman 176× 144 0–275 12 0.00075 +1.01 +0.03 +0.34

claire 320× 272 0–167 16 0.00075 +0.83 +0.05 +0.56

claire 320× 272 0–167 12 0.00075 +0.60 −0.24 +0.51

missa 352× 288 0–149 18 0.00075 +0.60 +0.28 +0.56

missa 352× 288 0–149 14 0.00075 +0.38 +0.11 +0.46
1QP is the quantization parameter defined in the H.263 standard

2∆PSNR is the average change in PSNR per frame for the sequence

3The Huber parameter isT = 10.0

Using the algorithm discussed in this section, it is possible to get image estimates that do

not satisfy the QCS. If such situations are of concern to one implementing the algorithm, it is

a simple matter to include a projection to the QCS of each image estimate during the iterations

of (32).

It should be noted that significant computational improvements over this simple approach can

be made [27]; however, computational efficiency is not a focus of this paper.

B. Experimental Results

The post-processing algorithm described above has been implemented in an H.263 video de-

coder. Results are presented only for intra-coded frames (I-frames) so that DCT quantization

noise for images is not confused with quantization noise for motion-compensated residual im-

ages, because the statistics of the two are quite different. All sequences discussed here have

been compressed to 30 fps with a constant QP, and the resulting PSNR values are the aver-

age of each frame’s PSNR. Table II shows results for three sequences compressed with various
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(a) (b)

(c) (d)

Fig. 7. Example post-processing results forforemanintra frame. Part (a) shows the unprocessed frame 63, QP=16,

and the remaining frames are processed with (b) proposed algorithm,λ = 0.00075; (c) Annex J; (d) O’Rourke.

QP’s. For comparison purposes, Table II also shows results of post-processing with two other

algorithms—the MAP algorithm of O’Rourke [6], and the Annex J algorithm of the H.263 stan-

dard [15] implemented as a post-filter (as opposed to implementation within the coding loop as

specified in the standard). The Annex J filter is a simple de-blocking filter that filters across

block boundaries; when applied to a vertical block edge, it modifies two pixels to the left of

the border and two pixels to the right of the border for each row. The strength of the filter is

dependent on the severity of the quantization parameters used for the blocks being processed.

Horizontal block edges are filtered analogously.
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(a) (b)

(c) (d)

Fig. 8. Example post-processing results forclaire intra frame. Part (a) shows the unprocessed frame 50, QP=16,

and the remaining frames are processed with (b) proposed algorithm,λ = 0.00075; (c) Annex J; (d) O’Rourke.

Several conclusions can be drawn from the table, not least of which are the average PSNR

improvements—in all cases, significant improvements have been made in this objective measure,

and the proposed algorithm generally (but not always) provides superior PSNR results relative

to the other two algorithms. Another aspect of the table that draws attention is the column of

values forλ, the regularization parameter—the same value has been used in each case. This has

been done deliberately to show an important characteristic of the proposed quantization noise

model: Since the noise model is directly dependent on the quantization intervals, it automatically
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adjusts the amount of expected noise according to the received quantization information. This

means that once a particularλ has been found that is appropriate for a certain class of images,

that sameλ can be used in reconstructing those images for a wide range of quantization severity.

This does not mean that thisλ provides the optimal PSNR for the experiments presented in

the table; indeed, slightly varyingλ for each case reported in Table II would have resulted in

further small PSNR improvements (but little noticeable visual difference). Note thatλ is simply

a parameter of the HMRF model that controls how smooth we assume the image isa priori.

The overall amount of smoothing to be done depends on bothλ and the quantization severity in

the image. If one holdsλ constant and varies the quantization severity, the apparent amount of

smoothing will vary according to the quantization.

An important implication of this can be seen by considering what happens when the QP

changes values within a frame, as opposed to between frames. Quantization levels can change

within a frame when, for example, one performs region-of-interest coding—the encoder may

decide to compress some “regions of interest” with a much lower QP than the rest of the frame

in order to have improved quality in these regions at the cost of quality elsewhere. In post-

processing frames compressed like this, more smoothing may be necessary in the regions com-

pressed with coarser quantization levels than in the regions of interest. Algorithms that have IID

noise models would have to vary a regularization parameter across the frame to allow more or

less smoothing, which seems counterintuitive since the reason more smoothing is necessary is

because there is more quantization noise, not because the original image is actually smoother

there.

While Table II showed objective PSNR results for the proposed post-processing algorithm, it

is easy to argue that PSNR, while being “objective,” is not necessarily the best metric with which

to evaluate an image restoration scheme—the bottom line in any image restoration scheme is the

visual quality of the results. Figures 7 and 8 show close-ups of some example frames from the

experiments reported in Table II, and it is readily evident that the algorithm effectively removes

the blocking artifacts from the received images. Furthermore, over-smoothing is not apparent

in these reconstructions. Blocking artifacts have been successfully removed in both the Annex

J images and O’Rourke’s images, but ringing artifacts are still present for Annex J, while slight

oversmoothing is noticeable in O’Rourke’s algorithm.
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The quantization noise model introduced in this paper can be applied in a wide range of

restoration schemes of DCT-compressed images and video. Other examples include tempo-

ral resolution enhancement of compressed video (or temporal interpolation, i.e., increasing the

frame rate) [28, 29], and restoration of inter-compressed video frames (e.g., H.263 or MPEG

P-Frames) [29].

VIII. C ONCLUSION

This paper has provided a statistical description of the spatial-domain quantization noise in

images compressed using the DCT. Both the variance of the quantization error at individual

pixels, as well as the correlations between them, have been considered. It was demonstrated

that the spatial-domain quantization noise is in general correlated and spatially varying. The

presence of blocking artifacts became easily explicable in this context, as was their absence. It

was shown that in some cases one can actually expect pixel values near block boundaries to be

more accurate than those in the block interior.

An understanding of compression noise is crucial if one expects to be able to compensate ap-

propriately for such noise, making the concepts discussed in this paper valuable for those in the

compressed image and video post-processing fields. In particular, the statistical descriptors of

compression noise derived in this paper are readily applicable in a probabilistic image restora-

tion formulation, and this paper provided one such example that showed both quantitatively and

qualitatively the utility of the proposed noise model.
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1Equivalently, a regularization parameter can be varied to control the amount of smoothing
to perform, where the regularization parameter affects thea priori smoothness assumed for the
image.

2The authors do not make explicit use of (10) in their artifact reduction algorithm, but rather
include it in an explanatory sense.

3The work reported by Lakhani [22] also seems to support this: The author reports only
marginal improvements from an algorithm that decodes non-zero DCT coefficients based on a
Laplacian model.
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