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Abstract: This study investigated the effect of force levels (3, 5, 7, 9 and 11N) on fingerprint 
matching performance, image quality scores and minutiae count between optical and capacitance 
sensors. Three images were collected from the right index fingers of 75 participants for each 
sensing technology. Descriptive statistics analysis of variance and Kruskal-Wallis non-parametric 
tests were conducted to assess significant differences in minutiae counts and image quality 
scores, by force level. The results reveal a significant difference in image quality score by force 
level and sensor technology in contrast to minutiae count for the capacitance sensor. The image 
quality score is one of the many factors that influence the system matching performance, yet the 
removal of low quality images does not improve the system performance at each force level. 
Further research is needed to identify other manipulatable factors to improve the interaction 
between a user and device and the subsequent matching performance. 
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1 Introduction 

Biometric technology is defined as the automated 
recognition of behavioural and physiological characteristics 
of an individual (International Organization for 
Standardization, 2007). An important question that has 
received insufficient attention has to do with how 
individuals should interact with a biometric device to obtain 
the most suitable samples for matching with that particular 
system. A non-exhaustive list of factors that would likely 
influence users’ behaviour includes information about the 
intended users themselves and their knowledge about the 
system, the environment, the application and the design of 
the system/device/sensor. Ultimately, the success of 
biometric technologies relies on the sensors’ ability to 
collect and extract the biometric characteristics from 
different individuals. If most individuals experience failures 
during interaction, these failures may cause individuals, 
organisations and government to seek other security 
technologies. 

The authors have undertaken the task of answering  
this important question through researching the human-
biometric sensor interaction (HBSI). HBSI is an 
interdisciplinary research area within the field of biometrics 
that focuses on the interaction between the user and  
the biometric system to better understand how individuals 
use biometric devices to uncover the issues and errors  
users knowingly and unknowingly generate when 
attempting to use a particular biometric system (Elliott et 
al., 2007; Kukula, 2007; Kukula, 2008; Kukula et al., 2008; 
Kukula and Elliott, 2006; Kukula et al., 2007a, 2007b, 
2007c). This research area attempts to understand the tasks, 
movements and behaviours users execute when they 
encounter different biometric modalities. This research area 
frames a challenge for the biometrics community: while the 
algorithms are continually improving, there remain 
individuals who cannot successfully interact with the 
biometric sensor(s) or provide the system with images or 
samples of sufficient quality to achieve satisfactory results. 
Therefore, the goal of HBSI research is to understand user 
movements, behaviours and problems so as to modify the 
user’s interaction with the sensor through training and 
education with the objective of capturing better quality 
samples or recommend design alterations for biometric 
devices, processes or systems that better accommodate user 
limitations to reduce the quantity of unusable or unacquired 
biometric samples. 

2 Motivation and previous literature 

The motivation for this research is to determine the impact 
of human interaction with fingerprint sensors and the 
implications on image quality and subsequent algorithm 
performance. The significance of user interaction with 
various fingerprint recognition sensor technologies is 
apparent, given that fingerprint recognition is the most 
widely used of the biometric technologies, with popular 
applications in law enforcement [e.g., the integrated 
automated fingerprint identification system (IAFIS)], access 
control, time and attendance recordkeeping and personal 
computer/network access. The current biometrics industry 
report published by the IBG (2006) states that fingerprint 
recognition holds approximately 44% of the biometric 
market. Traditionally, this high market share has been 
attributed to law enforcement applications, but over the last 
two years, the list of applications for fingerprint recognition 
technologies has grown tremendously. This expansion is 
due, in part, to the rapid evolution of sensors and the 
expansion of applications beyond law enforcement and 
computer desktop single sign-on solutions to personal data 
assistants, mobile phones, laptop computers, desktop 
keyboards, mice and universal serial bus (USB) flash media 
drives, to name a few. In particular, the growth (in terms of 
volume) of one fingerprint vendor’s sales reached new 
highs in fiscal year 2006 – shipping one million sensors 
between 1998–2003, four million between 2003–2005 and 
five million sensors in 2006 (Burke, 2006). As fingerprint 
recognition applications continue to become more 
pervasive, the biometric community must appreciate the 
impact that different types of human interaction have on 
performance of the biometric system, but also examine if 
there are differences in human interaction characteristics 
and system performance among the various fingerprint 
sensing technologies. 

Original work by Kang et al. (2003) examined finger 
force and indicated that force does have an impact on 
quality, but did not specify quantitative measures. Instead, 
this research classified force as low (softly pressing), middle 
(normally pressing) and high (strongly pressing). Edwards 
et al. (2006) noted the relationship between finger contact 
area, pressure applied and other physical characteristics and 
stated that by analysing the finger pressure and contact area, 
it is possible to enhance fingerprint systems. Based on the 
work of Kang et al. (2003), the authors conducted 
experiments in Kukula et al. (2007) to quantitatively assess 
the impact of fingerprint pressing force on both image 
quality and the number of detected minutiae on fingerprint 
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image quality as it is documented that image quality has an 
impact on the performance of biometric matching 
algorithms (Jain et al., 2005; Modi and Elliott, 2006; 
Tabassi and Wilson, 2005; Yao et al., 2004). Results of 
Kukula et al. (2007) revealed that there was no incremental 
benefit in terms of image quality when using more than 9N 
when interacting with an optical fingerprint sensor in one 
particular experiment. A second experiment further 
investigated the 3N–9N interval, with results indicating that 
optimal image quality scores were obtained with a subject 
pool of 43 people in the 5N–7N force level range. However, 
it should not be assumed that this force level range is 
optimal for other fingerprint sensing technologies, offering 
yet additional research opportunities. 

3 The authors’ approach 

The purpose of this research was to perform a comparative 
evaluation of optical and capacitance fingerprint sensors to 
determine if fingerprint sensing technologies are affected by 
finger force, as discussed in Kang et al. (2003) and Kukula 
et al. (2007). The research conducted in this paper followed 
the methodology of experiment 2 in Kukula et al. (2007), 
but was modified to include the capacitance sensor. Five 
force levels were used and measured in Newtons (N): 3N, 
5N, 7N, 9N and 11N. The force levels were measured with 
a dual-range force sensor. Interaction was limited to the 
subject’s right index finger for both sensors to minimise the 
variability of measurement relative to dexterity and finger 
size. Variability that naturally occurs between individuals 
was treated as an uncontrollable factor. Once the fingerprint 
samples were collected, the prints were analysed using 
commercially available quality analysis software. The 
following variables were reported by the software: image 
quality score, minutiae and the number of core(s)/delta(s). 
The image quality score ranged from 0–99, with zero (0) 
being the lowest possible quality image score and 99  
being the highest possible quality score. Fingerprint feature 
extraction and feature matching was performed using the 
Neurotechnologija VeriFinger 5.0 algorithm. Several 
different metrics can be used for analysing matching 
performance of a dataset; the authors used false non-match 
rates (FNMR) and false match rates (FMR) to determine the 
performance of different force levels. A combined graphical 
representation of FNMR and FMR can be created using 
detection error trade-off (DET) curves, which indicate a 
combination of FNMR and FMR at every possible threshold 
value of the fingerprint matcher. DET curves were created 
for fingerprints captured at each force level and then DET 
curves were created for fingerprint datasets that resulted by 
combining every possible pair of force levels. This 
methodology was performed separately for fingerprints 
collected from the optical and capacitive sensors. 

4 Experimental design 

To analyse the results, both parametric and non-parametric 
analysis of variance methods were used, based solely on 
model assumptions and the resulting diagnostics image 
quality scores and number of detected minutiae. Analysis of 
variance methods to compare the effect of multiple levels of 
one factor (force) on a response variable (image quality, 
number of minutiae) yielded a generalisation of the  
two-sample t-test. 

4.1 Parametric – number of detected minutiae 

The parametric method is known as analysis of variance or 
ANOVA. Parametric tests, like their non-parametric 
counterparts, involve hypothesis testing, but parametric tests 
require a stringent set of assumptions that must be met 
(NIST/SEMATECH, 2006). The ANOVA is partitioned 
into two segments: the variation that is explained by the 
model (1) and the variation that is not explained (the error) 
(2) which are both used to calculate the F-statistic (3) 
testing the hypothesis Ho: µ1 = µ2 = … = µI and Ha: not all 
µ’s are the same. In practice, p values are used, but the 
Fobserved test statistic can also be compared to the F 
distribution table, as shown in (4). Typically, when the Ho is 
rejected, the variation of the model (SSM) tends to be larger 
than the error (SSE), which corresponds to a larger F value. 
The number of detected minutiae was analysed using this 
methodology: 

( )2ˆ ,  1,   iSSM Y Y dfM MSM SSM dfM= − = =∑  (1) 

( )2ˆ ,  2,   i iSSE Y Y dfE n MSE SSE dfE= − = − =∑  (2) 

~ ( , )F MSM MSE F dfM dfE=  (3) 

(1 , , )F F dfM dfEα≥ −  (4) 

4.2 Non-parametric – image quality score 

According to Montgomery (1997), in situations where 
normality assumptions fail to be met, alternative statistical 
methods to the F-test analysis of variance can be used.  
Non-parametric methods are those that are distribution-free 
and are typically used when measurements are categorical, 
parametric model assumptions cannot be met or analysis 
requires investigation into features such as randomness, 
independence, symmetry or goodness of fit, rather than 
testing hypotheses about values of population parameters 
(NIST/SEMATECH, 2006). 

One of the more common non-parametric methods was 
developed by Kruskal and Wallis (1952, 1953). The 
Kruskal-Wallis test examines the equality of medians for 
two or more populations and examines the hypotheses Ho 
(the population medians are all equal) and Ha (the medians 
are not all the same), with the assumption that samples 
taken from different populations are independent random 
samples from continuous distributions with similar shapes 
(Minitab, 2000). The Kruskal-Wallis test computes the H 
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statistic, as shown in equation (5). Image quality scores 
were analysed with this method to address skewness of 
scores to the left. 

2

 = 1

12 =   3 (  + 1) ,
( 1)

a
i

ii

R
H N

N N n
⎡ ⎤

−⎢ ⎥+⎣ ⎦
∑  (5) 

where a equals the number of samples (groups), ni is the 
number of observations for the ith sample, N is the total 
number of observations and Ri is the sum of ranks for group 
i (NIST/SEMATECH, 2006). 

5 Evaluation and experimental results 

The evaluation consisted of 75 participants, 18–25 years 
old, and took place in October 2007. All participants used 
their right index finger and three images were collected at 
each force level and for both sensing technologies. The five 
force levels investigated were: 3N, 5N, 7N, 9N and 11N. 
Fingerprint images for two subjects at each of the 
corresponding force levels and the two sensing technologies 
can be seen in Figure 1. 

Figure 1 Fingerprint images and quality scores for five force 
levels by sensor technology: optical (top) and 
capacitance (bottom) 

Optical fingerprint images 

     
3N force  
Quality 3 

5N force  
Quality 87 

7N force  
Quality 91 

9N force  
Quality 88 

11N force 
Quality 90 

Capacitance fingerprint images 

     
3N force  

Quality 91 
5N force  

Quality 87 
7N force  

Quality 81 
9N force  

Quality 61 
11N force 
Quality 38 

Results are documented in terms of minutiae count analysis, 
image quality analysis and performance analysis. 

5.1 Number of detected minutiae 

The number of minutiae detected from a fingerprint image 
can vary according to the force applied by the finger on the 
surface of the sensor. An ANOVA test was performed at a 
significance level (α) of 0.05 to determine whether the 
average minutiae count between the force levels are 
statistically significant for the optical sensor. The p-value of 
less than 0.05 was observed, which indicated that the 
minutiae counts between the force levels were statistically 
different. In order to test which groups were significantly 
different, the Tukey test for pair-wise comparisons was 

performed. The results of the pair-wise comparisons and 
descriptive statistics are shown in Tables 1 and 2, 
respectively. The results showed that the 3N average 
minutiae count was significantly different from all the other 
force level average minutiae counts. 

Table 1 Tukey pair-wise comparison results for optical sensor 

 3N 5N 7N 9N 11N 

3N – p < .05 p < .05 p < .05 p < .05 
5N  – p < .05 p < .05 p < .05 
7N   – n.s. p < .05 
9N    – n.s. 
11N     – 

A similar ANOVA test was performed at a significance 
level of 0.05 to determine whether the average minutiae 
counts between the force levels are statistically significant 
for the capacitive sensor. The ANOVA test had a  
p-value = 0.387, which indicated that the minutiae counts 
between the force levels did not demonstrate a statistically 
significant difference. The descriptive statistics are 
presented in Table 2. 

Table 2 Descriptive statistics for the number of detected 
minutiae by sensor type 

Optical  Capacitance Force 
level N µ σ  N µ σ 

3N 228 39.78 13.25  228 39.62 11.15 
5N 228 43.72 13.12  224 40.76 11.40 
7N 228 46.99 12.12  227 41.75 11.27 
9N 228 48.61 11.77  228 41.01 10.96 
11N 228 50.65 12.06  228 40.96 12.22 

To further examine the differences in the number of 
detected minutiae across the optical and capacitance 
sensors, overlapping histograms were constructed, as shown 
in Figure 2. 

Figure 2 Histogram of the number of detected minutiae by force 
level and sensor technology 
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5.2 Image quality 

As described in the experimental design, image quality 
failed to meet the parametric ANOVA model assumptions 
due to skewness of the image quality scores. Thus, the 
authors used the non-parametric Kruskal-Wallis (H) test to 
analyse the image quality scores for both sensors. 

The results of the non-parametric test for the image 
quality scores from the optical sensor revealed a statistically 
significant difference among the median image quality 
scores across the five force levels, H(.95, 4) = 47.96, 
resulting in a p-value less than 0.05. By examining the 
descriptive statistics for the optical image quality scores, as 
shown in Table 3, patterns can be found in the mean, 
median and standard deviation. The mean and median 
increase as force increases, while the variation between the 
image quality scores for a particular level decrease as force 
increases. 

However, the descriptive statistics for the capacitance 
image quality scores exhibit the opposite behaviour, as 
shown in Table 4. For the capacitance image quality scores, 
the mean and median decrease as force increases, while  
the variation between the image quality scores for a 
particular level increases as force increases. The results for 
the non-parametric test for the capacitance image quality 
scores revealed the same thing; that is, there is a statistically 
significant difference among the median image quality score 
across the five force levels, H(.95, 4) = 87.30, resulting in a 
p-value less than 0.05. 

Table 3 Descriptive statistics for optical image quality scores 

Force level N µ x ̃ σ 

3N 228 75.25 80.0 17.05 
5N 228 78.52 84.0 16.79 
7N 228 81.15 86.0 13.15 
9N 228 81.94 86.0 11.62 
11N 228 82.25 86.0 10.95 

Table 4 Descriptive statistics for capacitance image quality 
scores 

Force level N µ x ̃ σ 

3N 228 83.79 87.0 12.07 
5N 224 80.87 87.0 16.31 
7N 227 78.41 85.0 17.71 
9N 228 74.26 82.5 20.30 
11N 228 69.96 77.0 22.20 

To further illustrate the different patterns in image quality 
data, histograms for the optical and capacitance sensor 
image quality scores were constructed by force level, shown 
in Figure 3. 
 
 
 
 

Figure 3 Histogram of image quality scores by force level and 
sensor technology 

 

5.3 Full dataset matching performance 

Once the fingerprint image characteristics were analysed, 
performance of all the collected fingerprint images from 
different force levels was analysed using a minutiae-based 
matcher. DET curves were created to graphically represent 
the results. 

Figure 4 shows the DET curves for fingerprint images 
from each force level on the optical sensor. Note the flatness 
of the DET curves for 5N, 9N and 11N is indicative of an 
optimal state. The DET curve for fingerprint images 
collected at 3N showed the poorest performance. 

Figure 4 DET of the full set of optical images 

 

Figure 5 shows the DET curves for fingerprint images from 
each force level collected on the capacitive sensor. Note the 
flatness of the 3N and 7N DET curves is indicative of an 
optimal state, whereas performance deteriorates for force 
levels 5N, 11N and 9N. 
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Figure 5 DET of the full set of capacitance images 

 

The full dataset DET for the optical and capacitive sensor 
indicated that performance varies for fingerprint images 
collected at different force levels. The optimal force level 
for matching performance is different for the two types of 
sensor. 

5.4 Lowest 5% quality removed matching 
performance 

Having established the impact of force levels on the 
different sensor technologies, the authors sought to study 
the impact of image quality on matching performance of the 
different force levels for the two sensors. Variations in the 
image quality score results for both sensor technologies and 
evidence of patterns in the descriptive data led the authors 
to hypothesise that performance might improve if some of 
the lowest quality images, in terms of reported image 
quality scores, were removed. The size of the dataset  
(n = 75) prompted the removal of images producing the 
lowest 5% quality scores for each force level; as such, 11 
images were removed. Figure 6 shows two example images 
for each sensor type and force level combinations that were 
included in the lowest 5% category that did not achieve 
optimal matching accuracy and were removed from 
consideration for this particular analysis. 

Figure 6 Selected images (two per force level and technology) 
removed as part of the 5% lowest quality bin 

     
Optical 

3N force 
Quality 29 

Optical 
3N force 

Quality 18 

Optical 
7N force 

Quality 21 

Optical 
7N force 

Quality 56 

Capacitance
5N force

Quality 32 

     
Capacitance 

5N force 
Quality 32 

Capacitance 
9N force 

Quality 10 

Capacitance 
9N force 
Quality 4 

Capacitance 
11N force 
Quality 19 

Capacitance
11N force
Quality 7 

The DET curves in Figure 7 reveal that removal of the 
lowest 5% quality images collected on the optical sensor at 
force levels of 3N and 7N yielded negligible changes to 
system performance. An inward shift in the DET curve 
would have indicated an improvement in performance, 
which was not noticed for the 3N and 7N fingerprint 
datasets. 

Figure 7 DET of optical images, lowest 5% quality images 
removed 

 

However, the DET curves in Figure 8 reveal that the 
removal of the lowest 5% quality images for the capacitance 
force levels 5N, 9N and 11N resulted in shifts of the DET 
curves for two of the three force levels, 5N and 9N. In 
particular, the 5N DET curve shifted to reach optimal 
matching accuracy, as noted by the flattened curve. The 9N 
DET curve also demonstrated a noticeable improvement. 
There were negligible improvements to the DET curve for 
11N when the lowest 5% quality images were removed. 

Figure 8 DET of capacitance images, poorest 5% quality images 
removed 

 

Removal of the lowest 5% quality images collected on the 
capacitive sensor showed a different behaviour compared to 
the optical sensor. Figure 8 shows that the DET curve for 
fingerprints collected at the 5N level was flat after the 
lowest quality images were removed. Removal of the lowest 
quality images resulted in optimal performance for 
fingerprints collected at the 5N level. It was also observed 
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that removal of the lowest quality images at the 9N and 11N 
levels yielded an insignificant improvement in performance. 
Removal of the lowest quality images does not necessarily 
lead to an improvement in performance rates for all force 
levels. The inconsistent behaviour of image quality and 
performance rates at different levels of force was a 
surprising observation of this analysis. 

6 Conclusions 

The purpose of this study was to quantitatively compare the 
effect of force on the minutiae counts, image quality scores 
and fingerprint matching performance of optical and 
capacitance fingerprint sensors. Comparing these two sensor 
technologies reveals that increasing the amount of force 
applied to the sensor surface has an inverse impact on the 
quality scores. Images collected from a capacitance sensor 
are of a higher quality when captured at the lower end of the 
force range. In contrast, images collected from an optical 
sensor are of a higher quality when captured at the higher 
end of the force range. This is an important observation to 
consider when instructing individuals in how best to interact 
with a particular sensor technology, so that images captured 
by that technology have a quality score sufficiently high to 
optimise performance of the matching system. The minutiae 
counts significantly increased with increasing levels of force 
when using optical sensors, but the authors’ research 
demonstrated no significant difference relative to this factor 
when using capacitance sensors. 

Matching performance for the full dataset using optical 
and capacitive sensors showed very different performance 
levels for fingerprint images collected at different force 
levels. The optimal force level for matching performance is 
different for the two sensors and exhibits similar behaviours 
for the image quality analysis. Removal of low-quality 
images alone will not always improve the matching 
performance of a system. Further studies are needed to 
determine what other factors affect the system matching 
performance. 

7 Recommendations and future work 

The results of this research provided additional insight into 
human interaction with fingerprint sensor technologies, 
specifically the opposite effect of force level and image 
quality and the different behaviours of matching 
performance by force level. However, additional work is 
needed to further examine the impact of force on other 
fingerprint sensing technologies (e.g., thermal and 
ultrasonic sensors). Once the relationships of force level, 
image quality and matching performance are understood for 
these additional technologies, it would be interesting to 
perform an analysis with fingerprint templates consisting of 
images from multiple force levels to examine the effect on 
matching performance, with the overarching objective of 
further reducing matching errors due to HBSI. 
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