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ABSTRACT

For tissue characterization in medical ultrasound imagery or

terrain characterization in synthetic aperture radar imagery,

it is necessary to preprocess imagery to reduce granular, 

texture-alike noise called speckle. This preprocessing is

difficult when it is needed to preserve delicate image details

that are buried in speckle. Speckle reducing anisotropic

diffusion (SAR) is a partial differential equation-based

method developed for this purpose. Toward its improved

performance for point/linear features, we introduced a novel

regulator called energy condensation integral and developed

a regularized SRAD (Reg-SRAD) via minimization. The

Reg-SRAD generates outputs with increased resolution for 

point and linear features while retaining the characteristics 

the SRAD–filtering speckle with regional features

enhanced. The performance of the method has been

illustrated using synthetic and real ultrasound data, and

radar imagery as well.

Index Terms – speckle, filtering, synthetic aperture

radar, diffusion equations, regulators

1. INTRODUCTION

Speckle plagues the visualization and interpretation of fine 

structures in coherently imaged imagery such as ultrasound

(US) and synthetic aperture (SAR) radar images. The

challenge in speckle filtration is how to achieve desired 

speckle removal with least loss of details. Many speckle 

filters [6, 7, 8] have been developed with the capability of 

retaining certain features. However, these techniques do not 

meet the need of quantitative image analysis for tissue or 

terrain characterization. More delicate feature-preserving

speckle filters are in need and being sought. 

Speckle reducing anisotropic diffusion (SRAD) [12] has 

been emerged as a tool for reducing speckle with regional

feature neatly enhanced. The method relies on the

instantaneous coefficient of variation (ICOV) edge detector

[12, 13] as a controller of diffusion rate near edges of

regional structures. In SAR imagery, man-made targets

usually show as dominant point scatterers and it is necessary 

for object detection and recognition methods attempt to

extract the locations of them. In ultrasound images of artery, 

linear features are important. For thin linear features and 

point features, SRAD tends to broaden (see Fig. 1). Though

for regional feature characterization, the broadening is

trivial; for linear feature characterization, it needs to be

corrected. There exists  a need to improve SRAD for

applications where point and linear feature are critical.

To alleviate point/linear feature broadening problem,  a

DeSpeRADo [1] method is proposed that combines the

strength of SRAD and deconvolution restoration. This

technique assumes that feature distortion is caused by the

convolution of the point spread function (PSF) of the

imaging system with the underlying feature. Hence,

Deconvolution sharpens features, while SRAD is removing 

speckle. DeSpeRADo showed promising results on

synthesized ultrasound data, although no results were

reported for real data. However, the DeSpeRADo assumes a

linear signal model for envelop-detected amplitude signals

- an assumption that topples general belief that such linear 

signal model only exists for radio frequency (RF) data [11].

Moreover, the estimation of system and environment-

induced PSF has remained to be an unsolved, challenging 

problem [11]. These limitations may hinder the use of

DeSpeRADo in real applications of feature characterization.

It  is desirable to pursue methods that do not require the 

use of PSF for correcting feature broadening distortion. The

method to be presented in this paper is inspired by recent

advances  in high resolution SAR image formation

techniques based on nonquadratic   (lk-norm) regularization

[2, 4]. In particular, lk-norm imposes an energy-type

constraint on the reconstructed solution, and shows the

capability to suppress artifacts and increase the resolvability 

of scatterers. This class of methods has been shown

promising to generate super-resolution images with

point/linear features enhanced, relative to the SAR images

formed by conventional Range-Doppler algorithms [3, 5].

The lk-norm regularization technology, while has the

capability to increase resolution, does not rely on the PSF.

In this paper, we incorporate the nonquadratic

regularization into SRAD in order to enhance the

performance of SRAD for point/linear feature

characterization; and derive a Reg-SRAD partial differential 
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equation from the perspective of energy functional

minimization. The resultant diffusion equation enables the

correction of feature broadening distortions with minimum 

operations added.

2. METHOD AND THEORY

The Reg-SRAD may serve as  a general PDE-based

approach for removing speckle and enhancing

point/linear/regional features. It is applicable to either

ultrasound, SAR, or Lidar intensity imagery. The Reg-

SRAD partial differential equation (PDE) is composed of 

two components: the SRAD diffusion component and the 

energy contraction component. The former accounts for

speckle removal and regional feature enhancement; and the 

latter reduces the broadening distortion of point and/or

linear features. 

For notational simplicity, let vector x
r

 denote any

location in image domain O. The SRAD partial differential 

equation can be written as follows:
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where 2∇ is the Laplacian operator, ||·|| the magnitude of

gradient, and |·| the absolute value. The scalar function c(q)

in (1) is calculated by 
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where q0(t)  is the coefficient of variation measured in a

homogeneous speckle area at instant t. The PDE (1) is 

subjected to the initial condition )(
0

)0;( xItxI
rr

== (with

)(0 xI
r

 being the input image) and mirror boundary

condition.

We view (1) to be the evolution equation of an Euler 

equation that is derived from an energy functional

minimization problem given by:

∫Ω= xdqfIE
r

)()(0 (4)

where function )(⋅f is  nonnegative and increase and q is the 

instantaneous coefficient of variation as defined in (2). In

fact, in [14] it can be seen that (1) can indeed be derived 

approximately from (4) as far as the diffusive function (3) is 

not specified as such. Now, (4) is the starting point for our 

derivation of the Reg-SRAD. In order to emphasize point 

and linear features that are not explicitly treated by SRAD,

we introduce an energy-condensation regulator in the SRAD

energy functional (4), forming the dual-objective energy 

functional as follows:
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where λ is a positive weight factor, γ a parameter greater 

than unity, and Ic a threshold value above which image 

features are considered bright. The first term in (5) gets

diminished through diffusion. The regulator (second term)

imposes an energy-condensation constraint for bright

features on the diffusion solution. With a γ 1>>  one

observes that: 1) the broadening of bright image features

(compared to Ic) during the diffusion process would increase

the total energy in (5) rapidly, and 2) the majority of image

regions (that are darker than Ic) undergoes SRAD essentially

as
γ)/( cII approaches to zero when I < Ic. Therefore, the

regulator in (5) serves to prevent the fattening of bright

spots/linear structures without noticeably affecting normal

SRAD diffusion in dominant image regions. A larger γ
value favors a solution with increased resolvability of bright 

point and linear features. Weight λ  determines the

emphasis on the speckle smoothing and point/linear feature 

preservation.

By minimizing the energy functional (5), we have

derived the following Reg-SRAD evolution equation:
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To avoid trivial solution of all zeros, we restrict ourselves to

solutions of (6) in the space of equal energy functions (i.e., 

∫∫ Ω=Ω xdIxdI
rr γγ

0
). To solve (6), three constants,λ , γ and

Ic, must be determined. In principle, weigh λ can be found

by the technique in [9]. However, there is no rule to choose

the gamma parameter. Empirically, we choose a gamma

value in the range of 1.2 ~ 3. A value of Ic is adaptively set 

as the median (or mean) of the image function I. The partial

differential equation in (6) can be easily digitized using a 

differencing scheme and solved by iterative method. After

each iteration, the energy of the updated I is rescaled by a 

factor of <I0>/<I> (where < > denotes mean value) so that 

the processed image has the same energy as the input I0.

Starting from the original speckle image, it takes ~300

iterations for (6) to converge to a stationary solution for a

time step t∆ = 0.05. Finally, it is worthwhile to point out 

that the Reg-SRAD can be solved equivalently by reversing

the sign of λ and letting γ <1. With the equivalent method,

a gamma value of 0.75 gives satisfactory results in most 

cases. The equivalent method is appropriate for hardware 

implementation of the Reg-SRAD algorithm. 

3. RESULTS AND DISCUSSION

To show the performance of the Reg-SRAD method, the

results from experiments using a synthesized ultrasound

image were first evaluated in terms of feature preservation 

and speckle/artifacts reduction. 
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The synthesized, test ultrasound image contains four

objects—a circular, two intersecting line features and one 

point. The mean reflectivity image is shown in Fig. 1(Top

left). We model randomly-distributed micro-scatter within

the reflectivity image as a Gaussian-distributed field of zero-

mean and unity variance. By pointwisely multiplying the

mean reflectivity and the Gaussian field, we get the

reflectivity image. This reflectivity function is then

convolved with a two–dimensional ultrasound pulse or point

spread function, yielding the radio frequency data. The test

ultrasound image (amplitude) is taken as the envelop-

detected RF data obtained by adding a Hilbert transform of 

the RF signal and taking the absolute value of the complex 

signal. Figure 1 (top right) shows the synthesized ultrasound 

image after logarithmic transformation in order for better 

visualization. Note speckle everywhere and artifacts in 

vertical direction.

Example test results of the SRAD and the Reg-SRAD

are shown in Fig. 1(lower left and right), respectively. The

same number of iterations is used in both algorithms. In the 

SRAD result, speckle and artifacts have been smoothed 

adequately within all features. There are some cloudy

artifacts in the background. Though all features have been 

enhanced in terms of contrast, the sizes of features become 

expanded. The broadening of point and linear features is 

more pronounced than that of the regional feature. On the 

contrary, in the Reg-SRAD result, artifacts and speckle in

the background have been smoothed completely. However,

within features there is remaining speckle. The broadening

distortion problem of features has been correctly solved.

The improved result allows for thin feature characterization.

Next, we demonstrate the improved performance of the 

Reg-SRAD method over the SRAD using real ultrasound

images of human carotid artery. Fig. 2 (top left) shows

tested image with speckle. The SRAD processed result is 

shown in Fig. 2 (top right), with speckle reduced and feature

revealed. Though the feature broadening is not obvious

there are some staircase artifacts. On the other hand, the 

Reg-SRAD result shows improvement in terms of speckle 

reduction and artifacts reduction. 

Finally, we give example results of the Reg-SRAD

algorithm for processing SAR images extracted from

“Moving and stationary target acquisition and recognition 

public data set”-MSTAR data set [10] in Fig. 3.  As

expected, results are visually appealing, as the processed 

images appear as optical imagery.

In conclusion, a point-wise energy-condensation

regulation technique has been developed to enhance the

capability of SRAD algorithm for better preserving bright

point and linear features. The new component in the Reg-

SRAD partial differential equation is derived from the

minimization of the regulator. The resulting result from

Reg-SRAD strikes a balance between speckle reduction and 

point/linear/regional features emphasis. The Reg-SRAD

improves the resolution of the image and enables the image 

to be more appealing to human visual systems.
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Fig. 1. Results with synthesized data.

Mean reflectivity function (Top left), Speckle US image

(top right), SRAD result (Lower left), and Reg-SRAD result

(lower right).

Fig. 2. Results from US data of carotid artery.

Original US image (top); SRAD result (Lower left);

and Reg-SRAD result (lower right).

(3a) Original

(3b) Processed by Reg-SRAD

(3c) Original

(3d) Processed by Reg-SRAD

Fig. 3. Results from two SAR images.
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