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Abstract— In this paper, a modified version of the complex directional
pyramid (PDTDFB) is proposed. Unlike the previous approach, the
new FB provides an approximately tight-frame decomposition. We
introduced the complex Gaussian scale mixture (CGSM) for modeling
the distribution of complex directional wavelet coefficients. The statistical
model is then used to obtain the denoised coefficients from the noisy
image decomposition by Bayes least squares estimator. Performance of
the denoised images using the PDTDFB is compared to the conventional
transforms including the orthogonal wavelet, the contourlet and the
steerable pyramid. The experiments show that the PDTDFB could achieve
higher quality image denoising than the wavelet and the contourlet
with the hard thresholding method, and is comparable to the steerable
pyramid in terms of mean squared error (MSE) and perceptual image
quality (SSIM) with the Bayes least squares estimator.

I. INTRODUCTION

Many applications in image processing such as image compression,
image denoising can benefit from a statistical model to characterize
the image in the transform domain. A clean, precise probability model
which can describe sufficiently typical images becomes essential.
In this paper, the complex Gaussian scale mixture model for the
shiftable complex directional pyramid decomposition (PDTDFB [1])
is proposed for image denoising through the Bayes least squares
estimator.

There are many works on the statistics of decomposition coeffi-
cients of the wavelet transform [2]. The wavelet coefficients within
a subband were often assumed to be independent and identically
distributed. With this assumption, the wavelet coefficients can be
modeled by the marginal model whose distribution is a two-parameter
generalized Gaussian density (GGD). The GGD is very suitable
distribution for the peaky and heavy-tailed non-Gaussian statistic of
typical image wavelet decomposition. Although this wavelet marginal
model is more powerful than the Gaussian model, it does not take
into account the dependencies between different subbands as well as
between a coefficient and its neighboring coefficients of the same
subband. A number of researchers have developed successfully joint
statistical models in wavelet domain [3][4][5]. The Hidden Markov
Tree was introduced in [3] to model the wavelet decomposition. A
bivariate probability density function has been proposed to model
the statistical dependencies between a wavelet coefficient and its
parent [5]. In [4], the author developed a model for neighborhoods
of oriented pyramid coefficients based on a Gaussian scale mixture
(GSM) which is the product of a Gaussian random vector and
an independent hidden random scalar multiplier. This model can
account for both marginal and pairwise joint distributions of wavelet
coefficients. The GSM estimator is more complex than Gaussian
or wavelet marginal estimators but it provides significantly higher
performances in terms of both mean square error and visual quality
in image denoising [6].

In image analysis applications, an overcomplete, multiresolution
and multidirectional representation usually provides much better
performance compared to the critical representation such as the
discrete wavelet transform (DWT). Examples of multiscale and
multidirectional decompositions include Gabor filter bank, steerable
pyramid [7], complex wavelet, contourlet transform [8] and the
PDTDFB decomposition [1].

In this paper, we develop image denoising algorithm in PDTDFB
domain based on the complex Gaussian scale mixture (CGSM).
The pyramid FB in the PDTDFB is modified using other pyramidal
structure than the Laplacian pyramid. If there is added noise in the
decomposition coefficients of an image, the noise will be minimized
in the reconstruction image thanks to the new pyramid structure.
The paper is organized as follows. In the next section, the modified
shiftable complex directional pyramid is presented. The CGSM
distribution of local neighborhoods around a complex coefficent is
defined in Section III. We present the algorithm and experiments for
image denoising in Section IV. Section V concludes the paper.

II. THE MODIFIED SHIFTABLE COMPLEX DIRECTIONAL PYRAMID

The shiftable complex directional pyramid is a new image decom-
position, which is recently proposed in [1]. The image decomposition
implemented by a filter bank (FB) consists of a Laplacian pyramid
and a pair of directional filter banks (DFBs), designated as primal
and dual DFBs. Both DFBs are constructed by a binary-tree of two-
channel fan FBs. The filters of these FBs are designed to have special
phase functions so that the overall directional filters of the dual
DFB are the Hilbert transforms of the corresponding filters in the
primal DFB. Therefore, the two DFBs can be viewed as a single FB
with complex directional filters producing complex subband images,
whose real and imaginary parts are the outputs of the primal and
dual DFB, respectively. A multiresolution representation is obtained
by reiterating the decomposition at the lowpass branch. It is shown
in [1] that if the lowpass filters used in the Laplacian pyramid
have bandpass regions restricted in [−π/2, π/2]2, then the complex
directional subbands at all scale are shiftable.

The object of combining the Laplacian pyramid and dual-tree
DFB is to provide a FB that is multiresolution and multidirectional
at the same time. However, the Laplacian pyramid structure is not
essential to the shiftability of the overall FB. In fact, we can combine
any shiftable two-channel 2-D multiresolution FB with the dual-
tree DFB to obtain an overall shiftable FB. Moreover, it can be
shown that the synthesis side of the Laplacian pyramid structure
is suboptimal. In this paper, we proposed the construction of a
shiftable FB by combining the dual-tree DFBs with a multiresolution
FB as in Fig 1. The advantage of the new FB is that it provides
an approximately tight-frame decomposition, which is a desirable
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Fig. 1. A shiftable pyramid [1]. (a) The analysis side, and (b) Synthesis side. Similar P and Q blocks can be reiterated at lower scale to decompose an
image into a multiscale representation.
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Fig. 2. A slice of the 2-D frequency responses of (a) R0(z) and L0(z),
(b) R1(z) and L1(z).

property in an overcomplete decomposition [2]. However, the FB is
no longer exactly perfect reconstruction and the pyramidal filters are
nonseparable.

The new structure for the PDTDFB is illustrated in Fig. 1. The
input image is first pass through a two-channel undecimated FB. The
filters satisfy perfect reconstruction (PR) condition:

|R0(ω)|2 + |L0(ω)|2 = 1. (1)

The filter L0(z) is a wide-band lowpass filter while R0(z) is a
highpass filter. A slice of the two-dimensional frequency responses
of these two filters are in Fig. 2(a). After the undecimated FB, the
PDTDFB consists of multiple levels of block P (or Q for the synthesis
side) for each scale. This block consists of two filters R1(z) and
L1(z) and the dual-tree DFBs. The low frequency component, after
filtered by the low-pass filter L1(z) and decimated by D2 = 2I , is
fed into the second level decomposition for the second resolution of
directional subbands. The filters in blocks P and Q are designed to
satisfy the PR and non-aliasing condition (see Fig. 2(b))

|R1(ω)|2 +
1

4
|L1(ω)|2 = 1, (2)

L1(ω1, ω2) = 0 when |ω1| >
π

2
or |ω2| >

π

2
. (3)

The above conditions can only be approximated by realizable
filters. Similar to the steerable pyramid [7], the analysis filters are the
inverse of the synthesis filters. The implementation of the pyramid
FB is in the Fourier domain. The filters Ri(z) and Li(z) are defined
based on the 1-D Meyer scaling function [2].

III. SCALE MIXTURE OF COMPLEX GAUSSIAN DISTRIBUTIONS

A. Complex Gaussian distributions

A complex Gaussian distribution is defined as follows [9][10]:

f(u) =
exp

�−uH(Cu)−1u
�

(π)N |Cu| , (4)

where u ∈ CNx1 is a vector of complex stochastic variable defined
as u =

�
u, u, ...uN

�T
, and un = xn + jyn, xn, yn ∈ R1,

real-valued variables normally distributed. It will be assumed that

E[un] = E[xn] + jE[yn] = 0, where E[.] is expectation operator.
In these expressions, the superscript T denotes transposition, the
superscript H denotes complex conjugate transposition, and j =√−1. Furthermore, Cu ∈ CNxN is the complex covariance matrix
defined as Cu = E[uuH ]. By definition, Cu is positive definite and
Hermitian symmetric, hence, its inverse exists.

B. Complex Gaussian scale mixture for complex coefficient model

A statistic model based on Gaussian scale mixture distribution,
which is the product of a Gaussian random vector and an independent
hidden random scalar multiplier, is developed in [4]. This model can
account for both marginal and pairwise joint distributions of real
wavelet coefficients. Inspired by this approach, we define a complex
Gaussian scale mixture for modeling the complex coefficients. If two
random variables (x, z) have a jointly distribution, a mixture of f(x)
distributions is defined [11] as follows

h(x) =

�
f(x|z)g(z)dz, (5)

where f(x) and g(z) are the probability density functions of x, z.
Suppose that the vector u has a complex Gaussian distribution and

that scalar real variable
√

z has some distribution on (0,∞) with a
density pz(z) (z > 0). We refer x

∆
=

√
zu as the scale mixtures of

complex Gaussian distribution as follows

px(x) =

�
p(x|z)pz(z)dz, (6)

px(x) =

�
exp

�−xH(zCu)−1x
�

(π)N |zCu| pz(z)dz, (7)

where Cu = E[uuH ] is complex covariance matrix of u, u =�
u, u, ...uN

�T
, and N is dimensionality of u and x. The density

of x is complex Gaussian when conditioned on z, and the variable
z is known as the multiplier. We assume that the coefficients x =
xreal + jximag within each local neighborhood around a reference
coefficient of a complex subband are characterized by a CGSM
model. In general, the neighborhood may include coefficients from
other subbands, as well as from the same subbands. Similar to
the GSM, the probability density of the multiplier pz(z) can be
founded by using maximum log likelihood approach for estimating
a nonparametric pz(z) from an observed set of M neighborhood
vectors.

�pz(z) = arg max
pz(z)

M�
m=1

log

� ∞

0

p(xm|z)pz(z)dz. (8)

The PDTDFB coefficients are linked indirectly by their shared
dependency on the hidden multipliers z. Hence, the CGSM model
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can describe the shape of complex wavelet coefficient distributions
and the correlation between neighbor coefficients. Furthermore, the
CGSM model captures both magnitude and phase information of the
natural image.

IV. IMAGE DENOISING APPLICATION

A. Thresholding

1) Experiments: In the first set of experiments, the images are
denoised by using the hard thresholding method. We decompose
images into subbands using the PDTDFB, DWT and contourlet FBs.
All the three decompositions have four resolution levels, and the
lowest resolution subbands (coarse signal) are kept unchanged. An
orthogonal and nearly linear phase symlet FB of length 10 is used in
the DWT decomposition. In the contoulet and PDTDFB decomposi-
tion, the two lower resolution levels are also symlet wavelet, while
the two higher levels are directional FBs with 32 subbands and 16
subbands at the highest resolution and the next lower resolution,
respectively. The added noise is Gaussian and white with variance
σ2. The threshold is set at three times of the standard deviation of
the noise in the subbands. The noise variance in the wavelet subband
is also σ2, since the wavelet is orthonormal. The noise variances in
the directional subbands of the PDTDFB decomposition are estimated
by

σ2
k =

1

4π2

�
σ2 |Fk(ω)|2 dω (9)

= σ2
�

n∈Z2

|fk(n)|2

where fk(n) and Fk(ω) are the spatial and frequency responses of
the kth considered directional filter.

2) Results: We compare the PSNR values of the denoising results
using different transforms with the hard thresholding method as
shown in table I. The PDTDFB transform provides higher PSNR
values than the wavelet and contourlet transforms for three images.
It is evident that the PDTDFB is consistently better than the wavelet
and contourlet transforms when the standard deviation of the input
noise is varying between σ = 15 and σ = 100.

B. Bayes Least Squares Estimator

One of the best methods for image denoising is the Bayes least
squares estimator based on the Gaussian scale mixture model (BLS-
GSM) presented in [6]. For each neighborhood, the reference coef-
ficient at center of the neighborhood is estimated from y, the set of
observed coefficients. The subband coefficients are real numbers, and
the probability density function is a function of the real variable. The
BLS-GSM method is used to estimate the real subband coefficients.
However, the shiftable complex directional pyramid decomposes an
image into the subbands whose coefficients are complex values. Our
purpose here is to develop the BLS-GSM algorithm for estimating
the complex coefficients.

Let y be the vector corresponding to a neighborhood of N
observed complex coefficients

y = x + w, (10)

where x is a original coefficient vector and w is a noise vector in
the transform domain. We make a simplifying assumption that w is
a zero-mean complex Gaussian vector and x is a CGSM vector as
shown in (7). It is well know that the Bayes least squares estimation
is the conditional expectation when x and y are real random vectors
as follows �x = E[x|y]. (11)

TABLE I
PSNR VALUES OF THE IMAGE DENOISING EXPERIMENTS USING HARD

THRESHOLDING METHOD

Image σ PSNR DWT contourlet PDTDFB
Lena 15 24.61 30.03 30.32 31.98

20 22.11 28.67 29.11 30.83
30 20.17 26.67 27.41 28.95
50 14.15 24.05 25.10 26.39
75 10.63 21.73 23.12 24.04

100 8.13 19.84 21.68 22.33
Barbara 15 24.61 27.31 27.59 29.32

20 22.11 25.70 26.38 28.06
30 20.17 23.62 24.68 26.52
50 14.15 21.52 22.70 24.31
75 10.63 19.86 21.13 22.45

100 8.13 18.31 19.99 20.99
Peppers 15 24.61 29.87 29.95 31.09

20 22.11 28.51 28.92 30.00
30 20.17 26.52 27.17 28.46
50 14.15 23.87 24.94 26.10
75 10.63 21.56 23.05 23.83

100 8.13 19.58 21.47 22.18

E[x|y] =

� ∞

0

p(z|y)E[x|y, z]dz, (12)

where the scalar real variable z has some distribution on (0,∞) with
a density pz(z) (z > 0). When conditioned on z as shown in [6]

E[x|y, z] = zCu(zCu + Cw)−1y. (13)

It is possible to show that the same results (11), (12), (13) are valid
for the complex random variables. However, the covariance matrices
Cu = E[uuH ] and Cw = E[wwH ] are positive definite and
Hermitian symmetric (ci,j = c∗j,i), and the density of the observed
neighborhood vector conditioned on z is a zero-mean complex
Gaussian, with covariance Cy|z = zCu + Cw

p(y|z) =
exp

�−yH(zCu + Cw)−1y
�

(π)N |zCu + Cw| , (14)

For estimating x, p(z|y) as in (12) is computed as follows

p(z|y) =
p(y|z)pz(z)�∞

0
p(y|α)pz(α)dα

, (15)

and pz(z) ∝ 1/z as shown in [6] is applied to the experiments in
this paper.

1) Experiments: We decompose the images into subbands using a
shiftable complex directional pyramid [1]. The representation consists
of oriented bandpass bands at 3 scales (16 orientations in the finest
scale, 8 orientations in the coarse scale and 4 orientations in the
coarsest scale), highpass residual band, and one lowpass band. Each
subband except for the lowpass residual band is denoised by using the
BLS estimator described above. The denoised image is reconstructed
from the processed subbands and the lowpass band. We assume the
image is corrupted by independent additive Gaussian noise. The Lena,
Barbara images of size 512 × 512 are used in this experiment.

We obtain the neighborhood noise covariance Cw by decomposing
a random noise image which has normal distribution with mean
zero, standard deviation σ and dimensionality as original image
in to shiftable complex pyramid subbands. This image has the
same power spectrum as the noise. Given Cw, the covariance Cu

can be computed from the observation covariance matrix Cy =
E[z]Cu + Cw. Set E[z] = 1, hence, Cu = Cy − Cw.
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Fig. 3. Comparison of denoising results on Barbara. From left to right
and top to bottom: Original image, Noisy image (σ = 25, PSNR = 20.17),
DWT(PSNR = 27.05), UDWT (PSNR = 28.06), FS (PSNR = 29.13),
and PDTDFB (PSNR = 29.38).

Fig. 4. Comparison of denoising results on Barbara. From left to right:
Original image, Noisy image(σ = 25, PSNR = 20.17), DWT (PSNR =
27.05), UDWT (PSNR = 28.06), FS (PSNR = 29.13), and PDTDFB
(PSNR = 29.38).

2) Results: Table II and III show the PSNR and SSIM [12] values
of the denoising results when the standard deviation of the input noise
is varying between σ = 15 and σ = 100. The quality of the denoised
images of our proposed denoising method are compared to those
of BLS-GSM method [6] in wavelet domain including orthogonal
wavelet (DWT) and full steerable pyramid (FS). Our method performs
better than the orthogonal wavelet in terms of mean squared error
(MSE) and perceptual image quality (SSIM) and is comparable to
the steerable pyramid with several noise levels σ from 15 to 100.
This is significant since the PDTDFB has much lower overcomplete
ratio compared to the steerable pyramid. The PDTDFB redundancy
ratio approximately 11/3, while the redundancy ratio of the steerable
pyramid with 8 orientations is 32/3. The proposed denoising method
could achieve high quality image denoising, recover very fine details,
e.g. texture. Figure 3 and 4 show the zoom-in image denoising results
of Barbara image with different denoising methods. In these figures,
UDWT denotes the undecimated discrete wavelet transform.

V. CONCLUSION

The modified version of the PDTDFB has been proposed for
image denoising. The shiftable properties of this approximately tight-
frame decomposition benefits the image denoising application. In
comparison to the existing transforms including the wavelet, the
contourlet, the PDTDFB yields the best image denoising performance
with the thresholding method. Although the overcomplete ratio of the
PDTDFB is much lower than this of steerable pyramid, by combining
the CGSM model with BLS estimator, PDTDFB could achieve the
denoised image quality comparable to steerable pyramid with the
BLS-GSM algorithm.
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TABLE II
PSNR VALUES OF THE IMAGE DENOISING EXPERIMENTS USING BAYES

LEAST SQUARES ESTIMATOR

Image σ PSNR FS [6] DWT PDTDFB
Lena 15 24.61 33.90 32.39 33.56

20 22.11 32.66 31.04 32.31
25 20.17 31.69 30.01 31.33
50 14.15 28.61 27.01 28.04
75 10.63 26.84 24.41 26.06

100 8.13 25.64 23.21 24.60

Barbara 15 24.61 31.86 29.88 31.86
20 22.11 30.32 28.24 30.45
25 20.17 29.13 27.05 29.38
50 14.15 25.48 23.82 26.04
75 10.63 23.65 22.32 24.16

100 8.13 22.61 21.44 22.73

TABLE III
SSIM VALUES OF THE IMAGE DENOISING EXPERIMENTS USING BAYES

LEAST SQUARES ESTIMATOR

Image σ SSIM FS DWT PDTDFB
Lena 15 0.45 0.89 0.86 0.88

20 0.34 0.87 0.83 0.86
25 0.27 0.85 0.80 0.84
50 0.11 0.78 0.69 0.77
75 0.06 0.73 0.59 0.71
100 0.04 0.69 0.53 0.65

Barbara 15 0.58 0.90 0.86 0.90
20 0.48 0.87 0.82 0.87
25 0.40 0.84 0.78 0.85
50 0.20 0.70 0.62 0.73
75 0.11 0.61 0.53 0.65
100 0.07 0.53 0.47 0.58

REFERENCES

[1] T. Nguyen and S. Oraintara, “The shiftable complex directional
pyramid,” submitted to IEEE Transactions on Image Processing, 2006.
[Online]. Available: http://www-ee.uta.edu/msp/truong

[2] S. G. Malat, A wavelet tour of signal processing. San Diego: Academic
Press, 1998.

[3] M. Course, R. D. Nowak, and R. G. Baraniuk, “Wavelet-based signal
processing using hidden Markov models,” IEEE Trans. Signal Process-
ing. (Special Issue on Wavelet and Filter banks), pp. 886–902, Apr 1998.

[4] M. J. Wainwright and E. P. Simoncelli, “Scale mixtures of Gaussians
and the statistics of natural images,” Adv. Neural Information Processing
Systems, vol. 12, pp. 855–861, 2000.

[5] L. Sendur and I. Selesnick, “Bivariate shrinkage functions for wavelet-
based denoising exploiting interscale dependency,” IEEE Transactions
on Signal Processing, vol. 50, no. 11, Nov 2002.

[6] J. Portila, V. Strela, M. J. Wainwright, and E. P. Simoncelli, “Image
denoising using scale mixtures of Gaussians in the wavelet domain,”
IEEE Trans. Image Processing, vol. 12, no. 11, Nov 2003.

[7] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger,
“Shiftable multiscale transform,” IEEE Transaction on Information The-
ory, vol. 38, no. 2, pp. 587–607, Mar 1992.

[8] M. N. Do and M. Vetterli, “The contourlet transform: An efficient
directional multiresolution image representation,” IEEE Transactions on
Image Processing, p. in press, 2005.

[9] N. Woodman, “Statiscal analysis based on a certain multivariate complex
Gaussian distribution,” Annals Math. Statist., vol. 34, 1963.

[10] K. Miller, “Complex Gaussian processes,” SIAM Rev., vol. 11, 1969.
[11] H. Woodman, “On the mixture of distributions,” Annals Math. Statist.,

vol. 31, no. 1, March 1960.
[12] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-

ment: from error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, April 2004.

4003


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

