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Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing. G. Färber
2. Hon.-Prof. Dr.-Ing. G. Hirzinger

Die Dissertation wurde am 26.09.2002 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik
am 21.03.2003 angenommen.



I



II



Preface

This Ph.D. thesis was written during my work at the Institute of Robotics and
Mechatronics at the German Aerospace Center (DLR) in Oberpfaffenhofen. First
of all I like to thank Prof. G. Hirzinger who gave me the freedom and possibility
to work in the field of medical robotics. I also like to thank the supervisor of my
Ph.D. thesis Prof. G. Färber, Institute for Real-Time Computer Systems at the
Technical University of Munich, for support and invaluable advice.

This work took place in the medical robotics group at our institute. Many thanks
to my colleagues for good teamwork and interesting discussions. It has been great
fun working with you.

Some experiments and implementations were carried out during internships and
master thesis’ of students. Those contributions were an important part of the
motion compensation project and played an important role for its success.

Many thanks to the service team at our institute, without whom life in the jungle
of bureaucracy would be much harder.

My colleagues, reading and correcting this manuscript, proofed to be patient and
humorous. I hope, it wasn’t too hard for you and – someday – it will be my
turn to read your work. My friends encouraged me in finishing this thesis. Your
motivation was incredible. Someday, I will pay this back to you. My girlfriend
Veronika had to suffer most, especially at the end of my work, and supported me
with (re-) drawing numerous figures. Thanks a lot. And, last but not least, I
would like to thank my parents, without them, I would not be what I am.

Munich, August 2002 Tobias J. Ortmaier

III



IV



Contents

1 Introduction 1
1.1 Minimally Invasive Surgery . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Minimally Invasive Robotic Surgery . . . . . . . . . . . . . . . . . 4
1.3 Minimally Invasive Robotic Cardiac Surgery . . . . . . . . . . . . 5
1.4 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Minimally Invasive Robotic Surgery Systems 9
2.1 MIRS Systems at Research Institutes . . . . . . . . . . . . . . . . 10
2.2 Commercially Available MIRS Systems . . . . . . . . . . . . . . . 12
2.3 The DLR MIRS Scenario . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Slave System . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Master System . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Communication . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Control in Minimally Invasive Surgery 26
3.1 Fundamentals of Cartesian Control . . . . . . . . . . . . . . . . . 26

3.1.1 Entry Point Estimation . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Inverse Kinematics . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Velocity Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Velocity Control Loop . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Fundamentals of Position Control . . . . . . . . . . . . . . . . . . 41
3.3.1 Cartesian Time-Response . . . . . . . . . . . . . . . . . . 42
3.3.2 Self-Adjusting Controller . . . . . . . . . . . . . . . . . . . 45
3.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . 47
3.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Position Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.1 Position Control Loop . . . . . . . . . . . . . . . . . . . . 50
3.4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

V



3.5 Force Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.1 Force Control Loop . . . . . . . . . . . . . . . . . . . . . . 53
3.5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Tracking in MIRCS 59
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Tracking Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Affine Motion Model . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Further Aspects . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Detection of Specular Reflections . . . . . . . . . . . . . . . . . . 63
4.3.1 Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.2 Dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Elimination of Specular Reflections . . . . . . . . . . . . . . . . . 66
4.4.1 Detection of Structure Orientation . . . . . . . . . . . . . 67
4.4.2 Structure Tensor Driven Reconstruction . . . . . . . . . . 67
4.4.3 Masking Specular Reflections . . . . . . . . . . . . . . . . 68

4.5 Tracking Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.1 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.2 Tracking Environment . . . . . . . . . . . . . . . . . . . . 70
4.5.3 Evaluation of Illumination Models . . . . . . . . . . . . . . 72
4.5.4 Evaluation of Reconstruction . . . . . . . . . . . . . . . . 72
4.5.5 Masking of Specular Reflections . . . . . . . . . . . . . . . 73
4.5.6 Evaluation of Affine Tracking Model . . . . . . . . . . . . 75
4.5.7 Visual Inspection . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.8 Detection of Periodicity . . . . . . . . . . . . . . . . . . . 78

4.6 Quality of Landmarks . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6.1 Confidence Measures . . . . . . . . . . . . . . . . . . . . . 80
4.6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . 83

4.7 3D Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Robust Motion Estimation in MIRCS 89
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Local Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.2 ECG Prediction . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.3 RPS Prediction . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.4 HST Prediction . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 Global Prediction of HSTs . . . . . . . . . . . . . . . . . . . . . . 107
5.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

VI



5.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4 ECG and RPS based Prediction . . . . . . . . . . . . . . . . . . . 114

5.4.1 Correlation of Data . . . . . . . . . . . . . . . . . . . . . . 114
5.4.2 Time Series Embedding . . . . . . . . . . . . . . . . . . . 117

5.5 Robust Motion Estimation . . . . . . . . . . . . . . . . . . . . . . 119
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Conclusion and Perspectives 126

Bibliography 131

VII



Abstract

Minimally invasive beating heart surgery enables the patient to experience a
more gentle form of surgery, but increases the requirements for the surgeon: The
remaining motion of the mechanically stabilized beating heart makes fast and safe
surgery difficult. The goal of an advanced robotic surgery system is to compensate
for this motion. This work presents control and vision algorithms necessary for
such novel robotic surgery applications.
Cartesian position and velocity control laws in a minimally invasive surgery en-
vironment allow correct hand eye coordination which the surgeon got used to in
open surgery. In combination with appropriate filtering and scaling of input com-
mands, high accuracy manipulation of fine structures is possible. A self-adapting
Cartesian force control law reduces the risk of unintentional damage of delicate
tissue structures.
Motion of the mechanically stabilized beating heart is locally captured by tracking
natural landmarks with an affine motion model. To circumvent disturbances of
the tracking approach, specular reflections on the heart surface have to be handled
appropriately. Automatic detection of landmarks allowing reliable determination
of the affine model parameters can be achieved by special confidence measures.
A new motion prediction framework is introduced to further increase robustness
of the motion tracking scheme. This framework is able to compensate for short
occlusions and small disturbances. Additional signals correlated with the heart
motion (e.g. electrocardiogram) are included in this prediction scheme to reduce
the dependency on visual information.
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Chapter 1

Introduction

According to medical doctors, the 20th century was the century of surgery. The
treatment of diseases, which led to death before, such as appendicitis, have be-
come clinical routine now. The last century was also the period of huge traumata,
due to large incisions, which are necessary to gain access to the operation area.
The 21st century is expected to be the century of minimal and micro access tech-
niques, reducing the patients’ trauma dramatically. Here, computer and robot
assisted surgery will lead to a revolution of the operating techniques, similar to
the introduction of imaging techniques before.

During the last years several surgery robots developed at research institutes have
entered hospitals for experimental or even routine application. RobodocTM from
Integrated Surgical Systems Inc. [33] or CasparTM from URS Universal Robot
Systems [75] are used for bone surgery, whereas the daVinciTM system from In-
tuitive Surgery Inc. [25] or ZeusTM from Computer Motion Inc. [14] have been
designed for minimally invasive surgery. Numbers of clinical applications in-
crease due to the expected advantages such as high precision, use of preoperative
planning data, and the possibility of new surgery techniques, such as minimally
invasive beating heart surgery. The disadvantages of robotic surgery include the
increased time for training and surgery, high costs, and the restriction to only few
indications. Regarding the requirements of surgical robots, roughly three different
medical fields of application can be distinguished: In neuro-surgery workspace is
very limited, payload is low, but precision demands are very high. Bone surgery
leads to high forces and vibrations, therefore modified industrial robots are used
often. Dealing with soft tissue as in abdominal or heart surgery, leads to low
endeffector forces, but increases the work space. Other characteristics are tissue
deformation in case of contact as well as tissue movement due to blood flow and
respiration.

This chapter briefly introduces the peculiarities of minimally invasive surgery
(MIS) as well as requirements for an advanced minimally invasive robotic surgery
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(MIRS) system. The last section takes a closer look at minimally invasive cardiac
surgery.

1.1 Minimally Invasive Surgery

Minimally invasive surgery (MIS) is an operation technique established in the
1980s. It differs from open surgery in that the surgeon works with long instru-
ments through small incisions (typically <10 mm) and that he has no direct
access to the operation field as in open surgery. Usually, four small incisions
are necessary: two for the surgical instruments, one for the laparoscope (rigid
endoscope), and one for insufflating CO2 (see Fig. 1.1).

Instrument 1

Instrument 2

Insuflation

Laparoscope

Figure 1.1: MIS setup (source unknown).

Despite the advantages of MIS (as given below) this technique did not evolve as
predicted after its introduction in the operating room (OR). The main exception
is minimally invasive gallbladder surgery: According to [72] about 70% of all
gallbladder surgeries in the United States, Europe and Japan in the year 1992
were performed laparoscopically. This lack of market share occurs because the
advantages of MIS are mainly for the patients and the disadvantages remain at
the surgeon.

The advantages of MIS compared to open surgery are, among others: small inci-
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sions which reduce pain and trauma, shorter hospital stays, shorter rehabilitation
time, and cosmetical advantages.

Of course, MIS has disadvantages as well: The use of a laparoscope requires
the surgeon to cope with reduced sight, which can lead to severe orientation
problems during surgery, e.g. if the surgeon has to find anatomical structures
identified previously in preoperative planning. Furthermore, he loses the direct
hand eye coordination he has during open surgery [73]. The long instruments
(approx. 30 cm) have to be moved around an invariant point (trocar point or
entry point) on the patients’ chest or abdominal wall. As a result reverse hand
motion (or chop-stick effect) occurs, as well as configuration dependent scaling of
the tool-tip velocity of the instrument and amplification of the surgeon’s tremor
(see Fig. 1.2(a)). The friction in the trocar reduces haptic feedback. Palpation of
tissue is not possible, because the surgeon does not have direct access to operating
area. The loss of haptic feedback may be compensated by visual feedback: tissue
deformation can be interpreted as a measure of the exerted forces; of course this
does not work with stiff materials such as needles. Additionally, the surgeon’s
dexterity when performing tasks is reduced dramatically. Only four degrees of
freedom (DoFs) remain inside the body (see Fig. 1.2(b)), due to the kinematic
restrictions at the trocar point. Therefore, the surgeon cannot reach any point in
the work space at an arbitrary orientation. This is a main drawback of MIS that
makes complex tasks like knot tying very time consuming and requires intensive
training [28, 32, 65, 20, 58, 45].

v

v

*

trocar

v

hand
v*

hand

instrument

instrument

abdomen

(a) Scaling of velocity

α
β

γ

l

abdomen
trocar

(b) DOFs inside the body

Figure 1.2: Kinematic situation during MIS.
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1.2 Minimally Invasive Robotic Surgery

To avoid the drawbacks of manual MIS, minimally invasive robotic surgery (MIRS)
plays an important role. MIRS systems help the surgeon to overcome barriers
such as the patient’s chest or abdomen, which separate him from the operating
area. Furthermore, it is possible to overcome distances if surgeon and patient are
located in different rooms or even hospitals (so-called virtual hospital) [21].

This section derives requirements for an advanced MIRS system in detail. As in
Sec. 2.3, where the DLR MIRS scenario is given, the properties presented here are
divided into three parts according to the physical components of a telepresence
system:

1. Slave

2. Master

3. Communication between slave and master.

The slave system consists of several subsystems: The minimally invasive instru-
ments should be small (diameter less than 10 mm) in order to reduce pain and
trauma to a minimum. They should have at least two additional DoFs to guar-
antee full manipulability inside the body [41] and should allow the measurement
of force as well as tactile information. This sensor data can be used for feed-
back to increase the quality of immersion of the operator and for more intelligent
control laws of surgical robots. Control laws should allow the use of a variety of
command modes (e.g. position, velocity, and force) to make the use of the entire
system more intuitive and secure: Force measurements can be used to limit the
maximum manipulation force and to detect collision between instruments. Fur-
thermore, force control laws can be used to compensate the organ movement in
case of contact between instrument and organ and thus help to avoid damage
of the tissue. Minimally invasive surgery robots are expected to allow a large
variety of applications. This will help to reduce the costs of MIRS. Additionally,
they have to be very lightweight, so that they can be handled by one person
easily: this is very important in case of emergency situations, when the robots
have to be removed to get direct access to the patient. Furthermore, this reduces
the set-up time before an operation. The change of instruments, still a very time
consuming task, has to be enhanced further.

The master system has to provide high quality feedback, both tactile and kines-
thetic. The first helps the surgeon to use palpation, as in open surgery. This is
necessary to find invisible structures (e.g. blood vessels below a fat layer). The
latter gives him direct access to the forces at the operating area and therefore
increases the quality of the operation [77]. Movements of instruments should
be possible without kinematic limitations (e.g. trocar point) in Cartesian space.
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This makes the use of a surgical telepresence system more intuitive. Scaling the
surgeon’s motion and filtering the surgeon’s tremor are two additional important
features to increase the safety and accuracy of a MIRS system. The application
of high quality 3D vision is strongly recommended to gain depth information.
Augmented reality will help to close the gap between preoperative planning and
intraoperative navigation; for which the registration problem has to be solved. A
high-level user interface (e.g. to move the camera) seems to be an appropriate
supplement to ease the handling of the MIRS system.

The communication between master and slave has to be flexible to allow the
connection of different master stations (not necessarily located in the same OR)
to get support by an additional expert (which is today limited to video confer-
encing) or to enhance training of surgeons. Here, an unexperienced surgeon can
get immediate support from an experienced colleague. Therefore, the communi-
cation network has to be safe (guaranteed bandwidth and communication delay)
and secure (no undesired third-party listening). The communication should be
independent of the underlying network layer (ATM, ISDN, ADSL,...) by defining
and acquiring an appropriate Quality of Service (QoS).

By these efforts MIS will get safer and faster in the future. Faster surgery leads to
two important results: costs are reduced (one minute in a cardiac OR costs about
$ 15) and so are possible postoperative complications for the patient. Here, au-
tonomy, as a logical result of the above-mentioned topics, plays an important role.
Possible autonomous tasks (those that can be executed by a robot autonomously)
include: Automatic camera guidance [79, 2], holding of needles, positioning of
instruments, grasping of tissue, automatic cutting and suturing (in combination
with new surgical techniques and instruments). To realize autonomous functions,
special care has to be taken for the organ motion. This motion is induced by the
patient’s respiration and heart beat and has to be detected and compensated
reliably.

1.3 Minimally Invasive Robotic Cardiac Surgery

Of about 100,000 cardiac surgeries performed in Germany every year 75% are
coronary artery bypass graft surgeries [7]. Usually the stenosed part of the coro-
nary artery is bridged with an unaffected artery taken from the chest wall or
the forearm. The conventional approach contains severe risks and a significant
morbidity for the patient. This is due to:

• splitting the sternum and spreading the ribcage to gain access to the heart

• the use of the heart-lung machine to sustain the circulation (on-pump coro-
nary artery bypass)
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The heart-lung machine can lead to severe intraoperative (e.g. stroke syndrome)
and postoperative (e.g. neurological complications) risks. The splitting of the
sternum leads to high trauma and is the main reason for the long convalescent
time of 2-3 months [7]. Currently there are two main approaches to reduce these
risks: To avoid the heart-lung machine, the surgeon operates on the beating
heart. This includes the use of a mechanical stabilizer (e.g. OctopusTM from
Medtronic) to reduce motion in the area of interest [37]. MIS avoids splitting of
the sternum, because the surgeon works through small incisions (Sec. 1.1). This
surgical technique is called TECAB (totally endoscopic coronary artery bypass)
and minimally invasive robotic cardiac surgery (MIRCS) systems are widely used.
TECAB at the beating heart (OPCAB: off-pump coronary artery bypass) com-
bines the advantages of conventional beating heart surgery and MIS. The draw-
backs of this technique are the increased demands to the surgeon: additionally
to the drawbacks of commercially available MIRCS systems (e.g. reduced sight,
no haptic feedback, reduced manipulability, see Sec. 2.2) the remaining motion of
the stabilized heart complicates safe and fast surgery. This disadvantage directly
leads to the demand of measuring and compensating the organ movement. If
the MIRCS system is able to measure and compensate the motion of the heart
reliably, the surgeon can work on a virtually stabilized beating heart and gains
back the safety he was used to in on-pump coronary artery bypass surgery.

1.4 Thesis Organisation

Figure 1.3 illustrates the closed visual servoing loop for motion compensation and
is described in the following. The laparoscope, which is present anyway, seems
attractive to capture the heart motion since introducing additional sensors into
the very crowded operating field is problematic. Moreover, the laparoscope can
capture the motion of the whole operating field and not only of a few selected
points. Using artificial landmarks is problematic, too, due to the limited space.
Therefore, prominent image structures on the heart surface are used as natural
landmarks. The motion of the landmarks is approximated by an affine motion
model. The parameter of the motion model are found at the minimum of a
dissimilarity measure (e.g. sum of squared differences). These computations
are carried out within the tracking module of Fig. 1.3. With this, the actual
position of the landmark is found and the motion history can be used to predict
the position of the landmark in near future. A promising approach for prediction
which provides stable results is time series analysis (prediction module of Fig. 1.3).
Prediction of the heart motion is useful to detect outliers of the tracking scheme.
Furthermore, the obtained near-future positions of the landmarks are used to
command the robot such that both heart and instrument move synchronously.

The following paragraphs give the structure as well as the scientific contributions
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Figure 1.3: Motion Compensation Scheme (heart picture from [50]).

of this Ph.D. thesis:

Chapter 2 presents MIRS systems built at research institutes and companies.
Thereafter, the DLR minimally invasive robotic surgery scenario which has been
developed during this work is introduced. The slave system, the master system,
and the communication between master and slave are discussed in detail.

Chapter 3 presents the forward and inverse kinematics of the surgical robot
used. In the subsequent sections a Cartesian velocity and position control law is
derived which allows unrestricted motion of the surgical instrument and correct
hand-eye coordination. Both have the disadvantage of tissue damage due to
unintentional high forces. Therefore, this chapter is concluded by a force control
law avoiding this drawback.

Chapter 4 motivates the motion model used to capture the motion of the heart
surface. To realize autonomous functions (Sec. 1.2) reliable motion estimation of
the area of interest is one of the key issues. Therefore, special care is taken to
handle specular reflections which occur on the heart surface. After that, tracking
results are evaluated which includes the relevance of the parameters of the mo-
tion model, the accuracy of the tracking results, and the amplitude spectrum of
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the computed trajectories. An algorithm for automatic detection of prominent
structures on the heart surface, which allows reliable tracking, concludes this
chapter.

Chapter 5 presents numerous techniques making motion estimation of the heart
surface more robust with respect to occlusions and other disturbances. These
techniques include the prediction of the heart motion as well as a net of simul-
taneously tracked landmarks. An overall tracking scheme exploiting additional
sensor signals (such as the electrocardiogram, ECG), which are correlated with
the heart motion, allows robust motion estimation in beating heart surgery. Pre-
diction is necessary to detect and compensate outliers of the tracking scheme and
to overcome the delay-time of the closed visual servoing loop (see Fig. 1.3), thus
allowing for a proper compensation of the heart motion.

Chapter 6 concludes this work and presents directions of further research. New
applications can be found in tumor biopsy and treatment, where motion com-
pensation may increase accuracy and safety [67].
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Chapter 2

Minimally Invasive Robotic
Surgery Systems

From the surgeon’s point of view, a good MIRS system should fulfill the follow-
ing requirements (some of them are also given in [66]): Modern MIRS should
provide both realistic tactile and kinesthetic feedback, which gives the surgeon
direct impression of tissue and underlying structures (e.g. blood vessels). Visual
3D feedback in combination with Cartesian control should allow correct hand-eye
coordination as in open surgery. Actuated instruments are expected to provide
full manipulability inside the body which is necessary to reduce surgery time as
well as training time. Intelligent assistance functions, such as automatic position-
ing of instruments, automatic cutting, and grasping, as well as safety features are
also desired.

Currently several groups at international research institutes and companies are
working on MIRS systems. One has to distinguish between assistance systems and
complete MIRS telepresence systems, consisting of master and slave subsystems.

Robotic assistance systems are mainly used to hold the laparoscope [47, 64, 3] or
as flexible and intelligent tool holders [16]. The interaction with these assistance
systems is either via voice [47, 64], via tracking of a pointer [3] or with force
sensors mounted on the robot [16]. Not all benefits of a complete MIRS system
such as kinesthetic feedback and full manipulability can be achieved by these
assistance systems. Therefore, they are not considered any further here.

This chapter presents telepresence systems developed at research institutes and
companies. After that, the DLR MIRS system which has been developed during
this work is discussed in detail.
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2.1 MIRS Systems at Research Institutes

The following paragraphs present several MIRS telepresence systems, developed
at research institutes all over the world. Of course the list presented here is far
from being complete, but the intention is to give an overview about different
research activities.

A research group at UC Berkeley/UC San Francisco is developing a complete
telepresence system [11] (see Fig. 2.1(a) for the prototype of the system): The
slave is based on the MillirobotTM (with a diameter of 10 mm, see Fig. 2.1(b))
that realizes two actuated degrees of freedom inside the body and thus a total
of six DoFs and therefore full manipulability. The master is based on a modified
Impulse EngineTM 3000 from Immersion Inc. and is therefore prepared for force
feedback in four DoFs. No force feedback is available with the prototype system
[11], although this is strongly recommended by the authors. Recently, the second
generation of the telepresence system has been presented [10, 12]: The master is
based on a PHANToM (see Fig. 2.2(a)), the modified Millirobot can be seen in
Fig. 2.2(b). According to [12] the system still does not provide force feedback.

(a) Master (left) and slave (right) (b) Millirobot

Figure 2.1: The Berkeley telesurgery scenario (prototype) [74].

In Korea a group at KAIST [43, 38] has developed a telepresence system for micro
surgical tasks. It allows six DoF force/torque reflection at the master console.
The slave consists of an industrial six DoF robot equipped with a modified six
DoF Stewart platform for micro manipulation. Besides the fact that industrial
robots are not designed for use in the operating room (OR), the system does not
allow full manipulability if used in laparoscopic surgery.

ARTEMIS (Advanced Robot and Telemanipulator System for Minimal Invasive
Surgery) is one of the first MIRS systems and was developed at the “Forschungs-

10



(a) Master (b) Modified Millirobot

Figure 2.2: The Berkeley telesurgery scenario [74].

zentrum Karlsruhe” in Germany. The master (see Fig. 2.3(a)) consists of various
input devices: two haptic manipulators for the slave robots, voice recognition
for the laparoscope, and foot pedals. The slave consists of three robots: two
hold and manipulate surgical instruments (TISKA-robots, see Fig. 2.3(b), the
two outer robots) while the other holds the laparoscope (ROBOX-robot, see
Fig. 2.3(b), the robot in the center). The relative position between the TISKA-
robots and the ROBOX-robot is known, therefore the laparoscope can follow the
surgical instruments automatically. As a drawback the ARTEMIS system does
not have force feedback at the master side and there are not any instruments
with additional degrees of freedom at the slave side.

(a) ARTEMIS master (b) ARTEMIS slave

Figure 2.3: The ARTEMIS system [4].
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In Switzerland a project of the research program CIMINT [13] (Computer Aided
and Image Guided Medical Interventions) deals with robot-assisted minimally
invasive bypass surgery. It is planned to develop a new telepresence system,
designed for beating heart surgery, which consists of new instruments that allow
force and tactile measurement to support the surgeon to find invisible structures.
The focus of this project lies on motion compensation algorithms that enable, in
combination with new surgical instruments, (semi-) automatic anastomosis.

At the German Aerospace Center (DLR) a complete MIRS system based on
a modified AESOPTM 3000 from Computer Motion Inc. has been developed
during this work. It is discussed in Sec. 2.3 in detail. Its current main drawbacks
are the slow serial communication between robot and controller that limits the
bandwidth of the closed (control) loop as well as the lack of minimally invasive
surgical instruments with additional DoFs.

2.2 Commercially Available MIRS Systems

At the moment two widely known MIRS systems are commercially available:
Computer Motion Inc. (CMI) has developed the ZeusTM System (consisting of
modified AESOP robots [64] with a master console) and Intuitive Surgical Inc.
(ISI) has developed the daVinciTM [25] system. The Zeus and the daVinci systems
have been evaluated mainly in the field of minimally invasive heart surgery, but
further applications will be established in future.

(a) Master [14] (b) Slave

Figure 2.4: The ZeusTM components.

Both systems offer only position control, there is no force measurement at the
slave side as well as no haptic feedback at the master console. None of them
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(a) Master (b) Slave (c) EndowristTM

Figure 2.5: The daVinciTM components [34].

offers autonomous execution of tasks, such as monitoring the work space, nor is
it possible to integrate preoperative planning data into the system. Scaling of
motion commands, filtering of the surgeon’s tremor, and optical magnification is
available with both systems.

The main difference currently lies in the minimally invasive instruments sold by
the two companies: Instruments from CMI have 5 DoFs inside the human body,
whereas ISI enables 6 DoFs with its EndowristTM system (see Fig. 2.5(c)).

Training time as well as setup time before an operation increases with both
systems. Additionally, MIRS procedures take longer than pure manual (open)
surgery [35] and thus lead to higher costs. One reason for the increased operation
duration is the difficult intraoperative navigation to find relevant blood vessels,
which is a direct result of the loss of palpation in MIRS. Also, the lack of force
feedback leads to the difficult task of interpreting organ deformation as a measure
of the forces at the slave side [77].

2.3 The DLR MIRS Scenario

The telesurgery scenario shown in Fig. 2.6 has been developed during this work
to overcome the drawbacks of today’s MIRS systems and to establish new tech-
niques. It can be divided into three parts: local environment (master system),
remote environment (slave system), and communication inbetween. This section
is a summary of [56, 57] and briefly presents the current state of the scenario as
well as further directions of research.

An AESOP 3000 DS (CMI) equipped with a medical instrument (e.g. scalpel,
forceps) is used as the teleoperator (slave). Haptic data can be collected in
combination with a sensor which enables force/torque measurement at the tool
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(Master System)(Slave System)

Figure 2.6: Schematic overview of the DLR telesurgery scenario

center point of the instrument. The visualization of the teleoperator environment
consists of a stereo video stream generated by a laparoscope which is currently
displayed on a video screen with stereo capabilities. Additionally, an Open Inven-
tor based simulation model is displayed, running on a SGI RS 10000 workstation.
This simulation requests the actual joint values of the robot to animate the virtual
robot representation as well as contact forces which can be rendered using force
arrows. This approach provides an intuitive possibility to move the instrument
and gives visual feedback of contact forces. The PHANToM T-Model from Sens-
able Technologies is used as a haptic display for forces measured by the sensors of
the remote instrument. The teleoperator can be commanded in Cartesian space
and forces can be reflected in three degrees of freedom (without torques). One
way CORBA-TCP/IP connections were implemented to transmit data between
the operator (master) and the teleoperator.

First the developments in the slave system are presented. After that, the improve-
ments at the master side of the DLR minimally invasive robotics surgery scenario
(MIRS) are given. The following section takes a closer look at the communication
between master and slave.

2.3.1 Slave System

The focus of this section lies on the development of the slave system, based on an
existing surgical robot (AESOP 3000 DS). Included are new surgical instruments,
control algorithms, and autonomous functions.
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Surgical Instruments

Presently, instruments for MIRS differ from those for conventional MIS mainly
in the substitution of the handles by electrically driven joints. Additional capa-
bilities making the instruments more similar to the surgeon’s hands and reducing
the restriction due to the trocar point are realized only seldomly:

• Force and torque sensors at the instrument tip

• Tactile sensors at the tool tip

• Additional degrees of freedom inside the body

• Multi-functional instruments, e.g. a combination of scalpel and forceps

The use of the advantages of medical robotics is limited, due to the technical state
mentioned in Sec. 2.1 and Sec. 2.2. Therefore, further development is necessary to
realize all benefits of MIRS. Two topics are investigated here: additional degrees
of freedom and measurement of forces and tactile information inside the human
body. Additional degrees of freedom at the tool tip allow faster and safer surgery
because the kinematics of the surgeon’s hand is imitated inside the human body
(beyond the trocar point). The surgeon can thus work intuitively in a way sim-
ilar to open surgery. Force measurement at the instrument tip allows a variety
of additional functions: First of all, force information can be displayed in the
picture from the laparoscope, giving the surgeon visual feedback of actual forces.
Furthermore, haptic feedback (with an appropriate input device) is possible: the
surgeon receives force feedback at his fingertips. Additionally, autonomous fea-
tures, limitation to a maximum force (e.g. during suture) or a constant force
(e.g. holding tissue while the organ is moving) are possible. One can also think
about reliable collision detection between two tooltips, realized by force/torque
sensors.

Sensorized Scalpel As mentioned previously, today’s minimally invasive in-
struments do not allow the measurement of forces. However, by experience, the
surgeon is able to interpret tissue deformations as a measure of the exerted forces
and to compensate for the lack of haptic information. Unfortunately, tissue elas-
ticity depends on the patient and may also vary over time (e.g. due to blood
pressure). Furthermore, this interpretation leads to a reduction of the surgeon’s
dexterity to perform manual work. A sensorized scalpel for MIS with a diameter
of only 10 mm (see Fig. 2.7(a) and Fig. 2.7(b)) was developed to circumvent
this drawback and to give the surgeon direct haptic information. Forces can be
measured in all dimensions and so can torque about the instrument axis. The
sensor is placed directly behind the blade and can measure forces up to 20 N. The
software of the scalpel runs on a digital signal processor (DSP) board (PC 32 of
Innovative Integration, processor speed 60 MHz). A sample rate of 1.7 ms for all
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(a) Model (b) Realisation

Figure 2.7: Sensorized scalpel.

four channels (three forces and one torque) guarantees high quality force mea-
surement. To reduce signal noise to a minimum, the analog signals are amplified
inside the instrument, digitized (10 bit resolution) and then transmitted (fast
serial TMS 320 protocol with 2 µs clockperiod) to the DSP board.

Sensorized Forceps A rigid instrument limits the work space behind the tro-
car. Full manipulability can not be achieved because additional degrees of free-
dom, similar to the human hand, are missing (see Fig. 1.2(b)). This is the reason
why complicated operations such as coronary surgery require long training and
are very time consuming. A pair of forceps with two additional actuated degrees
of freedom near the tooltip is currently developed. This enables the surgeon
to move the instrument’s tooltip in six DoF inside the human body. Thus the
surgeon gains back full manipulability as in open surgery.

The drives for the joints and the forceps themselves are realized as electro-
mechanical actuators and are located outside the body. As the instrument is
equipped with sensors close to the tip, real manipulation forces are measured.
Figure 2.8 shows a CAD model of the tool tip as well as the first prototype. The
forceps have a diameter of 10 mm. Mechanics and sensors can handle forces up
to 10-15 N and can be sterilized.

The use of electronics inside the body leads to several additional constraints,
including the ability to guarantee the compatibility of the electronics with the
human body and vice versa. This has to be done for the electronic parts them-
selves as well as for the electric signals. Furthermore, one has to guarantee
electro-magnetic compatibility: other electrical devices may not be disturbed by
the forceps and vice versa. There are still unanswered questions concerning the
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(a) Model (b) Realisation

Figure 2.8: Sensorized forceps.

sterilizability of electrical components, so one may have to use alternative meth-
ods to measure and transmit information (e.g. optical methods). Due to the high
complexity those instruments cannot be built entirely as being disposable. One
has to develop sterilizable instruments or a combination of complex, reusable
components with simple and easy to change disposable components.

Robot Control

Development in control laws is necessary to make the application of MIS robots
more intuitive and to increase the safety of the entire system. Furthermore,
autonomous capabilities reduce the requirements of the communication between
master and slave system and support the surgeon during his work.

The robot is connected with the controller workstation via a serial port (RS232).
This slow communication line (communication delay TD ≈ 22 ms) limits the
bandwidth of the closed control loop and corrupts the quality of force control laws
and haptic feedback. Nevertheless, it is sufficient to demonstrate new techniques
and capabilities. A detailed description is given in Chap. 3, therefore, only a brief
overview is presented here.

Cartesian Control As mentioned in Sec. 1.1 one of the drawbacks of MIS is
the restriction of motion due to the trocar point (entry point), see Fig. 1.2(b).
Control algorithms have been developed to realize free, unrestricted motion in-
side the human body, avoiding the chop-stick effect. They allow the use of an
arbitrary Cartesian input device, such as the PHANToM or the SpaceMouseTM .
Additionally this is a standard interface for a wide range of control algorithms.

17



A detailed description of Cartesian control is given in Sec. 3.1.

Control Modes Today’s MIRS systems have only one control mode: position
control. Pure position control has several drawbacks: high forces exerted, ei-
ther to tissue or between two robots, are a potential source of damage and injury.
Depending on the chosen scaling between master and slave, indexing is often nec-
essary. Furthermore, no autonomous tasks can be realized safely, because it is not
possible to detect contact situations reliably. To overcome these disadvantages,
several control algorithms were developed, implemented, and evaluated.

A velocity control law was developed to avoid indexing. The main problem lies in
the fact that motion of the robot is very slow and only joint positions of the robot
can be obtained, so noise corrupts the calculated velocity values. Therefore, after
identifying the dynamics of the robot, an observer was built. Closing the control
loop with the observer yielded good performance. The entire control structure is
discussed in detail in Sec. 3.2.

One of the main advantages of the developed velocity controller is that it can be
extended to force control or mixed force/velocity control easily without switching
the control structure. If no forces are measured inside the human body the
commands are interpreted as velocity commands and after contact in one or
more directions the commands are interpreted as force.

A control law for mixed position/force control is also available. Again, after
detecting contact with the environment, manual switching of the control structure
is not necessary. To obtain best performance for force control, the stiffness of the
environment is estimated at every sample and the parameters of the controller
are tuned accordingly (Sec. 3.5). Only the global behavior of the control loop has
to be defined (e.g. overshooting, damping).

Force control is necessary to detect collision between instruments and to avoid
damage of tissue. Furthermore, this is a step towards autonomous tasks: a robot
is able to hold tissue with a certain allowed maximum force and compensates
the motion of the organ automatically. Pure position control, on the other hand,
would possibly damage tissue.

Autonomy In advanced telesurgery scenarios the surgeon has to cope with
(multi-) sensor data. He processes this data and derives commands which are
transmitted to the robot. This huge amount of information offered to the surgeon
leads to high demands to his sensomotoric skills, which cannot always be met
(e.g. in minimally invasive beating heart surgery). Therefore, a reduction of
these demands is strongly recommended. This leads to a control structure in
which the surgeon and robots share tasks: The robot takes charge of simple
tasks requiring high bandwidth, whereas the surgeon is responsible for complex
tasks with low bandwidth. One example is the movement of the tool tip along a
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predefined path: the surgeon commands the velocity only (one degree of freedom)
and the robot moves the tool tip along the six DoF path. This requires online
measurement of the position of the target, because it may change due to the
patient’s respiration and heart beat. In minimally invasive beating heart surgery
motion compensation is a highly desired functionality: The robot compensates
the heart motion, such that the relative pose between the heart surface and the
tool center point of the surgical instrument remains constant. The surgeon can
then work on a virtually stabilized heart as he was used to in on-pump surgery
(here the heart-lung machine is used to sustain the circulation and the heart
does not move). Another autonomous task that has been introduced into the
OR recently is automatic camera guidance for MIS using color markers at the
instrument, developed by the DLR [79, 2].

Motion estimation Before any autonomous task, as suggested in Sec. 1.2 can
be performed, one has to cope with the organ motion arising from the patient’s
breathing or heart beat. Therefore, reliable algorithms to measure this motion
are an essential part of an advanced MIS robotic system. Algorithms have been
developed which are able to track the motion of the beating heart surface, ex-
ploiting natural landmarks (Chap. 4). Figure 2.9 shows three natural landmarks
(size of 30 × 15 pixels) and the corresponding translational search areas (size of
70 × 70 pixels). Tracking of landmarks is easily disturbed by specular reflections
on the heart surface. Thus several algorithms to detect specularities and recon-
struct the underlying surface structure have been developed and evaluated, see
Sec. 4.3 and Sec. 4.4. Furthermore, criteria have been derived to automatically

Figure 2.9: Natural landmarks and tracking area.

detect such regions of interest on the heart surface that are appropriate for the
tracking algorithm (Sec. 4.6).

Efforts were made to make vision based motion recognition more reliable: a
framework to cope with (temporal) occlusion of the considered landmarks and
to detect outliers is presented in Chap. 5. Furthermore, several prediction algo-
rithms were evaluated, again to improve the reliability by delivering additional
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Figure 2.10: Detected trajectories.

information (Sec. 5.2 and Sec. 5.5). Prediction is possible, because the motion of
landmarks on the heart surface is made up of two quasi-periodic movements: the
heart beat itself and motion induced from the patient’s respiration. Figure 2.10
shows three tracking parameters versus the discrete sample time i: translation (tx
and ty are given in pixels [px]) and rotation (φ is given in radiant [rad]). For the
translational parameters the quasi-periodic behavior can be seen well, whereas
this is not easily possible for rotation.

Additionally, algorithms that allow the use of ECG signals as an additional source
of information to make tracking more robust are investigated in Sec. 5.4. A
surgical system equipped with reliable information about the motion of the area
of interest will be able to compensate this motion automatically and to guide the
instrument e.g. to a point moving on the heart surface.

2.3.2 Master System

The master system allows the surgeon to command the surgical robots and to
perform the surgery. Therefore, the master has to provide an accurate and real-
istic impression of the surgical situation at the remote side as well as an intuitive
and ergonomic working environment.

Medical master systems available today do not have the possibility of force or
tactile feedback. Furthermore, they are restricted to position control as the only
command mode and do not allow the use of additional information from preop-
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erative tools for path-planning etc.

Haptic Input Device

Input devices available from CMI or ISI have no force feedback and differ in
their kinematics in that the CMI input device is kinematically restricted while
ISI allows free motion in six DoF.

To allow a variety of control modes as described in Sec. 2.3.1, two different six
DoF input devices are used: the SpaceMouse for velocity and velocity/force con-
trol and the PHANToM for position and position/force control. This gives the
surgeon the possibility to evaluate different control modes and decide which one
to use in different situations during surgery. Additionally, force feedback with
the PHANToM offers the possibility to display the actual forces during MIS. This
information helps to avoid damage of tissue, needles or threads.

To compensate the communication delay between master and slave an estimation
of the remote environment stiffness (Sec. 3.5) is used to calculate a local update
for the force feedback loop [61].

Vision

3D video is essential in the DLR and commercially available MIRS systems and
is well developed, whereas the combination with 3D-models and data from preop-
erative planning seems far away. This is because several problems still need to be
solved or further development is necessary: registration of the patient, fast (real-
time) elastodynamic simulation of organs, 3D vision-based modeling of organs,
matching of multimodal data in realtime, etc.

To give the surgeon a realistic impression of the configuration of the robot at the
operation table a simulation system that displays the movement of the robot at
the remote station (see Fig. 2.11) was developed.

Additionally the actual forces which occur in contact situations are given. With
this simulation the surgeon gets an impression of the remote forces, even if he
does not have force feedback input devices.

2.3.3 Communication

As described previously, telepresence technology in combination with a medical
robot assistant enables the surgeon to operate as efficiently as possible from a
local desktop. The desktop and the robot are simply connected via a local point-
to-point communication link using a dedicated protocol to exchange data. This
limits the distance between the surgeon and the slave to a few meters. Otherwise,
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Figure 2.11: Configuration of remote robot.

applications for telecooperation and teleconsultation are already in development
which use broadband technology to connect various desktops all over the world
and setup a virtual hospital, whereas currently available MIRS systems are meant
to act in a single user environment: Each surgeon uses his own strictly separate
desktop without interacting with his assistant. This limits the consultation of a
remote expert to audio and video information, received from a separate ISDN-
based video conferencing system. Furthermore, surgery is a very complex task
typically performed by more than one surgeon, but the provision for a third party
connectivity does not exist.

The prototype of the telepresence system is shown in Fig. 2.6. Sensorized robotic
technology is combined with modern telecommunication and information tech-
nologies (object-oriented middleware) to support minimally invasive surgery and
to overcome the limitations of currently available MIRS systems using a supple-
mentary robot control computer, which is connected to the local desktop via an
Ethernet link [62].

Distributed Objects

The development of distributed telepresence systems is a complex, time consum-
ing task. To simplify this task the Object Management Architecture (OMA), de-
fined by the Object Management Group (OMG) [51], describes an object-oriented
infrastructure in their Common Object Request Broker Architecture (CORBA),
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which allows objects to communicate platform and implementation independent.
This is realized by a collection of objects which separates the service provider
(server) from the service requester (client) by using a well-defined encapsulating
interface.

Interfaces

The telepresence system represents an object framework divided into several
client/server objects which handle haptic and video stream data. The object
connectivity is realized by CORBA-TCP/IP adapters (see Fig. 2.12).

To describe the remote environment virtually, Open Inventor and its scene graph
are used. Therefore a CORBA-based Open Inventor Viewer was developed.
Started as a server on the master side this viewer displays the remote robot
configuration. A graphical user interface supports flexible settings like indexing
or scaling at run-time (see also [60]).

The shared autonomy module on the slave side provides several tasks scheduled by
a separate task controller. Implemented as a periodically timed task the controller
triggers both the command stream and the model update stream task using
CORBA interfaces. In fact, the command stream task uses a CORBA interface
of the communication task to communicate with the PHANToM on the master
side. The surgeon interacts with the remote robot by commanding the Cartesian
position of the remote instrument simply by moving the local PHANToM.

The actual joint angles of the remote robot as well as the torques and forces
are sent to the Inventor Viewer for visualization by the world model stream task.
As interprocess communication between local software modules a shared memory
approach realized with posix/solaris threads is implemented.

2.4 Conclusions

In this section MIRS systems developed at research institutes or companies were
discussed. Due to their technical state not all benefits of MIRS systems can be
realized (e.g. full manipulability and force feedback). Therefore, MIRS systems
lead to increased operation durations and thus to higher costs. This restrains the
fields of application of robotic telesurgery systems.

The DLR MIRS scenario presented in the previous sections is summarized as
follows: The focus of the DLR MIRS system regarding miniaturized surgical
instruments lies in additional DoFs inside the human body to gain full manipu-
lability and in additional sensors to measure force and tactile information.

Free Cartesian motion of the instrument tool tip is necessary to allow an intu-
itive control of surgical devices. Depending on the surgical task, position, velocity,
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and/or force control is necessary. Force control itself is a step towards autonomy
of the robots, because damage of tissue, collision detection, and motion compen-
sation can be realized. Furthermore, algorithms are proposed that allow tracking
of natural landmarks on the beating heart and thus make it possible to measure
and compensate the organ motion of a beating heart.

Force feedback, either with appropriate haptic devices or with a model based
simulation, provides the surgeon with a more realistic impression of the remote
situation and helps to increase safety.

Network independent communication between master and slave, realized by COR-
BA, gives the possibility to build a flexible telepresence system and is a step
towards telesurgery and virtual hospitals.
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Figure 2.12: Distributed master-slave system architecture.
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Chapter 3

Control in Minimally Invasive
Surgery

Unrestricted Cartesian motion of surgical instruments is one of the key issues
to enhance the quality of a MIRS system (Sec. 1.2): The surgeon can move his
instruments as he was used to in open surgery. The spherical movement around
the entry point is avoided, as well as the inverse hand motion (see Sec. 1.1).
Furthermore, there is no scaling of the velocity of the instrument which depends
on the position of the entry point. This means that the velocity of the instrument
tool-tip is independent of the actual working geometry. Also a Cartesian interface
is needed for further control algorithms, such as force control or autonomous
tasks.

In this chapter a Cartesian control algorithm for the AESOP robot used in the
DLR MIS telepresence scenario is presented. After introducing the forward and
inverse kinematics (Sec. 3.1) an algorithm to calculate the position of the entry
point is presented, followed by the calculation of the inverse kinematics. These are
the fundamental algorithms that allow Cartesian velocity control (see Sec. 3.2),
Cartesian position control (see Sec. 3.4), and Cartesian force control (see Sec. 3.5).
Parts of Sec. 3.1 and Sec. 3.2 were published by the author in [54] and parts of
Sec. 3.3 can be found in [55].

3.1 Fundamentals of Cartesian Control

The robot consists of four active joints, the linear axis θ1 and three rotatory
joints θ2, θ3, θ7 and two passive joints θ5 and θ6 (see Fig. 3.1(a)). These two
passive joints are not motor driven and have no breaks. They guarantee that no
forces are exerted to the entry point (trocar point, see Fig. 1.2(a)). This entry
point can be considered as a geometric constraint to the kinematics of the robot
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that binds two degrees of freedom (DoF). As result, inside the abdomen only
four DoFs are left (see Fig. 1.2(b)). Additionally, the robot consists of another
rotatory joint θ4 that can be used to suit the geometry to the actual situation.
The transformation from the tool-center point frame to the world frame is:

XTCP(Θ) = A1(Θ1)A2(Θ2) · · ·A7(Θ7) (3.1)

with
Θ = [Θ1, . . . , Θ7]

T (3.2)

and Ak(Θk) (with k ∈ {1, .., 7}) representing homogeneous transformations.
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Figure 3.1: Minimally invasive surgery robot.

3.1.1 Entry Point Estimation

As already mentioned the position of the entry point has a strong influence on
the kinematics of the robot. To allow Cartesian control of the tool-tip the entry
position has to be calculated.

One possibility to acquire the position of the entry point is to place an electro-
magnetic tracker near the trocar. The disadvantages of this method are that these
trackers are very sensitive to steel or aluminum and that additional equipment
in the operating room is needed. An other idea might be to move the tool-center
point of the robot to the trocar and to compute XTCP. This demands a calibra-
tion for every surgical instrument used. In [42] the authors use a force/torque
sensor mounted on the robot to calculate the position of the entry point; here,
again, additional equipment is necessary.
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To avoid these drawbacks another way is chosen. Joint position data during the
first few seconds are collected, after the instrument has entered the abdomen.
With these data the position of the entry point can be calculated. At each time-
step ti the joint values are:

Θi = Θ(ti) with i ∈ {1, . . . , N} . (3.3)

The homogeneous transformations can be written as:

Aki
= Ak (Θk (ti)) with k ∈ {1, .., 7} and i ∈ {1, .., N} . (3.4)

The frame XLJ located at the last joint (see Fig. 3.1(b)) with respect to the world
frame W can be calculated:

XLJ(Θi) = A1i
. . . A6i

=




nx sx ax px

ny sy ay py

nz sz az pz

0 0 0 1




i

. (3.5)

Where

pi =


 px

py

pz




i

(3.6)

is the position of the last joint in the world frame W and

vi =


 sx

sy

sz




i

(3.7)

is the vector of the instrument axis in W . A line gi coincident with the instrument
axis can be written as:

gi : x = pi + λivi with λi ∈ R . (3.8)

Under the assumption that the entry point does not move, the intersection of the
two lines gi and gi+1 is the entry point. Due to noise and slow movement of the
entry point (e.g. due to the patient’s respiration) these two lines might not have
an intersection but pass each other. As an approximation the minimum distance
d between gi and gi+1 is calculated and it is assumed that the entry point lies on
gi. Therefore, a plane E perpendicular to gi is defined:

E : [x − (pi + λivi)]
T vi = 0 . (3.9)

The intersection of E with gi+1 is calculated. This leads to

λ∗
i+1 =

pT
i vi + λi − pT

i+1vi

vT
i+1vi

. (3.10)
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The optimal λi = λ∗
i minimizing the squared distance d2 is given as:

arg min
λi

d2 = arg min
λi

‖pi + λivi − pi+1 − λ∗
i+1vi+1‖2

2 . (3.11)

Solving
∂

∂λi

d2 = 0 (3.12)

for λi leads to

λi = λ∗
i =

n

1 + k2 − 2kvT
i vi+1

(3.13)

with

n = −vT
i pi + pT

i+1ti − kpT
i+1vi+1 +

+ cvT
i vi+1 + kpT

i vi+1 − ck ,

and

k =
1

vT
i vi+1

c =
pT

i vi

vT
i+1vi

− pT
i+1vi

vT
i+1vi

. (3.14)

An estimation for the entry point position can then be written as

ti = pi + λ∗
i vi . (3.15)

To reduce the influence of noise an average value is calculated:

tav =
1

N − 1

N−1∑
i=1

ti . (3.16)

To consider movements of the entry point during surgery an online update ti for
tav after initialization is computed. The point xi = ti ∈ gi that has the minimal
distance from tav as an approximation for position of the entry point is chosen:

ti = pi + λivi with arg min
λi

‖tav − ti‖2 . (3.17)

3.1.2 Inverse Kinematics

This section presents the calculation of the inverse kinematics of the robot which
is used in the subsequent sections to close Cartesian position, velocity, and force
control loops. As the inverse kinematics is strongly influenced by the position of
the entry point, the estimation presented in Sec. 3.1.1 is included in the calcula-
tions given here.
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The Jacobian matrix J of the position of the tool-center point x can be written
as

J =
∂x

∂Θt

with Θt = [Θ1, Θ2, Θ3, Θ5, Θ6]
T , (3.18)

because Θ7 has no effect on the position of the tool-center point and Θ4 is for
initial setup only. The velocity of the instrument tip in W is:

ẋ = JΘ̇t (3.19)

with

J =


 j11 j12 . . . j15

j21 j22 . . . j25

j31 j32 . . . j35


 . (3.20)

As mentioned in Sec. 3.1, Θ5 and Θ6 are passive joints whose values are deter-
mined by the position of the trocar. This geometric constraint has to be consid-
ered in the calculation of the inverse kinematics. It is obvious that Eq. 3.21 has
to be fulfilled at the entry point:

ṫxT
= 0 and ṫzT

= 0 , (3.21)

where the subscript T denotes the trocar frame T . In Sec. 3.1.1 the distance λ
between the last joint and the entry point has been calculated, so frame T can
be determined as:

T = A1(Θ1)A2(Θ2) · · ·A6(Θ6)T y(λ) =




nx sx ax tx
ny sy ay ty
nz sz az tz
0 0 0 1


 (3.22)

with

T y(λ) =




1 0 0 0
0 1 0 −λ
0 0 1 0
0 0 0 1


 .

The position of the entry point tW is:

tW = [tx, ty, tz]
T = g(Θ1, Θ2, Θ3, Θ4, Θ5, Θ6, λ) . (3.23)

The velocity of the instrument in world frame W at the entry point can be
calculated by:

ṫW = J tΘ̇t with J t =
∂g

∂Θt

. (3.24)
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The matrix R−1 is used to transform the velocity ṫW into ṫT :

R−1 = RT =


 nx sx ax

ny sy ay

nz sz az


T

. (3.25)

Now the velocity in the trocar frame T can be computed:

ṫT = R−1ṫW = R−1J t︸ ︷︷ ︸
C

Θ̇t . (3.26)

For abbreviation C is defined:

C =


 a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3


 . (3.27)

If Eq. 3.21, Eq. 3.26 and Eq. 3.27 are combined and solved for Θ̇5 and Θ̇6, the
following equations are obtained:

Θ̇5 =
1

−d3e1 + d1e3

(
(a3e1 − a1e3)Θ̇1 +

+ (b3e1 − b1e3)Θ̇2 + (c3e1 − c1e3)Θ̇3

)
, (3.28)

Θ̇6 =
1

d3e1 − d1e3

(
(a3d1 − a1d3)Θ̇1 +

+ (b3d1 − b1d3)Θ̇2 + (c3d1 − c1d3)Θ̇3

)
. (3.29)

Defining new abbreviations:

Θ̇5 = k1Θ̇1 + k2Θ̇2 + k3Θ̇3 , (3.30)

Θ̇6 = l1Θ̇1 + l2Θ̇2 + l3Θ̇3 (3.31)

and combining these with Eq. 3.19 and Eq. 3.20 the elements pnm (n-th row and
m-th column) of the resulting Jacobian matrix P 3×3 can be written as:

ẋ = P


Θ̇1

Θ̇2

Θ̇3


 (3.32)

with
pnm = jnm + jn4km + jn5lm (3.33)

and
n, m ∈ {1, 2, 3} .
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Finally, 
Θ̇1

Θ̇2

Θ̇3


 = P−1ẋ (3.35)

for the resulting inverse kinematics is obtained. The inverse kinematics takes
information about the position of the entry point into account and therefore leads
to good results when the Cartesian control laws are evaluated (see the following
sections).

3.2 Velocity Control

The main advantage of velocity control in telesurgery applications is that large
distances at the slave side (e.g. in liver biopsy) can be bridged without violating
work space constraints at the master side. As a drawback position errors occur
due to noise and model errors. Additionally, force in case of collision between two
instruments or between instruments and tissue is not supervised and therefore is
a source of danger.

To close a velocity control loop one needs information about the joint veloci-
ties. In the current setup only joint positions can be obtained, because of the
interface between joint controller and software. Computing the joint velocity

Θ̇i ≈ Θi−1−Θi

∆t
does not lead to useful values due to noisy sensor signals and slow

movement of the joints. To avoid additional velocity sensors an observer was
build. Thereafter, a velocity control loop can be closed. Experimental results are
given in the subsequent section.

3.2.1 Observer

As the robot moves slowly the dynamics of the joints can be assumed to be
decoupled and can be modeled separately. Then, according to [29], the dynamics
of each joint Θk can be modeled as a PT1 transfer-function with dead time TD.
This model is appropriate if the robot has a position- or velocity-interface for the
joints. Therefore, the velocity transfer function of each joint Θk can be written
as follows:

F ∗
k =

1

1 + Tks
e−TDs . (3.36)

The delay TD due to communication (between the joint controllers and the soft-
ware) and signal processing (TD = 22 ms) is equal for all joints and much smaller
than the time constant Tk of the joints (see Tab.3.1) and is therefore neglected
while the observer is derived:

Fk =
1

1 + Tks
. (3.37)
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Table 3.1: PT1 parameters.

Joint Θ1 Θ2 Θ3 Θ7

Tk in s 0.23 0.20 0.20 0.22

A new state-variable z̃ for the observer that contains all active joints Θ̃a and

their velocities ˙̃Θa is defined:

z̃ =
[

˙̃ΘT
a , Θ̃

T

a

]T
(3.38)

with

Θ̃a =
[
Θ̃1, Θ̃2, Θ̃3, Θ̃7

]T
. (3.39)

The equations for the observer are:

˙̃z = Aoz̃ + Bou + Ly − Lỹ

= (Ao − LCo) z̃ + Ly + Bou (3.40)

ỹ = Coz̃ = Θ̃a (3.41)

y = Θa = [Θ1, Θ2, Θ3, Θ7]
T (3.42)

with

Ao =




− 1
T1

0 0 0 0 0 0 0

0 − 1
T2

0 0 0 0 0 0

0 0 − 1
T3

0 0 0 0 0

0 0 0 − 1
T4

0 0 0 0

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0




Bo =




1
T1

0 0 0 0 0 0 0

0 1
T2

0 0 0 0 0 0

0 0 1
T3

0 0 0 0 0

0 0 0 1
T4

0 0 0 0




T

Co =




0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
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L =




l1,1 0 0 0 l5,1 0 0 0
0 l2,2 0 0 0 l6,2 0 0
0 0 l3,3 0 0 0 l7,3 0
0 0 0 l4,4 0 0 0 l8,4




T

.

The chosen structure of L allows to determinate the solutions of

det
(
sE8×8 − (Ao − LCo)

)
= 0 (3.43)

describing the poles, effectively. The solutions

so2i−1,2i
=

−1 − l4+i,iTi ±√
ni

2Ti

for i = 1, .., 4

with

ni = −4Ti(l4+i,i + li,iTi) + (1 + l4+i,iTi)
2

are obtained. Considering the poles of the original system

det(sE8×8 − Ao) = 0 (3.46)

the solutions are:

s1,2,3,4 = 0 (3.47)

and

si = − 1

Ti−4

for i = 5, .., 8 . (3.48)

Solving

so2i
K = s4+i and so2i−1

= so2i
for i = 1, .., 4

leads to:

li,i =
1 + 1

K3 − 3
K

T 3
i

l4+i,i =
2 − K

KTi

. (3.49)

With K it is possible to determine how fast, compared to the original system,
the observer converges to the steady state. A small K leads to fast convergence
but the observer is more sensitive to noise. A higher value for K filters noise but
leads to a greater phase shift that degrades the stability of a closed loop system.
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3.2.2 Velocity Control Loop

After building the observer a velocity control loop can be closed. The structure
can be seen in Fig. 3.2: The subscript D of the variables denotes desired values,
the subscript p passive joints (Θp = [Θ5, Θ6]

T ), the subscript a active joints, and
the tilde symbol (∼) values computed with the observer. The transfer function

FD = e−
TD
2

s represents the communication delay. The input is split into the
Cartesian velocity ẋ and the angular velocity of the last joint θ̇7. A simple P-
controller with

F R = diag(Ck) =




C1 0 0 0
0 C2 0 0
0 0 C3 0
0 0 0 C4


 (3.50)

is used. Due to slow communication (serial port) between robot and controller
one cannot use high error amplifications, because this will cause instability.

θD,7
.

θD,a
.

θ
.~

FD

FD

FD

FD

Figure 3.2: Velocity control structure.

3.2.3 Experiments

In the experiments K = 0.5 for the observer and Ci = 0.5 for the controller pa-
rameters were chosen. This is a good compromise between low noise amplification
and small phase shift.

Figure 3.3 shows the online computation of the entry point position, as described
in Sec. 3.1.1. Figure 3.4 shows the desired velocity (solid line) of the TCP in world
frame W and the actual velocity computed by the observer (dashed line). It can
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be seen that good tracking behavior has been achieved. Figure 3.5 visualizes the
measured velocity of the TCP. Due to the large noise it is not possible to build
a control loop with good performance, using the measured ẋ for feedback.
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Figure 3.3: Entry point estimation.

Figure 3.6 shows the computed desired velocity for each joint (solid line), in-
cluding the two passive joints Θ5 and Θ6, according to Eq. 3.28 and Eq. 3.29,
as well as the joint velocities calculated by the observer (dashed line). Again
good tracking has been achieved. These trajectories can be compared with those
of Fig. 3.7 which presents the measured joint velocities. The error between the
observed active joints and the measured active joints is given in Fig. 3.8; the
difference remains small all over the sequence. The filtered trajectory (solid line)
can be compared with data provided by the observer (dashed line), both given
in Fig. 3.9: A small phase shift between these two trajectories occurs.
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Figure 3.4: Velocity of TCP, desired and observed.
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Figure 3.5: Measured velocity of TCP.
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Figure 3.6: Velocities Θ̇1 .. Θ̇6, desired and observed.
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Figure 3.7: Measured velocities Θ̇1 .. Θ̇6.
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Figure 3.8: Errors ∆Θ1..3.
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3.2.4 Summary

A control algorithm that allows Cartesian velocity control of the AESOP robot
was given. Therefore, an estimation of the entry point position to calculate an
approximation of the velocity of the passive joints is necessary. This leads to an
algorithm to compute the inverse Jacobian matrix. Due to sensor noise and slow
motion of the robot an observer for the joint velocities has to be built. Finally, a
velocity control loop can be closed. The experiments given show good results in
tracking the desired velocity.

3.3 Fundamentals of Position Control

This section addresses the fundamentals for Cartesian position control performed
with the AESOP robot, before the entire position control loop is presented in
Sec. 3.4. The main problem is that the joints of the robot have different time
constants (see Tab. 3.1). This leads to configuration dependent dynamics and
a coupling of the Cartesian degrees of freedom. A self-adjusting controller is
presented which is able to deal with the nonlinear dynamics of the robot.

Dealing with nonlinear dynamics of robots various algorithms have been devel-
oped. The feedback linearization scheme for example decouples the plant’s non-
linear dynamics and enables the definition of the desired Cartesian dynamics.
However, in common robot controller implementations decentralized cascaded
joint controllers are widely used [68]. This section addresses the problem that
the AESOP robot offers an interface which allows velocity control for each joint
and that the time-responses of the individual joints differ from each other. If
these differences are significant, the Cartesian time-responses of the robot be-
come configuration dependent, which has to be considered during the controller
design, in order to reach the desired specification. Instead of a design procedure
which deals with the worst-case scenario (conservative design) a self-adjusting
controller is presented which takes the time-varying behavior into account, in
order to achieve a better bandwidth of the control loop. The changes of the
Cartesian time responses are not very fast but a large range of values is covered,
so quasi-stationary treatment is appropriate.

First the configuration dependent dynamics are analyzed, thereafter the self-
adjusting controller is presented. The properties of the closed loop are discussed
in in the following section. Experimental results with the chosen self-adjusting
controller are shown and compared with the results of a conventionally designed
controller. When introducing the self-adjusting controller, only a 2 DoF case is
considered to keep complexity low. The entire position control scheme for the
AESOP robot is presented and discussed in Sec. 3.4.
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3.3.1 Cartesian Time-Response

According to Sec. 3.2.1 the dynamics of each joint Θk can be modeled as a PT1

transfer-function with dead time TD; see Eq. 3.51. This model is appropriate
if the robot has a position- or velocity-interface for the joints and if the robot
moves slowly enough to allow separate consideration of each joint. This means
no or neglectable dynamic coupling:

F ∗
k =

1

1 + Tks
e−TDs . (3.51)

If the dead times TD are equal for all joints, they do not need to be considered
while deriving the nonlinear behavior:

Fk =
1

1 + Tks
. (3.52)

The time constants Tk are assumed to be constant and not configuration depen-
dent. If

Tk �= Tl for k �= l , (3.53)

the Cartesian time-constants Tẋ are configuration dependent:

Tẋ = Tẋ(Θ) , (3.54)

as described below.

Nonlinear Dynamics The following block-scheme of a robot with a velocity
interface as shown in Fig. 3.10 is considered. The variable ẋD denotes the desired
Cartesian velocity vector, Θ̇D the desired joint velocity vector and ẋ the actual
velocity vector.

J
XD XD

Dynamic: T
RobotJ

.
-1

.Θ
..
Θ

Figure 3.10: Block scheme of robot with velocity interface.

The open loop equation is:

ẋ = JTJ−1︸ ︷︷ ︸
D

ẋD , (3.55)

with J being the Jacobian matrix of the robot and

T =




F1 0 ... 0
0 F2 ... 0
...

. . .
...

0 ... 0 FN


 (3.56)
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describing the joint dynamics. Using the definitions:

J =


 j11 ... j1N

...
. . .

...
jN1 ... jNN


 (3.57)

J−1 =


 g11 ... g1N

...
. . .

...
gN1 ... gNN


 = G (3.58)

the elements dij of D can be calculated:

dij =
N∑

k=1

Fkgkijjk . (3.59)

If off-diagonal elements of D are unequal to zero, i.e.

dij �= 0 for i �= j , (3.60)

the Cartesian dynamics of the robot are coupled, which means that a desired mo-
tion in one Cartesian direction leads to an undesired motion in other Cartesian
directions. This happens, if at least one Tk differs; see the following example for
a step-input in x-direction:

ẋ = DẋD = D




1
0
...
0


 =


 d11

...
d1N


 . (3.61)

It can also be seen that the elements dij are dependent on the actual configuration
Θ, because of J = J(Θ). This leads to the conclusion that the Cartesian time-
response is also configuration dependent. For further calculations a simplified
model is given next.

Simplified Robot Dynamics The time-derivative of Eq. 3.59 is:

ḋij =
N∑

k=1

ȧkgkijjk + akġkijjk + akgkij̇jk , (3.62)

with ak = 1 − e−t/Tk being the time-domain representation of Fk. At t = 0 the
following equation is satisfied:

ḋij|t=0 = ḋ∗
ij|t=0 =

N∑
k=1

1

Tk

gkijjk =
1

T ∗
ij

, (3.63)
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Figure 3.11: 2 DoF example, step response.

because ak(t = 0) = 0. For i = j the simplified model

d∗
jj = 1 − e

− t
T∗

jj (3.64)

fits good enough for further calculations:
At t = 0

ḋ∗
jj = ḋjj (3.65)

and for t → ∞ (step response)

d∗
jj → 1 and djj → 1 , (3.66)

because
N∑

k=1

gkjjjk = 1 and lim
t→∞

Fk = 1 . (3.67)

For i �= j T ∗
ij provides a measure of the coupled dynamics.

Figure 3.11 shows a simulation of the simplified model for a 2 DoF case (d11:
solid line and d∗

11: dashed line). It can be seen, that a good match is achieved.
The values of the time constants are chosen in order to visualize the accuracy of
the simplified model:

d11 = 0.3(1 − e−t/0.54s) + 0.7(1 − e−t/1.2s) (3.68)

d∗
11 = 1 − e−t/0.878s . (3.69)

If this simplification is applied to the AESOP robot used in the MIRS scenario,
the time constants are more similar to each other (see Tab. 3.1). Therefore, the
differences between the exact model and the simplified model can be neglected.
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3.3.2 Self-Adjusting Controller

In this section the chosen controller structure and adaption law, which provide
an intuitive way to deal with the nonlinear behavior described in Sec. 3.3.1, is
presented. The control loop for the one degree of freedom case, shown in Fig. 3.12,
is considered.

F
PD

F

D
F

XD F
C

1/s
XX

.

Figure 3.12: Closed control loop.

The controller transfer function is written as

FC = K
1 + T1s

1 + T2s
, (3.70)

the plant transfer function is:

FP =
1

1 + Tẋs
with Tẋ = T ∗

jj(Θ) , (3.71)

and the communication delay is

FD = e
−TD

2
s . (3.72)

If the delay-times TD of the joints, e.g. mechanical or signal-processing delay, are
significant and cannot be neglected they can be included in Eq. 3.72. Since the
Bode plot is used to calculate the parameters of FC the open loop equations have
to be considered:

Fopenloop = K
1 + T1s

1 + T2s

1

1 + Tẋs

1

s
e−TDs . (3.73)

The gain can be computed as follows:

A = K

√
1 + (wT1)2√
1 + (wT2)2

1√
1 + (wTẋ)2

1

w
= KA∗ . (3.74)

The phase is:

φ = atan2(wT1, 1) + atan2(−wT2, 1) + atan2(−wTẋ, 1) − π

2
− wTD . (3.75)
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Considering the structure of the controller FC three parameters have to be deter-
mined: K, T1, and T2. First T2 = kTs is chosen, with Ts being the sample time
of the digital implementation, to move the negative part of the phase of 1

1+T2s
as

far as possible towards high w. A good value proofed to be k = 4 or k = 5. One
way to compute T1 is to choose T1 = Tẋ to compensate the pole of the plant; this
works well for TD 	 Tẋ only. An adaption law able to handle the general case
is presented: For a small wg1 a desired phase margin φR1 is chosen that provides
good damping e.g. φR1 = 100◦. The necessary phase shift ∆φ1 that has to be
provided by the controller FC at wg1 can be computed as follows [48]:

∆φ1 = −π +
φR1

180◦
π +

π

2
− (−wg1TD + atan2(−wg1Tẋ, 1)) . (3.76)

The phase of FC at wg1 is:

∠FC = ∠1 + jwg1T1

1 + jwg1T2

. (3.77)

Solving Eq. 3.77 for T1 leads to:

T1 =
tan(∆φ1) + T2wg1

wg1(1 − T2wg1 tan(∆φ1))
. (3.78)

The last parameter to be calculated is K. A phase-margin φR2 for Fopenloop at
the gain crossover-frequency wg2 is chosen and Eq. 3.79 is solved for w = wg2:

∆φ2 = 0

= −π +
φR2

180◦
π +

π

2
− (−wg2TD + atan2(−wg2Tẋ, 1) + (3.79)

+atan2(wg2(T1 − T2), 1 + T1T2w
2
g2)) .

Finally, with Eq. 3.74:

K =
1

A∗(wg2)
, (3.80)

because wg2 is the gain crossover-frequency.

According to Eq. 3.78, T1 → ∞ only if

∆φ1 → arctan

(
1

T2wg1

)
. (3.81)

In this case the desired phase shift cannot be provided by the chosen controller. It
has to be guaranteed that for all possible Θ this case will never occur. According
to Eq. 3.80 K → ∞ only if wg2 → ∞. For the control law chosen here this is
impossible to satisfy. As the Tjj differ by a large range, but change slowly, the
system can be considered as quasi-linear and the control law is stable.

The algorithm presented here provides a conservative trend of the phase margin
as illustrated in the example shown in Fig. 3.13, with TD = 0.04 s, Tẋ = 0.5 s,
wg1 = 1 rad/s, T1 = 1.1988 s, K = 1.365, φR1 = 100◦, T2 = 5Ts = 0.2 s,
φR2 = 80◦.
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Figure 3.13: Bode plot.

3.3.3 Experimental Results

In this section the results of an experiment with a 2 DoF Scara like robot with
the following characteristics, are presented:

• time constant of joint one: T1 = 1.2 s

• time constant of joint two: T2 = 0.54 s

• length of segment one and two: l1 = l2 = 38.4 cm

During the experiment the following values for the setup were chosen:

• delay time: TD = 0.04 s

• sampling time: Ts = 0.04 s

• frequency wg1 = 1 rad/s

• phase-margin φR1 = 100◦

• phase-margin φR2 = 80◦

Two different controllers are analyzed: The first one is according to the self-
adjusting controller described in Sec. 3.3.2 (case 1), the second considers the
worst case scenario, without any adjustment during the experiment (case 2).
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In Fig. 3.14 the ramp input for xd (dashed dotted line) and the constant input
for yd (also dashed dotted line), and the robot trajectories for case 1 (solid line)
and case 2 (dashed line) are shown. It can be seen that for both cases an error
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Figure 3.14: The x- and y-trajectories.

occurs. The error in y-direction is a result of the nonlinear coupling effect, which
is smaller in case one compared to case two. The increasing error after about
t = 10 s is a result of the changing Cartesian time constants (see Eq. 3.63 with
i = j) shown in Fig. 3.15.

To compare the performance, the sum of absolute errors, according to Eq. 3.82
is computed:

ex =

∑N
k=1 |xdk

− xk|
N

and ey =

∑N
k=1 |ydk

− yk|
N

. (3.82)

For case 1:

ex = 4.7 cm and ey = 0.5 cm .

For case 2:

ex = 5.4 cm and ey = 0.8 cm .

The improvement by the self-adjusting controller compared to the conservative
design is significant:

∆x = 14.0 % and ∆y = 61.4 % .
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The improvement enlarges if the workspace enlarges, because the difference be-
tween the conservative controller design and the self- adjusting controller design
becomes much more significant.

Figure 3.15 shows the online computation of the Cartesian time constant in x-
and y-directions (solid line) and the values chosen for case two (dashed line).
Figure 3.16 shows the computed parameters T1 and K for the controller in x-
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Figure 3.15: Cartesian time constants.

direction (normal solid line) and y-direction (bold solid line), as well as the values
for case two (normal dashed line and bold dashed line, respectively).

3.3.4 Summary

In it has been shown that joints with different time constants lead to configura-
tion dependent Cartesian transfer functions. Furthermore, a dynamic coupling
between the Cartesian degrees of freedom occurs. A self-adjusting control law
that is able to deal with the configuration dependent dynamics of robots was
presented. (Only the diagonal elements of D are considered, as they are the
main reason for the undesired nonlinear behavior. The off-diagonal elements of
D which are responsible for the coupling of the Cartesian DoFs are neglected.)
The proposed control law allows an intuitive way to tune the behavior of the
closed control loop. Experiments show the advantages of the self-adjusting con-
trol law. Section 3.4 introduces the position control law for the robot used in the
DLR MIRS scenario.
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Figure 3.16: Computed controller parameters.

3.4 Position Control

Cartesian position commands are the most common way to command a telesurgery
system. Therefore, a Cartesian position control law is needed. It allows correct
hand-eye coordination and therefore increases the dexterity of the entire system.
In addition to appropriate scaling of the input trajectories, manipulation of small
structures with high accuracy is possible. First the position control law is de-
scribed in detail, after that experimental results are given. A brief summary
concludes the position control section.

3.4.1 Position Control Loop

The position control law is sketched in Fig. 3.17. As with the velocity control
law the entry point position estimation is used to calculate the inverse kinemat-
ics P−1. Furthermore, the inverse kinematics is used to calculate the simpli-
fied dynamics (Sec. 3.3.1) which is a prerequisite for the self-adjusting controller
(Sec. 3.3.2). The controller is tuned for the x-, y-, and z-directions separately,
the transfer functions are FC,x, FC,y, and FC,z, respectively. They are chosen
according to Sec. 3.3.2. As before, the subscript D of the variables denotes de-
sired values, the subscript p passive joints, and the subscript a active joints. The
variable t is the entry point and FD represents the communication delay transfer

function with FD = e−
TD
2

s.
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Figure 3.17: Position control scheme.

3.4.2 Experiments

A Cartesian input device (PHANToM) was coupled with the robot via the com-
puter network of the institute and was used for online-generating a desired input
trajectory. For the controller design the following parameters have been chosen
and applied to each Cartesian degree of freedom separately:

• sampling time: Ts = 22 ms

• delay time: TD = 22 ms

• phase-margin: φR1 = 80◦

• frequency: wg1 = 1 rad/s

• phase-margin: φR2 = 60◦

• controller parameter: T2 = 5Ts

The input trajectory as well as the robot position are given in Fig. 3.18: A
phase shift between the input trajectory and the robot position occurs. This
is due to the very conservative controller design (huge damping) as well as the
communication delay between controller and robot (TD = 22 ms).

The approximation of the Cartesian time-response parameter in x-, y-, and z-
direction as well as the computed controller parameters are shown in Fig. 3.19.
The parameter adaption, corresponding to the current configuration, can be seen
well. The adaption of T1 and K is less evident than in Sec. 3.3.3. This is due to
the minor differences of the parameters of the joint transfer functions (Tab. 3.1).
The parameters change slowly enough to allow quasi-stationary consideration.
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The adaption guarantees a well damped behavior and good dynamics over the
entire work space.
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Figure 3.18: Position control experiment.

3.4.3 Summary

Cartesian position control guarantees correct hand-eye coordination The sur-
geon’s movements become similar to his movements in open surgery. The position
control scheme proposed here provides good results. The control law is stable and
a well damped behavior is guaranteed. In all configurations of the robot the self-
adjusting controller provides sufficiently good behavior (according to the design
parameters). The tracking error (deviation between desired position and position
of the tool-tip of the robot) occurs due to the conservative controller design and
the communication delay (between controller and robot). As a drawback, po-
sition control can lead to unintentional damage of tissue, because manipulation
forces are not supervised. This problem is addressed in Sec. 3.5.
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Figure 3.19: Computed controller parameters.

3.5 Force Control

Force control is an inportant control strategy for minimally invasive surgery
robots. As the force at the tool-tip of the instrument is observed, force control
helps to avoid unintentional damage of tissue. Therefore, the safety of telesurgery
systems is dramatically increased. In beating heart surgery a force controlled
robot having contact with the heart surface is able to exert a constant force to
the organ and thus to compensate the heart motion. Another application of force
control is the preparation of the mamaria artery, where a constant force has to
be applied to the artery.

The performance of a force control loop strongly depends on the stiffness of the
environment. As tissue stiffness is not known a priori and may even vary between
patients or during an operation, an online stiffness estimator is used to adapt
the controller parameters. The force control law is presented first. Thereafter
experimental results are given. The subsequent summary concludes this section.

3.5.1 Force Control Loop

The force control scheme is depicted in Fig. 3.20. It is similar to the position
control scheme presented in Sec. 3.4.1: The subscript D of the variables denotes
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desired values, the subscript p passive joints, and the subscript a active joints.
The variable t is the entry point, FD represents the communication delay trans-

fer function with FD = e−
TD
2

s, and xenv is the position of the environment. The
sample time Ts = 1.7 ms of the sensorized scalpel which is used to measure the
contact forces is not shown in Fig. 3.20, because it is far less than the commu-
nication delay (between the joint controllers and the software) TD = 22 ms and
can be neglected.

As the performance of a force control law strongly depends on the environment
stiffness, a stiffness estimator is used to tune the controller parameters. The
stiffness in x-direction is calculated as:

Kx,env =
∆Fx

∆x
. (3.86)

In y- and z-direction, Ky,env and Kz,env are calculated accordingly. The environ-
ment stiffness is used to adapt the controller parameters in x-, y-, and z-direction:

HC,x =
1

Kx,env

FC,x , HC,y =
1

Ky,env

FC,y , and HC,z =
1

Kz,env

FC,z . (3.87)

The transfer functions FC,x, FC,y, and FC,z are chosen according to Sec. 3.3.2. The
parameter adaption ensures that the specifications for the closed loop behavior
(Sec. 3.3.2) are met, independent of the environment stiffness. As motion in MIS
is slow, a more detailed identification of the environment (e.g. damping) is not
necessary (see also the experimental results in Sec. 3.5.2).
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Figure 3.20: Force control scheme.
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3.5.2 Experiments

The sensorized scalpel (see Sec. 2.3.1) was attached to the AESOP robot. The
measured contact forces and the robot position were used to calculate an estima-
tion of the environment stiffness which is used to tune the controller parameters
(see Sec. 3.5.1). The robot was coupled with a Cartesian input device (PHAN-
ToM) via the computer network of the institute. The PHANToM has no force
sensor attached to the stylus, so the desired force trajectory cannot be measured
directly. The static situation can be considered as an equilibrium between the
force fPH commanded at the PHANToM (the force reflected to the user) and the
force fA measured at the remote side. Even slow motion can be interpreted as
quasi-static. The position offset between master and slave is scaled with KP and
used to increase or decrease the desired force f d. Therefore, the desired force is
calculated as follows:

fPH = f d = fdesired = KP (xA − xP) + fA (3.88)

with

KP = diag(30, 30, 30) , (3.89)

and xA denoting the position of the AESOP robot and xP denoting the position
of the PHANToM. A more detailed description of Eq. 3.88 including some master-
slave experiments is given in [61].

Figure 3.21 shows experimental results. The soft organs of the patient were
simulated by a piece of rubber foam. The results are given in one direction
(z-axis) only. The other directions provide similar results. The upper part of
the figure shows that the proposed control law provides good tracking of the
desired force trajectory. The major error occurs between t ∈ [12s, 15s]. Here,
the remote forces are very small and are therefore set to zero. This is necessary,
because low forces cannot be distinguished from sensor noise. The middle part
of Fig. 3.21 gives the calculated estimation of the environment stiffness Kz,env as
well as the computed controller parameter Kz. A lower limit for the environment
stiffness Kz,env,min = 0.4 N/cm is provided to guarantee reasonable values for
Kz,env in case of measurement errors. If enough measurement values to allow
robust determination of Kz,env are available the controller parameters are tuned.
The lower part of the figure shows the tracking error of the force trajectory. The
error remains remarkable small during the experiment.

Figure 3.22 gives experimental results if no adaption law is implemented. The
upper part of the figure shows the tracking of a force trajectory if the environment
stiffness Kz,env is chosen too large: Kz,env = 3.9 N/cm. The gain of the controller
is therefore low and a large tracking error occurs. If Kz,env is too low (here
Kz,env = 0.2 N/cm) the force controller becomes instable (lower part of Fig. 3.22),
as the gain of HC,z is too large.
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Figure 3.21: Stiffness estimation.

3.5.3 Summary

In this section a force control law which takes into account the actual stiffness of
the remote environment was presented. This makes an online estimation of the
environment stiffness necessary. In combination with the self-adjusting controller
this leads to good results.

Even more, without the stiffness estimation, the performance of the closed loop
degrades. This is shown in the experiments section: A too large estimation of the
remote stiffness leads to a large tracking error, whereas a too small estimation
leads to an unstable control loop.

Further experiments in a medical master-slave scenario including force-feedback
are given in [61]. In this publication also different types of coupling (e.g. position
– position or force – force) of master and slave are discussed.

3.6 Conclusions

The focus of this chapter lies on Cartesian control laws, allowing unrestricted
Cartesian motion of surgical instruments. This leads to the reestablishment of
the correct hand-eye coordination and makes MIS more similar to open surgery.
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Figure 3.22: No stiffness estimation.

A prerequisite for Cartesian control laws in MIRS is the knowledge of the entry
point position. If this position is known the inverse kinematics of the robot can
be calculated.

Section 3.2 presents a velocity control loop. As the motion of the robot is slow
and the communication delay is large (TD = 22 ms) the measured joint velocities
Θ̇ are very noisy and an observer is built to close the control loop. The experi-
ments presented show the good performance of the controller, indicated by small
tracking errors.

The joints of the robot have different time constants, which leads to configuration
dependent dynamics of the Cartesian degrees of freedom of the robot. A self-
adjusting controller is used to circumvent this undesired behavior and to close
the position control loop as described in Sec. 3.4.

Force control helps to avoid unintentional tissue damage and is a first step towards
motion compensation in MIRS (Sec. 3.5). The force control law presented is based
on a stiffness estimation enhancing the performance of the closed loop as it allows
an adaption of the controller parameters.

The control laws presented here can be merged to mixed velocity/force or posi-
tion/force control, depending on the contact situation. An evaluation by surgeons
is necessary to identify the optimal control laws for different situations during
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surgery. It is expected that the variety of the proposed control laws helps to
adapt the robotic surgery system best to the operation. This will increase the
quality of the therapy itself and enhance the ergonomics of the entire robotic
surgery system. Furthermore, if the robot is able to compensate organ motion
(e.g. with the methods proposed in Chapter 4 and Chapter 5) and allows the
surgeon to work on a virtually stabilized organ completely new high quality op-
eration techniques will be possible.
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Chapter 4

Tracking in MIRCS

Heart surgery currently evolves from open surgery to minimally invasive robotic
surgery (MIRS), as described in Sec. 1.3. First steps towards MIRS at the beating
heart are made to avoid the drawbacks of a heart-lung-machine. To reduce the
motion of the beating heart mechanical stabilizers (e.g. Octopus from Medtronic)
are widely used. However, the remaining motion (about 1.5 − 2 mm [37]) inside
the stabilized area makes a safe operation difficult and time-consuming [19, 41].

For these reasons, compensation of the remaining motion is highly recommended.
In robotic surgery this can be performed by the robot arm itself. Ideally, the
relative pose between heart surface and tool center point of the robot remains
constant: the heart is virtually stabilized. This leads to the problem of measuring
the remaining motion of the heart surface, either by additional equipment (e.g.
accelerator sensors on the heart surface as proposed by Computer Motion [78]
or small color markers placed near the anastomosis) or by surgical equipment
already used during surgery. An appropriate sensor seems to be the stereo-
laparoscope, a rigid endoscope that is widely used in MIRS. Using the laparoscope
as the sensor and exploiting natural landmarks has some important advantages:
The already limited workspace is not restricted further by additional sensors, no
contact between sensor and heart surface is necessary, and the motion of the
entire area of interest can be captured. The main disadvantage of the method
proposed here, is that vision algorithms can be disturbed easily. This problem is
handled by the framework presented in Chap. 5.

The vision algorithms presented here are applied to natural landmarks inside the
stabilized area, see Fig. 4.1. Of course, parts of the mechanical stabilizer are
prominent landmarks (e.g. edges or additional color markers on the stabilizer)
too which can be tracked very well, but to achieve high accuracy tracking on the
heart surface itself is inevitable.

The distortion of the heart surface in the image-plane is strongly nonlinear. The
tracking model used and its degrees of freedom are presented in Sec. 4.2. Due to
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the wet heart surface specularities occur very frequently and disturb the track-
ing algorithm. Strategies to detect these specularities and to eliminate them are
given in Sec. 4.3 and Sec. 4.4. The tracking results are evaluated in Sec. 4.5 and
the computed trajectories are discussed in the subsequent section. Section 4.6
presents a confidence measure, evaluating the reliability of landmarks with re-
spect to the tracking framework. 3D investigations to gain depth information are
discussed in Sec. 4.7.

Figure 4.1: Stabilized heart with tracking areas.

4.1 Related Work

Tracking is very important in robotic surgery to capture the motion of the aiming
points to update preoperative planning data. During the last decade it has been
investigated by many research groups dealing with bonesurgery (e.g. spinesurgery
[82] and hipsurgery [17]) or neurosurgery [18]. Often implanted fiducial markers
or stereotactic frames [84] have been used to track the motion. New tracking
techniques try to exploit natural anatomical landmarks to avoid artificial markers
[6, 9]. However, these techniques can not be applied easily to deformable soft
tissue as it appears in cardiac surgery.

Recent works in the context of soft tissue deal with motion detection and com-
pensation in X-Ray cancer treatment to increase accuracy [67, 69]. Here, motion
is induced by the patient’s respiration. Although the remaining motion is identi-
fied as one of the most important drawbacks of minimally invasive beating heart
surgery [19], only few research groups which work in this field are known: Motion
compensation in beating heart surgery is currently investigated by another group
located in Switzerland [13]. The company VISTA Development has published
on its web-sites a short description of their beating heart motion tracking sys-
tem which exploits artificial landmarks by the stereo laparoscopic cameras [76].
Unfortunately, no quantitave nor qualitative results can be found.
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4.2 Tracking Model

According to [40] two different tracking approaches can be distinguished: tracking
based on image features and tracking of complete regions or patterns in an image.

Feature-based tracking requires the extraction of image features, allowing fast
subsequent matching due to the reduced amount of information. Region-based
tracking saves the cost of feature extraction but finding the best matching pattern
in the subsequent image requires a lot of computation time. Direct operation on
image intensities makes special care for preprocessing tasks (e.g. illumination
changes, occlusions etc.) necessary.

A region-based approach seems good for tracking landmarks on the heart surface,
since the extraction of reliable features in realtime (e.g. edges) is hardly possible
due to the nonlinear deformation of the heart surface.

4.2.1 Affine Motion Model

Despite the fact that the distortion of the tissue is nonlinear, an affine motion
model as described in [26] is applied. This is possible if the pattern size is small
enough to allow linear approximation of the nonlinear deformation. An affine
motion model can be defined by the following equation:

v′ = T (v) = A · v + t =

[
a11 a12

a21 a22

] [
vx

vy

]
+

[
tx
ty

]
, (4.1)

where t is the translation vector, A is called warping matrix and v is the po-
sition of the pixel to be transformed. The affine transformation has six DoFs,
two for translation t = [tx, ty]

T and four warping parameters aij. They can be
decomposed as follows:

A = s

[
cos(φ) −sin(φ)
sin(φ) cos(φ)

] [
cos(α) sin(α)
−sin(α) cos(α)

] [
1 0
0 τ

] [
cos(α) −sin(α)
sin(α) cos(α)

]
,

where s is the scaling parameter, φ the rotation angle, and τ and α are the shear
parameters value and direction. The parameter vector µ can be written as:

µ = [tx, ty, s, φ, τ, α]T . (4.3)

If a reference pattern r is to be tracked over an image sequence, the task is to
compute the parameters µopt of the transformation T = T (v) that map the
current pattern p best to the original pattern r. Therefore, all pixels v of the
actual and distorted pattern p are projected to the undistorted pattern p′. Using
the sum of squared differences (SSD) as a similarity measure, this landmark is
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then compared with the reference landmark r:

J(r, p′) =

√
1

|dom(r)|
∑

i∈dom(r)

(r(i) − p′(i))2 , (4.4)

with dom(r) denoting the domain of pattern r and |dom(r)| denoting the cardi-
nality of dom(r). The optimal parameter vector µopt is calculated as:

µopt = arg min
µ∈Mµ

J(r, p′) (4.5)

where Mµ is the domain of µ.

4.2.2 Further Aspects

Tracking on Halfimages Tracking is performed on halfimages only, to avoid
motion artifacts which arise from the interlaced nature of the camera images.

Search Strategy A global search strategy taking every (discretized) µ ∈ Mµ

into account is applied. This has the drawback that the computational effort
increases exponentially with the DoFs of the search space and is suitable for
realtime applications only if the dimension for the search space can be limited
(Sec. 4.5.6). The main advantage of a global search strategy compared to a
gradient based, as e.g. proposed by Hager [26], is that tracking is more robust
with respect to local minima.

Spatial interpolation Since the transformed coordinates usually do not lie
on the discrete image grid of the CCD chip of the camera, bilinear interpolation
as presented in [22] is used for mapping. Bilinear interpolation involves more
computing time than simple nearest neighbor interpolation, but is a reasonable
compromise between computational effort and precision.

Illumination Compensation Illumination compensation is a prerequisite to
deal with changes of the pattern intensity. Hager combines the affine motion
model with an illumination model in one search space [26]. The current illumi-
nation is then calculated by linear combination of a set of basis images, recorded
under different lighting conditions in advance [5]. In MIRCS the light source
moves only seldomly and the environment is well defined, so a simple illumina-
tion model can be applied [15]:

fcomp = αf + β (4.6)

for an image f , and α, β ∈ R.
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Equation 4.6 includes mean compensation as well as a normalization of the stan-
dard deviation (contrast) of the pattern intensity. Mean compensation can be
achieved by:

β = −ḡ(f) = − 1

|dom(f)|
∑

x∈dom(f)

f(x) and α = 1 . (4.7)

Once an image pattern has been mean compensated, the contrast can be normal-
ized with:

α =
1√

1

|dom(f)|
∑

x∈dom(f) f(x)2
. (4.8)

As presented in Sec. 4.5.3 contrast normalization does not improve tracking be-
havior significantly, whereas mean compensation is necessary.

4.3 Detection of Specular Reflections

Specular reflections (see Fig. 4.2) that appear on the wet heart surface strongly
disturb tracking of natural landmarks because of their sudden motion.

Figure 4.2: Image of the beating heart with specularities.

On mirror-like surfaces specular reflections occur, which means that all parallel
rays hitting the surface are reflected as parallel rays [36]. The following properties
of specularities on the beating heart surface are important for the subsequent
handling:

• Specularities have very high intensity, which is independent of the surround-
ing pixel intensity.
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Figure 4.3: Specular reflection: one-dimensional intensity function f (schematic).

• Around the specularities a usually two pixels wide black boundary artifact
with heavily decreased pixel intensity occurs (see areas [b1, s1] and [s2, b2]
in Fig. 4.3).

• Rapid movement of the specularities occurs because the motion of the heart
changes the orientation between heart surface and light source.

Specularities should not be tracked over an image sequence due to their sudden
motion and appearance/disappearance. Therefore, reliable detection and subse-
quent treatment is necessary to avoid disturbance of the tracking. Keeping in
mind that these steps have to be performed in realtime, powerful methods as
proposed by Nayar et al [49] exploiting color and polarization information or the
reflectance model by Wolf [83] are not suitable. Therefore, a simple intensity
based technique is proposed, consisting of two major steps:

1. thresholding (Sec. 4.3.1) and

2. dilation (Sec. 4.3.2).

4.3.1 Thresholding

Thresholding is a pixel oriented operation that transforms a grey value image
f : M × N → G = {0, .., 255} into a binary image fθ : M × N → {0, 1}:

fθ(m,n) =

{
1, if f(m,n) > θ
0, otherwise

with m ∈ M and n ∈ N .
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Since specular reflections have a high intensity within the upper third of the
value range, a global threshold to segment specularities in the whole image can
be found:

θ = θ(f) = ḡ(f) + θoffset (4.9)

with θoffset ∈ N and ḡ(f) being the image mean. Consideration of the image
mean leads to an adaption of θ(f) to different lighting conditions during the
image sequence.

As shown in Fig. 4.4, the image mean ḡ(f) varies between grey values of 85 and
95, here θoffset = 60 leads to robust segmentation of specular reflections over the
given image sequence. Under different lighting or setup conditions, θoffset may
have to be adapted. See Fig. 4.5 for an example of a thresholded image.
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Figure 4.4: Global mean value over the image sequence and proportion of seg-
mented pixels.

4.3.2 Dilation

The thresholding algorithm detects the area between [s1, s2] as shown in Fig. 4.3
reliably. However, it is necessary to handle the black boundary artifacts ([b1, s1]
and [s2, b2]) as well. Therefore, the detected area needs to be extended by an
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Figure 4.5: Image of the beating heart after thresholding (specular areas masked
out).

appropriate number of pixels (here, the artifact is usually two pixels wide). This
can be done by applying a dilation operation as described in [44] to the detected
artifacts. The structuring element S with

S =


 0 1 0

1 1 1
0 1 0




is applied to each detected pixel, such that the thresholded area is enlarged. To
cover the entire black boundary artifact, this is done twice (see Fig. 4.6).

Figure 4.6: Image of the beating heart after dilation (specular areas masked out).

4.4 Elimination of Specular Reflections

After detecting the specular areas, their handling in the context of the track-
ing framework is presented. In the following sections two different methods are
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considered: Detection of local structure information is a prerequisite for the first
method dealing with the reconstruction of underlying structure information. The
second method masks out the detected specularities.

4.4.1 Detection of Structure Orientation

In [24] two reconstruction methods, suitable for small disturbances, such as spec-
ular reflections are presented and discussed in detail: The first method is based on
an anisotropic confidence-based filling in scheme. This iterative scheme provides
good results but is not suitable for realtime applications. The second method, lin-
ear interpolation based on the structure tensor, provides almost the same results
and is far less time consuming.

The following paragraphs introduce the structure tensor according to [80] briefly:

Building the tensor product with the derivative ∇fσ
def
=
[

∂fσ

∂x
, ∂fσ

∂y

]T
of the Gaus-

sian smoothed image fσ, leads to:

J0(∇fσ)
def
= ∇fσ ⊗∇fσ = ∇fσ∇fT

σ =

[
(∂fσ

∂x
)2 ∂fσ

∂x
∂fσ

∂y
∂fσ

∂x
∂fσ

∂y
(∂fσ

∂y
)2

]
. (4.10)

Since J0 is symmetric, the eigenvectors v1 and v2 of J0 form an orthonormal basis
and are oriented according to the image gradient, i.e. v1 ‖ ∇fσ and v2 ⊥ ∇fσ.
The contrast (squared gradient) is given by the eigenvalues |∇fσ|2 and 0. To
average orientation with neighbored pixels, the components of J0 are convolved
with a Gaussian kernel gρ (standard deviation ρ ≥ 0), which leads to the structure
tensor:

Jρ(∇fσ)
def
= gρ ∗ [∇fσ ⊗∇fσ] . (4.11)

The noise scale σ used for the Gaussian kernel gσ reduces the image noise before
applying the gradient operator. The integration scale ρ, allows to adjust Jρ to
the size of structures which are to be detected.

The eigenvalues λ1 and λ2 of the structure tensor Jρ specify the contrast in
direction of the eigenvectors v1 and v2. The eigenvector v1 corresponding to the
eigenvalue λ1 with |λ1| ≥ |λ2| gives the orientation of the highest contrast. The
second eigenvector v2, with v1 ⊥ v2, gives the orientation of the local structure.

4.4.2 Structure Tensor Driven Reconstruction

The approach presented here uses local structure information around the specu-
larity to reconstruct the underlying structure of the specular area. This leads to
smooth transitions at the boundaries of the specularity, which are necessary for
robust tracking.
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Considering a specular point ps, the two boundary points p1 and p2 along the
structure orientation given by the eigenvector v2 have to be searched. Linear
interpolation between the intensities at p1 and p2 leads to the new intensity
value at ps (Fig. 4.7). To obtain reasonable structure information for points
lying inside the specularity, the integration scale ρ has to be large enough to take
the surroundings of the specularity into account. In other words, the structure
to be detected has to be larger than the size of the specularities considered.

2p

p

p

v

s

2

specularity
1

Figure 4.7: Illustration of reconstruction scheme.

With this interpolation method smoothness inside the specular area is not guar-
anteed, so Gaussian low-pass filtering is applied after the reconstruction process.

Figure 4.8 shows details of a reconstructed area. The noise scale was set to σ = 1
and the integration scale was set to ρ = 2.8.

Figure 4.8: Image reconstructed by structure tensor interpolation (detail).

4.4.3 Masking Specular Reflections

Besides the attempt to reconstruct structure information as presented in Sec. 4.4.2
another possibility is to exclude areas detected as specular form the similarity
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measure (Eq. 4.4). This avoids the time-consuming reconstruction method, but
has the drawback of not using all the information available, especially structure
information from the local neighborhood of the specularities.

If a pattern of size N = |dom(r)| contains Nr pixels belonging to reflections, the
SSD measure has to be modified:

J =

√
1

N − Nr

∑
i∈dom(r)\dom(rr)

(r(i) − p′(i))2 , (4.12)

with dom(rr) being the domain of the Nr specular pixels. Additionally, the con-
straint

Nr ≤ Nmax (4.13)

has to be regarded to assure that enough structure information is still contained
in the considered pattern. Otherwise, the tracking algorithm tends to areas filled
with lots of specularities to minimize the similarity measure. This effect is similar
to the aperture problem, if periodic structure is considered. Unfortunately, it is
not possible to provide an upper bound for Nmax for all considered landmarks,
because it strongly depends on the structure of the pattern and the position of
the specularities.

4.5 Tracking Results

In this section the proposed algorithms are evaluated. Therefore, two measures
to quantify the tracking performance are introduced. The tracking environment
itself is described in the subsequent section. The following section evaluates the il-
lumination model proposed in Sec. 4.2.2. The treatment of specularities is judged
for the reconstruction method as well as for the masking method, respectively.
The evaluation of the tracking model shows the relevance of the warping param-
eters of the affine tracking model given in Sec. 4.2.1. Visual inspection as well as
an analysis of the periodicity of the trajectories allows to discuss the accuracy of
the proposed tracking scheme. Some details of this analysis have been published
in [23].

4.5.1 Measures

Two measures to judge the performance of the tracking algorithms are introduced.
With these measures it is not possible to quantify the accuracy of the tracking
scheme, because the real pattern position in the image sequence is unknown,
so visual inspection is inevitable (Sec. 4.5.7). Nevertheless, as shown in the
subsequent sections, these measures allow a first insight into the performance of
the algorithms.
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Sum of squared differences The sum of squared differences (SSD) (Sec. 4.2)
measures the similarity between two patterns. Finding µopt does not guaran-
tee that the correct affine parameters were found, but allows to compare the
properness of different transformations T i.

Outlier measure The outlier measure o quantifies the deviation of the trajec-
tory t from its smoothed version ts:

o(t) =

√
1

|dom(t)|
∑

i∈dom(t)

(t(i) − ts(i))2 . (4.14)

Therefore, a zero-phase forward and reverse filter to calculate ts, is used. Fig-
ure 4.9 shows the original trajectory t as well as its smoothed version ts. A
zero-phase forward and reverse filter can be applied in off-line data analysis only
due to causality.
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Figure 4.9: Rotation parameter unfiltered and filtered.

A high value for o indicates numerous outliers or a very noisy trajectory. As with
the SSD measure no evaluation of the correctness of the optimal parameters µopt

is possible.

4.5.2 Tracking Environment

The following paragraphs present the tracking environment which is used for the
subsequent analysis of µopt.

Image data A video sequence sampled during beating heart surgeries at the
University Hospital Grosshadern (Munich, Prof. Reichenspurner, Dr. Boehm)
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is investigated. To avoid motion artifacts tracking is performed on halfimages
only, which are sampled at a frame rate of 25 Hz. All landmarks are chosen from
inside the stabilized area (between the two arms of the mechanical stabilizer), in
which a linear approximation of the nonlinear deformation with an affine model
(cf. Sec. 4.2.1) is possible. Video sequences of different beating heart surgeries
lead to similar results and are considered in Chap. 5.

Selected landmarks Three landmarks are chosen to represent different cases:
Figure 4.10 shows their location: From left to right landmarks LM2, LM8 and
LM1 together with their translational search areas are presented. The size of the
landmarks given in pixel ([px]) is 30 px×15 px and the translational search space
is 70 px × 70 px respectively.

Figure 4.10: Landmarks within the tracking area.

Landmark one (LM1) is located at a y-crossing of two structures. This provides
structure information in all major directions and thus allows robust track-
ing. Moreover, this landmark is not occluded by large specularities of the
image sequence. So LM1 is a good landmark, and would not even require
reconstruction in this case.

Landmark two (LM2) is often exposed to major reflections which disturb track-
ing, so this landmark gives a good example for disruptions caused by reflec-
tions. It is a good position to evaluate the treatment of specular reflections
(see Sec. 4.4.2 and Sec. 4.4.3).

Landmark eight (LM8) contains horizontal structure only which makes robust
tracking difficult, since not enough structure information is available to
determine the parameter vector µopt reliably.

As mentioned in Sec. 4.2.2 a global search strategy is applied to calculate µopt.
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4.5.3 Evaluation of Illumination Models

In this section the illumination models as presented in Sec. 4.2.2 are evaluated
by the outlier measure o(t). Mean compensation is indispensable, since the tra-
jectories have a lot of outliers otherwise (Tab. 4.1). Table 4.1 shows that refining
mean compensation is not necessary, since the outlier measure for contrast nor-
malized patterns does not improve significantly for the translational parameters.
The outlier measure for the rotational parameter improves significantly, but as
shown in Fig. 4.11 the translational trajectory itself is not improved (the same
holds for other affine warping parameters, such as shear or scaling). Therefore,
the time consuming contrast normalization can be avoided.
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Figure 4.11: Illumination: standard deviation normalized (light) for translation
and rotation at LM1.

4.5.4 Evaluation of Reconstruction

An evaluation of the structure driven reconstruction method proposed in Sec. 4.4.2
is presented. After applying mean compensation as recommended in Sec. 4.5.3
µopt is calculated. The outlier measure is used to judge the reconstruction scheme.
Here, only LM2 and LM8 are considered, because they proved to be most sensitive
to specular reflections and thus allow a good evaluation.

In Tab. 4.2 the outlier measures for tracking of patterns burdened with reflections

72



Table 4.1: Outlier measures for no mean compensation (no mean), mean com-
pensation without normalization of standard deviation (mean), and mean com-
pensation with normalization of standard deviation (nsd).

landmark / outlier measure
parameter no mean mean nsd

LM1 tx 6.98 px 1.30 px 1.30 px
LM1 ty 4.13 px 0.86 px 0.88 px
LM1 φ 0.05 rad 0.02 rad 0.02 rad

as well as patterns reconstructed with the structure tensor method are given
(translational parameters only). Generally, the outlier measures for tx are worse
than those for ty. This is due to the horizontal structure of the patterns, which
leads to a more robust detection of ty.

Table 4.2: Outlier measures for tracking original and reconstructed specularities.

landmark / method
parameter original reconstructed

LM2 tx 4.89 px 1.96 px
LM2 ty 4.24 px 1.07 px
LM8 tx 2.33 px 1.49 px
LM8 ty 0.84 px 0.85 px

This survey is completed by Fig. 4.12 which shows frequent outliers for the
non-reconstructed pattern. Additionally, the significantly lower SSD measure in
Fig. 4.12 shows the superior performance of structure tensor interpolation based
tracking.

4.5.5 Masking of Specular Reflections

After showing the performance of the reconstruction method, masking of spec-
ularities as proposed in Sec. 4.4.3 is evaluated. Therefore, global search is per-
formed on reconstructed images (see Sec. 4.4.2) and on landmarks with masked
specular reflections (see Sec. 4.4.3), respectively. In Fig. 4.13 the difference be-
tween these two methods is given; it can be seen that tracking behavior is almost
the same.

Calculating the outlier measure of trajectories gained from reconstructed land-
marks and from landmarks with masked specularities shows that only in case
of LM2 the reconstruction method leads to superior behavior in tx and ty. For
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Figure 4.12: Structure tensor reconstruction (dark) versus original image at LM2.
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Figure 4.13: Trajectories for LM8: reconstructed (dark) and masked.
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LM1 and LM8 masking of specular reflections and reconstructing the underlying
structure show similar performance (Tab. 4.3). The superior behavior of the re-
construction method in case of LM2 can be explained as follows: Landmark LM2
is exposed to major reflections. Reconstruction of the underlying structure adds
more information from the local neighborhood to the similarity measure than
the masking method. Therefore, determination of µopt is more robust with first
method.

Table 4.3: Outlier measures for masked and reconstructed specularities.

LM1 LM2 LM8
method tx ty tx ty tx ty

masked 1.35 px 0.83 px 2.19 px 1.07 px 1.48 px 0.85 px
reconstructed 1.30 px 0.86 px 1.96 px 1.06 px 1.49 px 0.85 px

Despite the fact that masking specular reflections is faster than structure driven
reconstruction, subsequent analysis is done with trajectories based on the re-
construction method. This is because this method is better suited for specular
reflections that move on the underlying pattern structure (e.g. LM2).

4.5.6 Evaluation of Affine Tracking Model

Section 4.5.4 shows that after appropriate handling of specular reflections, a re-
duction of the search space towards only two DoFs (µ = [tx, ty]

T ) is possible.
Nevertheless, the question arises, whether adding additional DoFs to the search
space (here: the warping parameters of the affine motion model) allows to de-
rive additional information. The drawback of an increased search space is the
additional amount of computation time necessary to determine µopt. Further
investigations of the affine tracking model are published in [23], too.

The rotational parameter presented in Fig. 4.14 shows quasi-periodic behavior
but contains a lot of noise. Furthermore, increasing the dimension of the search
space degrades the trajectories of the translational parameters slightly, as it can
be seen in Tab. 4.4. The considered landmark does not contain enough structure
to allow a robust determination of all considered affine parameters and is therefore
easily disturbed.

Adding more DoFs (here shear about any axis: µ = [tx, ty, τ, α]T ) degrades the
translational parameters significantly, whereas the shear parameters themselves
do not contain any significant information (Fig. 4.15). The same holds for scaling
and rotation (summarized in Tab. 4.4).

Warping parameters contain a lot of noise and prevent robust determination
of the translational parameters. Only the rotation parameter seems to provide
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Figure 4.14: Evaluation of rotation parameter at LM1.
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Figure 4.15: Evaluation of shear parameters at LM1.
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Table 4.4: Outlier measures for different DoFs of the search space.

LM1 LM2 LM8
parameters tx ty tx ty tx ty

translation only 1.30 px 0.86 px 1.96 px 1.06 px 1.49 px 0.85 px
rotation φ 1.38 px 0.88 px 2.15 px 1.06 px 1.48 px 0.84 px
shear (τ , α) 1.31 px 0.87 px 4.01 px 1.11 px 1.99 px 0.83 px
rot. + scale (φ, s) 1.29 px 0.89 px 2.08 px 1.07 px 1.40 px 0.84 px

reasonable additional information (without degrading tx and ty too much) which
might be useful in subsequent analysis. It can also be seen that determining the
translational parameters only is sufficient for robust tracking. These results are
valid for other beating heart surgery video sequences, too (see Chap. 5).

4.5.7 Visual Inspection

Analysis of trajectories and corresponding measures (SSD and outlier measure)
allow the evaluation and comparison of different models (e.g. illumination) and
parameters (e.g. warping parameters). The true parameters of the affine motion
model are unknown, so final avluation of correctness of µopt and accuracy can be
achieved by visual inspection only.

(a) Reference pattern (b) Tracked pattern

Figure 4.16: Tracking of LM1.
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As an example, tracking is investigated at landmark LM1 for a temporal displace-
ment of 7 frames between the two images. Two different cases are considered:
Translation only and translation in combination with rotation.

Figure 4.16(a) shows LM1 in detail, surrounded by a bright rectangle. Fig-
ure 4.16(b) shows the tracked target after 7 frames. It occurs displaced and
rotated from the pose of the reference pattern.

(a) Pure translation (b) Translation and rotation

Figure 4.17: Tracked pattern pasted into reference image.

The tracked pattern is then pasted into the reference image (see Fig. 4.17(a) for
pure translation and Fig. 4.17(b) for translation with rotation). The surrounding
structure is well continued through the pattern, the transitions for translation
and rotation are slightly smoother than for pure translation.

Visual inspection shows that the correct position and the warping parameters of
the affine motion model are calculated with high accuracy. The given example
also shows that rotation can be neglected.

4.5.8 Detection of Periodicity

As presented in the preceding sections, periodicity is apparent for the transla-
tional parameters as well as for rotation. The discrete Fourier transformation
(DFT) is applied to the trajectories of these parameters (calculated over a se-
quence of 931 images), to gain detailed information about the dominant frequen-
cies. Figure 4.18 presents the tracking results for LM2 only, but LM1 and LM8
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show similar behavior.
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Figure 4.18: Trajectories of selected affine parameters at LM2.

For the translational parameters two dominant peaks, at f1 = 14.5 min−1 and
f2 = 70.9 min−1, can be detected (cf. Fig. 4.19). Frequency f1 corresponds to the
respiration rate and frequency f2 to the heart beat rate. Additionally, the first
and second harmonic of the heart beat (that is not sinusoidal) can be seen, with
f3 = 141.8 min−1 and f4 = 212.7 min−1. This demonstrates the accuracy of the
tracking scheme presented here. The same holds for rotation, but the spectrum
contains more noise. The assumption that f1 and f2 correspond to physiological
parameters is confirmed in Sec. 5.4, where in addition to the video sequences
also the ECG (electrocardiogram) and the RPS (respiration pressure signal) are
considered.

4.6 Quality of Landmarks

As the total amount of computation time in realtime applications is limited, the
quality of the considered landmarks with respect to robust tracking is important.
It is better to track few but reliable landmarks than plenty of unreliable land-
marks. A confidence measure able to distinguish between landmarks which lead
to robust and non robust tracking seems to be useful. This measure has to fulfill
the following requirements:
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Figure 4.19: Amplitude spectrum of selected affine parameters at LM2.

• low computational cost

• high significance, when applied to real data

• local and global properties of the pattern and the corresponding search area
are taken into account (see below)

First an appropriate confidence measure for judging the tracking quality of a
landmark is introduced. Thereafter, experimental results for the proposed confi-
dence measure are presented, when it is applied to video sequences derived during
heart surgeries.

4.6.1 Confidence Measures

In [70] the following error sources that might influence successful matching of the
reference pattern have been identified:

Significance Considering the shape of the error function J , the curvature at
the minimum has to be very high. This eases reliable detection of the correct
minimum, even in case of noise. Figure 4.20 shows the plot of the error function
for the translational search space µ = [tx, ty]

T for LM1. Here, matching of the
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reference pattern is applied to the reference image itself. The high curvature
at the global minimum µopt = [0, 0]T (marked with vertical line) indicates, that
LM1 is a very significant pattern. This is confirmed by investigations presented
in Sec. 4.5.
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Figure 4.20: SSD measure versus tx, ty at LM1 (applied to same image).

White Wall Problem A pattern with almost no underlying structure infor-
mation (e.g. taken from a white wall) allows no reliable matching in subsequent
images. The minimum of the error function is strongly influenced by noise and
no reliable motion detection is possible. In the application investigated here, the
white wall problem can be neglected, because some structure is always available.

Aperture Problem A pattern that does not allow to determine µ = [tx, ty]
T

due to the limited field of view (e.g. the pattern contains part a horizontal line
only: this does not allow the determination of the horizontal position of the
pattern). The minimum in this direction is flat, the global minimum found is
strongly influenced by noise. Figure 4.21 shows the error plot for LM2. It can
be seen that the curvature is flat in x-direction, which is due to the structure
captured by LM2. The determination of tx is therefore unreliable (see Sec. 4.5.4).
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Figure 4.21: SSD measure versus tx, ty at LM2 (applied to same image).

Periodic Structure If the pattern contains parts of a periodic structure that
can be found elsewhere in the search area several minima with almost the same
value of J occur. The determination of the global minimum is therefore strongly
dependend on noise and correct calculation of µopt = [tx, ty]

T cannot be guar-
anteed. Unfortunately, periodic structure occurs in minimally invasive heart
surgery, too.

Confidence Measure Confidence measures can be divided up into local and
global measures. A local measure takes information into account that can be
derived from the surroundings of the detected minimum only (e.g. curvature),
whereas a global measure considers the whole search area. In [70] several con-
fidence measures are discussed and judged for robust calculation of optical flow
in mobile robotics. As the calculation of optical flow in [70] is based on pattern
matching, using the SAD (sum of absolute difference) as similarity measure, the
tracking model is similar to the one used in this work (see Sec. 4.2). Accord-
ing to [70] the following confidence measure is best suited and takes local as
well as global information into account: When calculating J not only the global
minimum

emin = J(r, p′(µopt)) (4.15)
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is determined, but also the second lowest value of J : e2. The difference

d = e2 − emin (4.16)

is then used as a confidence measure. In case of the white wall problem as well
as the aperture problem, d is small. In case of periodicity, with the error plot
having similar minima, d is small, too. Considering the first case (significance),
the curvature is taken into account: flat curvature leads to small d, whereas large
curvature leads to high values for d. A problem occurs, if the global minimum lies
between two grid points of the CCD chip of the camera. As shown in Fig. 4.22
the minimum has the same curvature in the left and the right parts of the figure,
but the confidence measure for the left part is significantly higher than for the
right part.

d

(a) Good case

d

(b) Bad case

Figure 4.22: Global minimum between grids of the CCD chip [70].

According to [70] this is the main drawback of this measure. To avoid this
disadvantage, the following modification is proposed: Not simply the second
lowest value e2 is chosen, but the second lowest value e2 which has a minimum
spatial distance δmin from the position of the global minimum emin is chosen
instead: Assuming that emin is located at µopt = [tx,1, ty,1]

T , the second lowest
value taken into account (located at µ2 = [tx,2, ty,2]

T ) has to fulfill the following
condition:

δ =
√

(tx,1 − tx,2)2 + (ty,1 − ty,2)2 > δmin (4.17)

with δmin being the minimum spatial distance. The example given in Fig. 4.23
shows, that this modification leads to high values for d in both cases.

4.6.2 Experimental Results

For this experiment 332 landmarks inside the stabilized area are considered. They
have a spatial distance of 5 pixels from each other and parts of the mechanical sta-
bilizer are not included. The search space is limited to translation only. The 332
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Figure 4.23: Modification of the confidence measure.

landmarks considered are split up into two parts: The large part (282 landmarks)
is used to calculate a threshold for d. This threshold is expected to distinguish
between good and bad landmarks. The small part (50 landmarks) is used later
as a test set to evaluate the performance of the threshold calculated before.

The measure introduced above is calculated for each of the 282 arbitrarily chosen
landmarks for the first 10 seconds (250 frames). Thus for each landmark 250
confidence measurements are available. The minimal spatial distance according
to Eq. 4.17 was set to δmin = 2 px. The mean di of the 20 lowest confidence
measures for each landmark i is calculated and used for subsequent evaluation.
Since the translational trajectories are (quasi-) periodic it is assumed (and in the
following paragraphs also justified) that di describes not only the reliability of
the computed trajectory for the first 10 seconds, but also for the entire trajectory
(931 frames).

To quantify the reliability of the trajectory, a zero phase forward and reverse
filter is applied to the two dimensional trajectory t = (tx, ty). At every frame
the deviation between the smoothed trajectory t̄ = (t̄x, t̄y) and the unfiltered
trajectory is calculated:

d(t, t̄) =
√

(tx − t̄x)2 + (ty − t̄y)2 . (4.18)

Trajectory points at time j are identified as outliers if the distance function
exceeds a certain threshold Θd:

s(j) =

{
0 : d(t, t̄)(j) ≤ Θd

1 : d(t, t̄)(j) > Θd
(4.19)

and j ∈ dom(t). A threshold value of Θd = 8 px proved to be appropriate to
detect outliers and to omit deviations due to signal noise. The reliability for the
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first 10 seconds (250 frames) for each trajectory i is quantified by

ŝi =
250∑
j=1

si(j) with i ∈ {1, .., 282} , (4.20)

describing the number of outliers.

Figure 4.24(a) shows the experimental frequencies of the detected outliers for the
282 trajectories considered (first 250 frames only). For confidence measures larger
than 2 px almost no outliers occur. For the classification of good landmarks, a
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Figure 4.24: Experimental frequencies and their cumulative distribution.

certain threshold d95 is searched. Only trajectories with a confidence measure
d > d95 are regarded as reliable and used for estimating the heart motion. The
threshold d95 is chosen such that 95% of the outliers (of the first 250 frames) of the
282 trajectories are rejected. Therefore, the cumulative frequency distribution
(Fig. 4.24(b)) has to be calculated. The threshold is d95 = 2.41 px. In this
example 48 trajectories (17 % of all trajectories considered ) have a confidence
measure d > d95. If the entire sequence is taken into account (931 frames), then
these 48 trajectories are responsible for 3.5% of the outliers of all 282 trajectories.
None of the trajectories chosen has more than 25 outliers, 27 trajectories have less
than 4 outliers. This leads to the conclusion that the proposed measure describes
the reliability of a landmark.

The question arises, how many reliable landmarks have a confidence measure less
than d95 and are therefore rejected, or in other words, what is the efficiency of
the method proposed here? In this section a trajectory is called reliable, if it has
less than five outliers. There are 88 trajectories with less than 5 outliers and a
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confidence measure d < d95. 43 trajectories are reliable and have a confidence
measure d > d95. Therefore, the efficiency is 33%.

Considering the remaining 50 trajectories, 10 trajectories are identified as reliable
with the threshold d95 being applied. These trajectories account for 0.39% of all
outliers. When applied to this test-data, the computed threshold leads to good
results, too.

Conclusion A measure describing the reliability of a landmark was proposed.
It takes global as well as local structure information into account, has low com-
putational effort and allows the detection of good landmarks in realtime. These
landmarks are used in Sec. 5.5 to build a global prediction scheme, enhancing the
robustness of the tracking algorithm.

4.7 3D Investigations

To compensate the motion of the heart surface, not only the trajectories lying in
the image-plane (x- and y-direction) have to be calculated, but also the motion
in z-direction has to be captured. Stereo vision seems to be an appropriate way
to gain depth information, since stereo cameras are widely used in minimally
invasive robotic cardiac surgery. As shown in Fig. 4.25 capturing the motion of
a reference pattern in the left and right cameras is possible (here 3rd order pixel
interpolation is used to get subpixel accuracy). Due to the small distance of the
cameras (approx. 3 mm) and the large distance of the cameras from the heart
surface (approx. 10 cm) the disparity is rather small (approx. 3 px). Therefore,
small disturbances or small tracking errors lead to large errors when calculating
the motion in z-direction. It does not seem to be possible to gain reliable depth
information without additional sensors (e.g. laser range sensor).

To gain further information about the z-motion of the heart surface a pattern
is tracked over a sequence of 200 frames with translation and scaling as affine
motion parameters. As shown in Fig. 4.26 the scaling parameter s contains a lot
of noise but changes significantly, although it is not necessary to determine s for
tracking itself. This indicates, that motion in z-direction may not be neglected
and additional sensors are needed to gain reliable depth information.

4.8 Conclusions

Capturing the remaining motion of a mechanically stabilized beating heart by
exploiting natural landmarks is possible. This is fundamental for developing con-
trol schemes allowing minimally invasive robotic surgery on a virtually stabilized
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Figure 4.25: Stereo tracking.

0 20 40 60 80 100 120 140 160 180 200
320

340

360

380

t x [p
x]

0 20 40 60 80 100 120 140 160 180 200
120

125

130

135

140

t y [p
x]

0 20 40 60 80 100 120 140 160 180 200
0.6

0.8

1

1.2

1.4

i

sc
al

e

Figure 4.26: Tracking with scaling.
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beating heart (Sec. 1.3).

After appropriate handling of specular reflections, either by structure driven re-
construction or by masking of specularities, a reduced affine similarity model is
sufficient for robust tracking: Besides the translational parameters only rotation
can be derived reliably without too much noise corrupting the computed trajec-
tory. Visual inspection shows the high accuracy of the tracking scheme proposed
here. Analyzing the trajectories with the help of the discrete Fourier transform
shows two dominant peaks. They are a result of the patient’s heart beat and
respiration. Even the first and second harmonic of the heart beat can be derived.
An algorithm to detect good landmarks automatically was proposed. Its main
features are low computational effort and high significance when applied to real
data.

The main problem with visual servoing as proposed here is that it can be dis-
turbed easily (e.g. by occlusions). Therefore, the next chapter establishes a frame-
work allowing robust outlier detection as well as prediction of the expected heart
motion. It is shown that these algorithms are suited for a more robust tracking
and can handle the above mentioned disturbances.
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Chapter 5

Robust Motion Estimation in
MIRCS

The motion of a mechanically stabilized beating heart can be captured by ex-
ploiting natural landmarks as shown in the preceding chapter. Tracking is robust,
even in presence of specular reflections. Nevertheless, landmarks may be occluded
(e.g. by surgical instruments) for a short time and therefore tracking fails. To
guarantee robust motion estimation under these circumstances, algorithms were
developed which are able to predict the heart motion if no tracking information is
available. This will not only bridge missing tracking information, but also allow
dynamic positioning of the tracking search area. Additionally, prediction is useful
for motion compensation: it helps to overcome the delay time of the closed con-
troller loop (including video capturing, data processing, and data transmission)
and therefore increases the bandwidth of the robotic system.

The first section of this chapter presents related work which deals with the pre-
diction of signals. Section 5.2 introduces a (local) prediction scheme suitable for
quasi-periodic trajectories. This scheme is applied to heart surface trajectories
(HSTs), derived from tracking of natural landmarks. Local prediction of HSTs is
suited to detect outliers and allows to bridge several subsequent tracking failures.
Results of a global prediction scheme exploiting several landmarks at once are
shown in Sec. 5.3. In Sec. 5.4 a long-term prediction of HSTs based on electro-
cardiogram (ECG) signals and respiration pressure signals (RPS) is given. The
last section presents an overall tracking scheme that combines the advantages
of the prediction algorithms proposed before and thus allows robust, long-term
prediction of the heart motion.
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5.1 Related Work

Prediction is necessary, if long delay times (e.g. due to data transmission, com-
putation time etc.) occur: They deteriorate the bandwidth of the closed loop
dramatically. The ROTEX experiment [31] demonstrated that delay times of up
to 6 seconds can be compensated if the remote environment is well known. Fur-
thermore, prediction is important, if unreliable sensor data or low sampling time
limits the performance of the closed loop: In [67] prediction of the tumor move-
ment is calculated to compensate for the low sample rate of the X-Ray camera
used to capture the tumor motion. This technique allows high accuracy X-Ray
cancer treatment. In beating heart surgery no applications or research groups
dealing with prediction of the heart motion are known so far.

The main reason why common prediction algorithms fail (e.g. calculation of
dominant frequencies and subsequent fitting of sine- and cosine-functions) is due
to the quasi-periodicity of the HSTs. Analyzing the amplitude spectrum as in
Sec. 4.5.8 gives dominant frequencies, but is only a global view on the trajectories.
Local deviations (such as small variations of the heart beat rate) are not taken
into account. In contrast, a windowed Fourier transform does not consider low
frequencies (i.e. respiration rate). Even frequency trackers fail which might
be used to extract dominant frequencies as proposed in [27]. Therefore, a new
prediction algorithm which is able to deal with quasi-periodic signals has to be
developed.

5.2 Local Prediction

This section presents a local prediction scheme. Here local means that informa-
tion of only one trajectory is used to predict its position one or several steps
ahead. Originally, this algorithm was developed to perform one-step predictions
to detect outliers reliably and to position the search area of the tracking algo-
rithm. Nevertheless, this method can be easily extended to more-step predic-
tions, although prediction accuracy degrades with increasing prediction interval
s (see Sec. 5.2.4).

The prediction scheme presented here does not consider explicit models (e.g. dif-
ferential equations). This leads to the advantage that no model parameters which
might vary over time as well as be patient-dependent have to be determined. Fur-
thermore, it is very difficult to gain an explicit model for HSTs or the correlation
between HSTs and ECG or RPS as used in Sec. 5.4 and Sec. 5.5.
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5.2.1 Algorithm

Before the prediction algorithm is introduced, the dynamical system considered
as well as some definitions are given.

The function F represents the underlying dynamics of the system and xk repre-
sents the inner states:

xk+1 = F (xk) with xk ∈ R
d . (5.1)

The scalar-valued measurement yk at time tk can be written as follows:

yk = m(xk) with yk ∈ R , (5.2)

with m being a smooth measurement function. The goal of the prediction algo-
rithm is to predict the next yk+s (with s ≥ 1).

As the inner states xk, the functions F and m as well as the dimension d are
unknown and cannot be identified easily, they cannot be used for prediction.
Therefore, one has to find an alternative description of the dynamical system,
based on the known measurements yk only: A sequence of measurements y,
called time series, is used to capture the unknown inner states of the underlying
dynamical system producing the measured output yk. The time series y is:

y = [yn, yn−1, ..., y1]
T . (5.3)

With the measurement function m and the inner states xk of the underlying
dynamical system, the time series can be written as:

y = [m(xn),m(xn−1), ...,m(x1)]
T . (5.4)

If F is smooth (at least C2) and the dynamical system moves on an attractor (as
it is assumed in the cases considered here), then the prediction can be achieved
with the help of Takens Theorem [71]: Taking a sufficiently long vector built of
past values of a time series enables the reconstruction of the underlying structure
of the system dynamics which produced the sequence [81]. Mapping from the
unknown inner states to these vectors and vice versa is unique.

The sufficiently long vector is called embedding vector Dk and is made of p past
measurements with lag h between two subsequent components (for the concept
of embedding [39]):

Dk =
[
yk, yk−h, ..., yk−(p−1)h

]T
, (5.5)

which is:
Dk =

[
m (xk) ,m(xk−h), ...,m(xk−(p−1)h)

]T
. (5.6)

According to Takens, p has to satisfy the condition:

p ≥ 2d + 1 . (5.7)
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Unfortunately, the dimension d is unknown. Additionally, the embedding (time)
lag h has to be chosen carefully: If the embedding lag is too small, then the
values yk and yk−h are almost identical and therefore yk−h contains hardly any
new information. Computational effort rises due to the additional amount of
data which has to be processed, as the dimension of the embedding vector has
to be increased to capture reliably the inner states of the dynamical system. If
the embedding lag is too large, yk and yk−h are almost uncorrelated and the
reconstructed dynamics may become very complicated [39]. If the embedding
dimension p is too small, then not all of the underlying dynamics is captured,
whereas a too large p leads to uncorrelated data in Dk. The product H = p h
stands for the size of the interval which is considered by Dk. If H is too large
local deviations are not considered and prediction fails (see Sec. 5.1). If H is too
small low frequencies are not included and prediction fails, too.

The prediction algorithm itself is introduced before an algorithm to determine
optimal values for p and h is presented. Therefore, it is assumed that p and h
are chosen appropriately.

Prediction algorithm It has to be shown that the dynamical system moves
on an attractor which is a subset of the state space of the system. This means
in particular that there are no transient inner states any more. As this can be
guaranteed, the following scheme can be applied: The current embedding vector is
compared with embedding vectors lying in the past. If a similar embedding vector
is found, then according to Takens, similar inner states of the dynamical system
have been found. As the inner states are similar and F ∈ C2, the dynamical
system will produce outputs similar to the ones detected in the past (see also
[39] for a short description). To be less sensitive to noise when calculating the
prediction, not only one similar embedding vector is searched, but M similar
embedding vectors lying in the past are taken into account.

A s-step prediction at time k is calculated, by comparing the past vectors

Dk−i ∈ R
p with i ∈ I (5.8)

with the reference vector Dk. The values for i have to be chosen in a way to fit
the borders of the known time series (I = {s, s+1, .., k−1− (p−1)h}). The past
vectors Dk−i are also called memory of the prediction algorithm. Depending on
the Euclidean distance

δi = ‖Dk − Dk−i‖2 with i ∈ I (5.9)

the prediction
y′

k+s = y′
k+s(s,M) (5.10)

is calculated by the M best fitting vectors {D̃j}j=1,..,M from {Dk−i}i∈I, found at

the positions fj with j = 1, ..,M . The {D̃j}j=1,..,M corresponding to the M best
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matches (M smallest δi) can be written as

D̃j = Dk−fj
. (5.11)

The distances are:
δ̃j = ‖Dk − D̃j‖2 = δk−fj

. (5.12)

The estimation y′
k+s for yk+s is calculated as

y′
k+s =

M∑
j=1

wjyk−fj+s . (5.13)

The weights wj are calculated according to:

wj =
1

N

1

δ̃j

with N =
M∑

j=1

1

δ̃j

. (5.14)

Figure 5.1 shows the prediction scheme applied to a HST: Matching of the em-
bedding vector Dk=930 with p = 4 and h = 25 with the memory of the time
series is given. One match (M = 1) at k − fj = 570 is used to predict y′

960, the
prediction interval s = 30 (this large prediction interval is chosen for illustration
purposes only). The index i is taken from the interval I = {30, .., 854}.
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Figure 5.1: Illustration of the local prediction scheme.

Determination of p and h The following paragraphs present an algorithm
to determine optimal values for the unknown embedding parameters p and h.
In [39] several algorithms for calculating p and h are proposed, such as mutual
information or autocorrelation: The autocorrelation g(h) of the time series y is
calculated as follows:

g(h) =
∑

k

ykyk−h . (5.15)
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The autocorrelation function should be (almost) zero at all lags equal or greater
than h [39]. Then the redundancy between the components of the embedding
vector Dk is least. Unfortunately, this leads to completely uncorrelated elements
in the embedding vector Dk, which is undesired (see Sec. 5.2.1). As a thumb
rule, the time, where the autocorrelation function decays to 1/e is chosen as
embedding lag h. Unfortunately, the autocorrelation function captures linear
correlations only, nonlinear correlations are not taken into account. Therefore,
the embedding lag h computed with the autocorrelation function is likely to be
too small.

Nonlinear correlation can be computed with the mutual information:

I(h) =
∑
i,j

pi,j(h)ln(pi,j(h)) − 2
∑

i

piln(pi) , (5.16)

with pi as probability that yk lies in the i-th bin of the signal’s histogram and
pi,j(h) as probability that yk is in bin i and the delayed signal yk−h is in bin j.
At the first minimum the optimal lag h has been found: The delayed signal adds
maximal information to the knowledged gained from the undelayed signal [39].
Unfortunately, according to [39], the mutual information approach is theoretically
well founded for p = 2 only.

Therefore, a different solution is proposed here: Since Dk is used for prediction
the prediction quality is taken into account to decide if appropriate values for p
and h have been chosen. To evaluate the prediction quality, it is necessary to
consider not only one predicted value, but m predictions have to be calculated.
The estimated mean µerr and the (unbiased) estimation of the standard deviation
σerr of the prediction error (of the underlying prediction process)

el = ‖y′
l − yl‖2 (5.17)

are calculated to evaluate the prediction. (For simplicity in the following sections
mean refers to µerr and standard deviation refers to σerr.) The index l is taken
from the interval l ∈ {n̄ + s, .., n}, with n̄ denoting an arbitrarily chosen start
point. The mean µerr can be written as:

µerr =
1

m

∑
l

el , (5.18)

and the standard deviation σerr:

σ2
err =

1

m − 1

∑
l

(el − µerr)
2 . (5.19)

In order to compare the prediction quality of different signals, the normalized
mean µ̂err and the normalized standard deviation σ̂err are used, because they take
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the different variability of the signals into account:

µ̂err =
1

m

∑
l

el

σ(y)
=

µerr

σ(y)
, (5.20)

σ̂2
err =

1

m − 1

∑
l

(
el

σ(y)
− µ̂err

)2

=
σ2

err

σ2(y)
(5.21)

and σ(y) denoting the standard deviation of the considered signal.

Keeping in mind µ̂err = µ̂err(p, h, ...) and σ̂err = σ̂err(p, h, ...), the parameters p
and h are varied to find the best parameters popt and hopt corresponding to the
smallest µ̂err. A small µ̂err indicates a small prediction error and shows that Dk

captures the inner states of the time series well.

Advantages For the algorithm presented here, no fitting of model parameters
is necessary. Moreover, explicit models describing the trajectories of HSTs, ECG,
and RPS signals are not known. The prediction can start as soon as the memory
for matching the reference vector is long enough. There is no training necessary,
such as with artificial neural networks. The prediction quality is, as shown in
subsequent sections, not very sensitive to p and h, so the choice of the embedding
parameters p and h is not critical. As the prediction is a weighted average of M
values, the influence of noise is reduced.

Disadvantages No upper bound for the prediction error can be given. Never-
theless, the prediction quality with the trajectories considered here is very good.
Computation time increases linearly with the length of the memory. Local pre-
diction is limited to a relatively small prediction interval s (up to s = 5 for HST
prediction, see Sec. 5.2.4) which is sufficient to handle single outliers but makes
special care for longer disturbances such as occlusions with surgical instruments
necessary. Therefore, the use of additional information is included in the predic-
tion scheme (Sec. 5.3 and Sec. 5.4).

ECG and RPS are used in Sec. 5.4 and Sec. 5.5 for the prediction of HSTs.
Since it is not known which inner states of the underlying dynamic systems
producing the ECG and RPS are important to predict the HSTs, it has to be
guaranteed that all inner states of these dynamic systems are well captured by the
corresponding embedding vectors. Therefore, one-step prediction is performed on
the trajectories of the ECG and RPS: A small prediction error indicates that the
inner states have been captured well. In the following section the local prediction
scheme presented here is applied to HSTs. Outlier handling as well as predicting
the position of a landmark up to five steps ahead is shown.
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5.2.2 ECG Prediction

In Sec. 5.4 and Sec. 5.5 the ECG and RPS signals are used to predict the motion
of an occluded landmark. It is not known which inner states of the dynamical
system producing the ECG are important for predicting the HST. It has to be
guaranteed that all inner states are captured by the embedding vector. Therefore,
one-step predictions of the ECG signal are used to find out if all inner states are
captured by the corresponding embedding vector. This is ensured by a small
prediction error µerr.

A simulated ECG was recorded with a sample frequency of fsample = 50 kHz at
the Klinikum Grosshadern (Munich). Here simulated means that the ECG signal
was created by an ECG generator, which is usually used to test ECG monitors
(ECG signals derived during operation are considered in Sec. 5.3 and Sec. 5.4).
Two ECG signals are considered, one with fECG = 60 bpm (bpm=beats per
minute) and the second with fECG = 80 bpm (see Fig. 5.2). As these signals
are simulated, no irregularities, such as atrial flutter or atrial fibrilation, occur.
Additionally, they have a perfectly constant frequency, so there are no transient
inner states of the dynamical system violating the conditions of the prediction
algorithm presented in Sec. 5.2.1. To obtain reasonable computing times, the
signals are downsampled, after applying the discrete Fourier transformation and
determining the Nyquist frequency. The Nyquist frequency is similar for both
signals fNyquist ≈ 35 Hz (Fig. 5.3). As the new sample frequency fsample = 80 Hz
is chosen. In the following, all indices of yi are in 1/fsample time steps.
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Figure 5.2: Simulated ECG signal, fECG = 80 bpm.

To capture the dynamics of the signal, p and h have to be chosen in a way such
that Dk always contains a characteristic part of the signal. For ECG signals con-
taining long parts with almost constant voltage (Fig. 5.2), this is very important,
otherwise the prediction mainly depends on signal noise. The product

H = p h (5.22)
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Figure 5.3: Amplitude spectrum of simulated ECG data.
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describes how far in the past the elements used for building the reference vector
Dk are lying. See Fig. 5.4 for a good and a bad choice of p and h.
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Figure 5.4: Example of bad (left) and good (right) embedding vector Dk.

In Fig. 5.5 the performance for different p and h measured by µerr and σerr is
summarized for the simulated ECG signal. It can be seen that the embedding
dimension p = 4 is too small to capture all the underlying dynamics, whereas
p = 8 leads to much better predictions; increasing p further does not lead to
significant better results. This is due to the fact that embedding vectors with
dimension p = 8 capture the inner states very well, so increasing p does not lead
to additional information improving the quality of the prediction. A large error
occurs for h = 30, almost independent of p: the elements of Dk are chosen in a
way such that nearly no dynamics is included; therefore the prediction fails (see
Fig. 5.6).

The optimal parameters which lead to the smallest prediction error µerr for an
ECG with fECG = 80 bpm are:

popt = 8 and hopt = 14 (5.23)

and for an ECG with fECG = 60 bpm (not shown here):

popt = 8 and hopt = 20 . (5.24)

The embedding dimension popt is equal for both ECG signals considered. This
is due to the fact that the structure of the underlying dynamical system which
produces the ECG signal is equal and only the parameters of the dynamical
system differ. The product fECGhopt is similar for both ECG frequencies: As
the ECG frequency increases the embedding lag decreases and vice versa. The
measurements which are contained in the embedding vectors are therefore similar
for both cases.

Figure 5.7 shows the results of a one-step prediction with the optimal embedding
parameters for fECG = 80 bpm. It can be seen, that the prediction quality is very
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Figure 5.5: Evaluation of µerr and σerr on a simulated ECG with fECG = 80 bpm
for different p and h. Parameters: fsample = 80 Hz, s=1, M=10, n̄=3680, n=4370.
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Figure 5.6: Illustrating the problem of choosing h=30 for an ECG with fECG =
80 bpm. Parameters: s = 1, p = 4, h = 30, n̄=3777.

good, or in other words, that the underlying dynamics is captured very well. The
results of fECG = 60 bpm are similar and therefore not presented here.

5.2.3 RPS Prediction

The ECG and RPS signals are used to predict the motion of occluded landmarks.
To build the prediction algorithm described in Sec. 5.4 and Sec. 5.5 all inner
states of the dynamical system producing the RPS have to be captured by the
corresponding embedding vector. One-step predictions of the RPS are calculated
to determine if the inner states have been captured well and to calculate the
optimal values of p and h for the embedding vector. Therefore, data (see Fig. 5.8)
was recorded at the Klinikum Grosshadern (Munich), using an artificial lung. A
sample frequency of fsample = 40 Hz is sufficient, because the Nyquist frequency
can be determined with fNyquist = 1.3 Hz. The RPS has a frequency of about
fRPS = 20 cpm (cpm=cycles per minute).

Figure 5.9 shows the mean error µerr and the standard deviation σerr (according
to Sec. 5.2) for different parameter combinations of p and h. The prediction error
does not strongly depend on these parameters. This leads to the conclusion that
p = 5 is already sufficient to capture the inner states of the dynamic system
producing the RPS very well. Increasing p leads to a slightly better prediction of
the RPS, because more yi are included in the embedding vector Dk and therefore
the influence of noise while calculating the M best fitting vectors is reduced.

The results of the one-step prediction with the optimal parameters popt = 10 and
hopt = 20 are given in Fig. 5.8. The main prediction errors occur at heavy oscil-
lations. These oscillations are due to mechanical properties of the artificial lung.
Fortunately, these oscillations do not occur, if RPS recorded during operation is
considered (Sec. 5.4).
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Figure 5.7: Good prediction of a simulated ECG. Parameters: fECG = 80 bpm,
fsample = 80 Hz, s=1, M=10, p=8, h=14, n̄=3680, n=4370.

5.2.4 HST Prediction

Prediction of the heart surface trajectory (HST) is essential for improving the
reliability of the tracking scheme (Chap. 4). With one-step predictions it is
possible to detect outliers and to position the search area of the tracker. The
results presented here are based on trajectories already considered in Sec. 4.5.8.
Results of different HSTs, computed from other operations are similar and are
shown in Sec. 5.4.

The sample rate fsample = 25 Hz corresponds to the frame rate of frame grabbers.
As it can be seen in Fig. 5.10 (here p = 7 and h = 4 is used), the local prediction
scheme works well on HSTs. Nevertheless, in case of outliers the quality heavily
deteriorates and large disturbances occur (for i = 855, .., 865). This is due to the
mismatch of the reference vector Dk, which includes outliers, with the memory
Dk−i of the algorithm. Additionally, outliers themselves are unpredictable and
therefore increase the prediction error µerr. Values for µerr and σerr are given in
units of pixels [px] and can be seen in Tab. 5.1.

The prediction algorithm has to detect and replace outliers reliably. As result,
prediction accuracy is increased, because outliers are removed from the memory
Dk−i and from the embedding vector Dk. The following scheme detects and
replaces outliers reliably: If the prediction error ek is larger than a given threshold
C, then yk is regarded as an outlier and replaced by the predicted value y′

k. An
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Figure 5.8: Good prediction of RPS. Parameters: fsample = 40 Hz, s = 1, M = 10,
p=10, h=20, n̄ = 4700, n = 5400.
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Figure 5.9: Evaluation of µerr and σerr for different p-h-combinations. Parameters:
fsample = 40 Hz, s = 1, M = 10, n̄ = 4700, n = 5400.
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Figure 5.10: Prediction of HST without outlier detection. Parameters: fsample =
25 Hz, s = 1, M = 10, p=7, h=4, n̄ = 700, n = 900.

appropriate value for C is the standard deviation (a measure for the variability
of HSTs) of the past tracking results. If this scheme is applied to the same
trajectory as before, µerr and σerr are reduced (see Tab. 5.1). Handling not only
single outliers, but longer disturbances is shown in Sec. 5.3.

Table 5.1: Comparison of prediction quality for HST.

Settings µerr σerr

no outlier detection 1.42 px 2.37 px
with outlier detection 1.05 px 0.97 px

Prediction with outlier detection (popt = 7 and hopt = 4) in Fig. 5.11 shows that
no large disturbances occur. Results of different p and h combinations are given
in Fig. 5.12. The sensitivity of the prediction quality µerr is, within a certain
range for p and h, very low, and almost all parameter combinations lead to small
prediction errors. This indicates that good values for p and h were found: Once a
sufficiently long vector Dk has been built, adding new components to the vector
does not lead to additional information.

It is possible to predict HSTs further than for one step only, but as the prediction
interval s increases, prediction quality degrades (Tab. 5.2). This happens because
the correlation between the last valid point yk and the point yk+s to be predicted
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Figure 5.11: Prediction of HST with outlier detection. Parameters: fsample =
25 Hz, s = 1, M = 10, p=7, h=4, n̄ = 700, n = 900.
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Figure 5.12: Prediction of HST with outlier detection for different p and h. Pa-
rameters: fsample = 25 Hz, s = 1, M = 10, n̄ = 700, n = 900.
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degrades. The global scheme given in Sec. 5.3 avoids this drawback, by taking
into account additional information. Results of a five-step prediction (s = 5)
with popt = 12 and hopt = 2 providing the minimal prediction error µerr can be
seen in Fig. 5.13. Results of different combinations of p and h are summarized in
Fig. 5.14.

Table 5.2: Comparison of more-step prediction quality for HST.

Parameter µerr σerr

s = 1, hopt = 4, popt = 7 1.05 px 0.97 px
s = 5, hopt = 2, popt = 12 1.49 px 1.31 px
s = 5, h = 4, p = 7 1.51 px 1.21 px

If the optimal values of the one-step prediction are used for the five-step prediction
(popt = 7 and hopt = 4), then the prediction quality is only slightly degraded
(see Tab. 5.2). This leads to the conclusion that µerr does not strongly depend
on the chosen embedding parameters p and h. This eases the determination of
popt and hopt in realtime applications, because the same values for p and h can
be used for different prediction intervals s without losing too much accuracy.
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Figure 5.13: Five-step prediction of HST with outlier detection. Parameters:
fsample = 25 Hz, s = 5, M = 10, p=12, h=2, n̄ = 700, n = 900.
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Figure 5.14: Prediction of HST with outlier detection for different p and h. Pa-
rameters: fsample = 25 Hz, s = 5, M = 10, n̄ = 700, n = 900.

5.2.5 Conclusion

It was shown that local prediction for all three types of trajectories (ECG, RPS
and HST) is possible. The algorithm presented in Sec. 5.2.1 is therefore able
to capture the inner states of these signals. The importance of a one-step or
more-step prediction for the HST is evident (outlier detection, positioning of the
search area for the tracking scheme). The use of ECG and RPS for the prediction
of HSTs will be shown in Sec. 5.4.

Table 5.3: Comparison of prediction quality.

signal µ̂err σ̂err

ECG fECG = 60 bpm 60 · 10−3 79 · 10−3

ECG fECG = 80 bpm 54 · 10−3 75 · 10−3

RPS fRPS = 20 cpm 0.11 0.18
HST s = 1, popt = 7, hopt = 4 0.12 0.11
HST s = 5, popt = 12, hopt = 2 0.17 0.15
HST s = 5, p = 7, h = 4 0.18 0.14

Table 5.3 summarizes the results of predicting different trajectories. The in-
creased values for µ̂err and σ̂err when predicting the RPS signal are mainly due
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to the heavy oscillations of the RPS signal. Additionally, the simulated ECG
signal is perfectly periodic, whereas the RPS signal is not. Predicting the HSTs
further than one step degrades the prediction quality, whereas µerr and σerr are
quite insensitive to changes of p and h.

In general, it is better to increase p when the embedding vector is built. This
degrades µ̂err only slightly, as shown in the previous sections. The advantage
is that increasing p allows a more robust matching of Dk with the memory of
the trajectory: The influence of disturbances, which might be included either in
Dk or in the memory Dk−i, is reduced, because the matching is based on more
data points. Nevertheless, p cannot be arbitrarily large due to computation time
limitations and the quasi-periodic properties of the HSTs. A too large H = p h
leads to uncorrelated data in Dk and therefore to inaccurate matching with the
memory.

5.3 Global Prediction of HSTs

The quality of the local prediction degrades with increasing prediction interval s,
so other solutions to bridge longer occlusions have to be found.

Usually, not the entire workspace is occluded (e.g. by an instrument), but only
parts of it. Whereas one or a few landmarks are not visible, other landmarks
still are. The motion of the visible landmarks can be used to estimate the un-
known motion of the occluded ones. The main advantage of this global prediction
scheme, compared to the local one presented in Sec. 5.2, is that in case of longer
disturbances always new information about the heart motion is available. As a
drawback, several landmarks have to be tracked simultaneously. This leads to an
increased amount of computation time. Some details of this section have been
published by the author in [52, 53].

5.3.1 Algorithm

The algorithm presented here has two prerequisites: The conditions shown in
Sec. 5.2.1 have to be fulfilled for each landmark. Additionally, the embedding
vectors of the landmarks have to be functionally coupled. This guarantees a
unique mapping from the embedding vectors of the visible landmarks to the
(unknown) embedding vector of the covered landmark. The mapping itself is
computed with past observations of the trajectories. As all landmarks lie on
one organ and move with the same frequencies, this is fulfilled and can be easily
justified with the trajectories considered here.

Instead of one landmark as in Sec. 5.2.1, N landmarks are considered simultane-
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ously. Their time series can be written as

yr =
[
yr

n, y
r
n−1, ..., y

r
1

]T
with 1 ≤ r ≤ N . (5.25)

For each landmark the embedding vector Dr
k with

Dr
k =

[
yr

k, y
r
k−h, ..., y

r
k−(p−1)h

]T
(5.26)

can be built. As before, p denotes the embedding dimension and h the embed-
ding lag. Prediction quality is not very dependent on the embedding parameters
p and h (see Sec. 5.2.4), so they are chosen equal for all N landmarks. The
measurements yi considered here, are not scalar-valued any longer, but contain
x-position (tx,i) and y-position (ty,i) of the tracked landmark:

yi = [tx,i, ty,i]
T . (5.27)

The prediction algorithm presented in Sec. 5.2.1 can be extended to vector-valued
measurements easily and is applied in the same way as it is to scalar-valued mea-
surements. The outlier detection given in Sec. 5.2.4 is applied to each component
of yi separately. If an outlier is detected in one direction (either x- or y-direction),
then the landmark is predicted in both directions.

Assuming that landmark a is occluded, then the trajectories of the other (un-
occluded) landmarks are used to estimate the current position of landmark a:
Suppose the landmark was lost at time k0, then a part of the time series of
each landmark which is sufficiently long to allow matching of the corresponding
embedding vector Dr

k (see Sec. 5.2.1), has to be saved:

yr
k0

=
[
yr

k0−1, y
r
k0−2, ..., y

r
k0−1−l

]T
(5.28)

with
l ≤ k0 − 2 . (5.29)

The embedding vectors Dr
k for the visible landmarks have to be built:

Dr
k =

[
yr

k, y
r
k−h, ..., y

r
k−(p−1)h

]T
(5.30)

with
1 ≤ r ≤ N and r �= a . (5.31)

As in Sec. 5.2.1 these embedding vectors have to be matched with their memory

Dr
k0−i with i = 1, 2, .., l − (p − 1)h + 1 (5.32)

built from the corresponding time series yr
k0

and the M best fits for each visible
landmark have to be searched. These M best fits are found at the positions f r

j

and can be given as
yr

k0−fr
j

. (5.33)
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Their weights wr
j are computed as shown in Eq. 5.14. Since some HSTs might

provide better results in predicting the position of the lost landmark ya, weights
ur for each valid landmark are introduced:

N∑
r=1,r �=a

ur = 1 and ur ∈ R . (5.34)

To reflect the individual prediction reliability, the weight ur may depend on the
prediction quality µa,r

err of the position of the lost landmark ya, where yr (with r �=
a) denotes a particular visible landmark used for prediction. Another possibility
to determine the weights ur is to calculate the distances between the visible
landmarks and the lost landmark, which takes the spatial correlation into account.
Finally, the outlier measures of the HSTs of the landmarks used for prediction
reflect the reliability of these HSTs and are therefore another appropriate measure
to determine ur.

The estimation for
ya

k0+s with s ≥ 0 (5.35)

can be calculated by:

ya
k0+s =

N∑
r=1,r �=a

ur

(
M∑

j=1

wr
jy

a
k0−fr

j

)
. (5.36)

Figure 5.15 illustrates the prediction scheme for two landmarks (for one dimension
only), where LM1 remains valid over the tracking sequence and LM2 is lost at
k0 = 750.

This estimation is based on current values contained in the embedding vectors Dr
k

of the valid landmarks, no estimation error accumulates. Therefore, this method
is suitable for long-term estimations. Of course not only one landmark might
be lost; the scheme presented here works also if several landmarks are disturbed
simultaneously.

The global prediction scheme is now combined with the local one given in Sec. 5.2.
The Petri-net describing the different discrete states of this scheme as well as the
transition conditions are given in Fig. 5.16. The following paragraph describes
the Petri-net in detail:

The net starts at state sOK: For each landmark considered a local one-step predic-
tion in x- and y-direction is computed and the result is compared to the measured
position of the landmark. If an outlier is detected according to Sec. 5.2.4, with
C being the standard deviation of the past tracking results, then transition t1 is
fulfilled and the new state of the net is sOUT. The measured position (which is
an outlier) is replaced by the predicted position. Transition t2 is satisfied, if less
than nOUT subsequent outliers occur; the new state is sOK (in the implementa-
tion used: nOUT = 5). If more than nOUT subsequent outliers are detected, then
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transition t3 is fulfilled, and the new state is sLOST: The landmark is regarded as
lost and the global estimation scheme, as described above, is applied. Transition
t4 requires, that nOK subsequent measurements are no outliers (in the implemen-
tation used: nOK = 15). If this is fulfilled the landmark is regarded as valid and
the new state of the Petri-net is sOK again.

5.3.2 Experiments

This section shows experimental results of a performance evaluation of the algo-
rithm presented above, using landmarks LM1, LM2 and LM8 as already presented
in Fig. 4.10. Landmark 8 (lying between LM1 and LM2) is disturbed by three
subsequent outliers at iOUT ∈ {825, 826, 827} and during iLOST ∈ {835, .., 875}
the trajectory is disturbed for almost 2 seconds (41 frames), as it happens during
short occlusions by a surgical instrument.

Estimation for LM8 itself is given in Fig. 5.17, additionally the states of the Petri-
net are shown. The weights u1 = u2 = 1/2 are chosen equally, such that both
landmarks have the same influence on the prediction of LM8. It can be seen that
the estimation of the x-direction is better than of the y-direction. This is con-
firmed by the normalized mean prediction error µ̂err,x = 0.28 and the correspond-
ing normalized standard deviation σ̂err,x = 0.25 in x-direction and µ̂err,y = 0.39
and σ̂err,y = 0.46 in y-direction, respectively. In order to increase the robustness
of the prediction scheme with respect to noise, the embedding dimension p and
the embedding lag h are chosen higher than in Sec. 5.2.5. This leads to the fact
that more points of the trajectories are contained in the corresponding embedding
vectors D1

k and D2
k.

Figure 5.18 shows the prediction error in detail, as well as the states of the
described Petri-net. The three subsequent outliers at iOUT ∈ {825, 826, 827} are
correctly detected, indicated by the state sOUT, followed by sOK. After that,
disturbance occurs for 41 frames, starting at i = 835: For the next nOUT = 5
steps, the state of the net is sOUT and the local prediction is used for estimation.
The global prediction is applied afterwards and the state of the net becomes
sLOST. If at least 15 subsequent correct estimations occur, the net switches back
to sOK. In this example transition t4 is violated for a longer period, because of
small prediction errors, occuring after i = 875.

The experimental results show (together with long-term estimations calculated
on different trajectories from other operations as shown in Sec. 5.4.2) that long-
term prediction of the motion of natural landmarks lying on the beating heart is
possible, even for 40 frames and more. This is an important step towards reliable
motion compensation in MIRCS.

In order to increase the reliability of the estimation procedure, it is useful to
track parts of the mechanical stabilizer. As the stabilizer is a rigid body, an
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affine motion model is well suited and thus tracking is quite robust. These land-
marks can be used to estimate the motion of landmarks lying inside the stabilized
area, when they are e.g. covered by an instrument. Here, as in the experiment
presented above, a short monitoring of all landmarks is necessary, before the
long-term estimation can be applied. The landmarks considered (small rectan-
gles) can be seen in Fig. 5.19. The landmarks located on the upper end of the
stabilizer (LM10) and on the lower end (LM11) are used to estimate the motion
of the landmark inside (LM8). Additionally, the search space of the tracking
area is shown (big rectangle). The disturbances as well as the parameters of the
Petri-net are identical to the experiment presented before.

LM 8

LM 10

LM 11

Figure 5.19: Position of landmarks.

The normalized mean prediction error in x-direction is µ̂err,x = 0.25 and the
normalized standard deviation is σ̂err,x = 0.21. The corresponding values in y-
direction are µ̂err,y = 0.31 and σ̂err,y = 0.31. These values are better than those
of the experiment presented before (see Tab. 5.4). This is due to the robust
tracking of the motion of the mechanical stabilizer, which can be performed with
higher accuracy than tracking of natural landmarks lying on the heart surface.
To increase reliability of the tracking further, color markers, as they are used for
automatic camera guidance in MIS, seem to be well suited [2, 79].

Table 5.4: Comparison of global prediction of LM8.

µ̂err σ̂err

No stabilizer used
LM8 tx 0.28 0.25
LM8 ty 0.39 0.46

Stabilizer used
LM8 tx 0.25 0.21
LM8 ty 0.31 0.31

The next section (Sec. 5.4) presents a long-term prediction scheme that makes use
of additional signals which are correlated with the heart motion. Using additional

113



signals avoids the drawback of being dependent on visual information only when
estimating the heart motion.

5.4 ECG and RPS based Prediction

In this section it is shown, how ECG and RPS signals can be used to calculate a
robust long-term prediction of HSTs. Therefore, it has to be ensured that HSTs
and RPSs as well as HSTs and ECG signals are correlated, which is investigated
first. The prediction algorithm itself is shown afterwards.

5.4.1 Correlation of Data

In Sec. 4.5.8 it is assumed that the two dominant frequencies of the HSTs are
due to the patient’s respiration and heart beat. To verify this assumption, the
ECG signal, the RPS data as well as the video stream of the laparoscope were
recorded simultaneously during a beating heart surgery performed at the Univer-
sity Hospital Grosshadern (GH) in Munich1.

As the patient has two pacemakers, the ECG signal given in Fig. 5.20 shows
an additional peak per heart-beat and looks therefore different if compared to
a standard ECG. Heart motion induced by pacemakers is very regular, which
leads to good prediction results. Figure 5.20 shows, besides the ECG signal, the
RPS signal as well as the translational motion of a tracked landmark (tx and
ty). It can be seen that motion in x-direction (tx) is dominated by the ECG
frequency, whereas motion in y-direction (ty) shows the influence of both signals,
ECG and RPS, respectively. The shape of the trajectories is also influenced by
the mechanical stabilizer, which restricts the motion of the heart surface.

The correlations of these signals are shown in Fig. 5.21. Correlation between ECG
and RPS is hardly there (see ρECG,RPS), as pacemaker and lung machine are two
completely independent components. The ECG signal and the motion of the
landmark in x-direction as well as in y-direction, show a significant correlation,
see ρECG,tx and ρECG,ty , respectively. The correlation between RPS and tx is very
low (see ρRPS,tx), because the motion of the landmark in x-direction is hardly
influenced by the patient’s respiration. The ρRPS,ty trajectory shows the strong
influence of the RPS on the y-motion of the considered landmark.

Computing the discrete Fourier transform of the ECG signal and regarding the
amplitude spectrum shows a dominant peak at fECG = 1.4 Hz (fsample,ECG =
100 Hz), as given in Fig. 5.22. This corresponds to a heart beat rate of 84 bpm.
The amplitude spectrum of the RPS shows a dominant peak at fRPS = 0.17 Hz

1The author would like to thank Dipl.-Ing. Hans-Jürgen Sedlmayr (DLR), Dr. Dieter Boehm
(GH), and Dieter Schmid (GH) for their support during data acquisition.

114



0 200 400 600 800 1000 1200
- 1

0

1

2

E
C

G
 [m

V
]

0 200 400 600 800 1000 1200
- 1

0

1

2

R
PS

 [k
Pa

]

0 200 400 600 800 1000 1200
320

340

360

380

t x [p
x]

0 200 400 600 800 1000 1200
120

130

140

i

t y [p
x]

Figure 5.20: ECG, RPS, tx and ty measured simultaneously.
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(fsample,RPS = 100 Hz), as given in Fig. 5.23. This is equal to a respiration rate of
10.2 cpm. The amplitude spectrum of the HST (see Fig. 5.24) shows a dominant
peak in x-direction at ftx = 1.4 Hz, which corresponds to fECG, whereas the
amplitude spectrum of the trajectory in y-direction has two dominant peaks.
The first at fty,1 = 0.17 Hz being equal to fRPS, the second peak can be found at
fty,2 = 1.4 Hz, being equal to fECG.
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Figure 5.24: Amplitude spectrum of the patient’s HST signal.

These investigations justify the assumption made in Sec. 4.5.8: The motion of
the landmarks is strongly correlated with the RPS and ECG signal.

The subsequent section presents an algorithm that makes use of the ECG signal
and RPS to estimate the motion of landmarks in case of occlusions or other
disturbances and is based on the algorithm given in Sec. 5.3.1.

5.4.2 Time Series Embedding

To exploit the correlation between HST, RPS, and ECG signals the algorithm
presented in Sec. 5.3.1 is applied. The ECG and the RPS signal are regarded as
an additional landmark with high reliability. No outlier detection is applied, as
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it is for the HSTs. The measurements yRPS,ECG,i are vector-valued and can be
written as:

yRPS,ECG,i = [yRPS,i, ξ yECG,i]
T . (5.37)

As the ECG and the RPS signals have different units, they have to be scaled by
the factor ξ with [ξ] = kPa

mV
, such that both components of yRPS,ECG,i have the same

units. Otherwise the Euclidean distance used to calculate the M best matches
according to Sec. 5.2.1 is meaningless. Only appropriate scaling guarantees that
the comparison of DRPS,ECG

k with the memory DRPS,ECG
k−i leads to correct results.

Furthermore, the optimal value for ξ which leads minimal prediction errors is
unknown.

Calculation of Embedding Parameters Before the optimal ξ can be deter-
mined, the optimal embedding dimension pRPS,ECG and time lag hRPS,ECG have
to be found: Therefore, the embedding dimensions pECG and pRPS as well as the
time lags hECG and hRPS have to be determined: According to Sec. 5.2.2 for an
ECG signal, sampled with fsample = 80 Hz and fECG = 80 bpm, the following
optimal parameters can be found:

pECG = 8 and hECG = 14 . (5.38)

Since the sample frequency has a linear impact on the time lag, and the new
sample frequency is fsample = 100 Hz and the new heart beat rate (having a
linear impact on the time lag too) is fECG = 84 bpm, the new time lag can be
easily determined:

hECG = 18 , (5.39)

whereas the embedding dimension remains unchanged. For the RPS the same
considerations lead to

pRPS = 10 and hRPS = 100 . (5.40)

The ECG signal has higher frequencies than the RPS, so hRPS,ECG is chosen in
order to capture enough dynamics of the ECG signal for robust matching, as

hRPS,ECG = hECG = 18 . (5.41)

Calculating pRPS,ECG, HRPS = hRPSpRPS as introduced in Eq. 5.22, is considered.
The value of HRPS describes, how far values for building the embedding vector
DRPS

k lie in the past. Here HRPS = 1000, with hRPS,ECG = 18, pRPS,ECG can be
calculated:

pRPS,ECG =
HRPS

hRPS,ECG

=
1000

18
≈ 56 with fRPS = 10 cpm . (5.42)

The value pRPS,ECG = 56 guarantees, that enough past values are contained in
DRPS

k to capture the underlying dynamics of the RPS.
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Calculation of ξ The global prediction scheme presented in Sec. 5.3.1 is used to
estimate the motion of the landmark already considered in Sec. 5.4.1. Therefore,
the landmark is regarded as lost and the ECG signal and the RPS are used for
its prediction. The normalized mean prediction error µ̂err and the normalized
standard deviation σ̂err are calculated for different values of ξ. The results are
shown in Fig. 5.25, for x- and y-direction. Predicting other landmarks leads to
similar results. The curves decline sharply until ξ ≈ 0.6 kPa

mV
; for greater values,

the curves are rather flat. If only RPS is used for predicting the HST in x- and
y-direction (ξ = 0), prediction quality is

µ̂err,x = 0.65 and σ̂err,x = 0.41 (5.43)

µ̂err,y = 0.46 and σ̂err,y = 0.40 . (5.44)

If only ECG is taken into account (ξ → ∞), the prediction quality is

µ̂err,x = 0.087 and σ̂err,x = 0.063 (5.45)

µ̂err,y = 0.52 and σ̂err,y = 0.37 . (5.46)

These results reflect the different influence of ECG and RPS on the HST in x-
and y-direction: Motion of this landmark in x-direction is more influenced by the
ECG signal than motion in y-direction. On the other hand RPS is less important
for motion in x-direction than in y-direction. Nevertheless, both signals have to
be taken into account to achieve optimal prediction results. Since for ξ ≥ 0.6 kPa

mV

the choice of ξ is not critical for the prediction accuracy of the HSTs, ξ = 1.0 kPa
mV

is chosen for the subsequent calculations. This works well for other landmarks,
too. Prediction for ξ = 1.0 kPa

mV
can be seen in Fig. 5.26. The estimation error

(see Fig. 5.27) is remarkably small. Here, the discrete time i is a multiple of
1/fsample,ECG=10 ms.

Another advantage of the estimation scheme presented here is that it can be
easily included in the global prediction scheme given in Sec. 5.3. This is shown
in the following section.

5.5 Robust Motion Estimation

In this section an algorithm as well as experimental results of robust motion
estimation in MIRCS is presented. This framework (see Fig. 5.28) is a straight-
forward combination of the methods presented in Sec. 5.3 and Sec. 5.4.2. The
calculation of the weights in Fig. 5.28 is similar to Sec. 5.3.1. They reflect the
individual prediction quality µa,r

err , where a particular visible landmark yr is used
to predict the position of the lost landmark ya (lower part in Fig. 5.28). Addition-
ally, the prediction quality µa,ECG,RPS

err , where the ECG and RPS signals are used
for prediction (upper part in Fig. 5.28), is taken into account. The proposed
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Figure 5.25: Determination of best ξ. Parameters: s=1, p=56, h=18, M=8,
n̄ = 4000, n=8100.
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Figure 5.26: Prediction of HST using ECG and RPS. Parameters: ξ = 1.0 kPa
mV

,
s=1, p=56, h=18, M=8, n̄ = 4000, n=8100.

calculation of the weights allows an adaption of the robust motion estimation
scheme according to the reliabilities of the individual prediction results.

The main difference to the global prediction scheme given in Sec. 5.3 is, that
N landmarks lying on the heart surface are considered, together with the ECG
signal and the RPS as an additional landmark. So, overall N + 1 landmarks
are regarded simultaneously. If d landmarks, with d ≤ N are lost, the other
landmarks, including the ECG signal and RPS are used for estimation, according
to Sec. 5.3.

As the patient has two pacemakers (see Sec. 5.4) the ECG signal is very regular
and therefore the resulting HSTs are regular, too. This leads to good prediction
results. The position of the landmarks considered (together with the search
area) can be seen in Fig. 5.29. Parts of the HSTs of LM1 is shown in Fig. 5.30.
The ECG signal and the RPS are the same as already used for the prediction
shown in Sec. 5.4.2, which also holds for the parameter ξ = 1.0 kPa

mV
. Overall

N + 1 = 4 landmarks are available. In this section the discrete time i is a
multiple of 1/fsample,ECG=10 ms.

The following parameters are used to build the embedding vectors of the HSTs:

pHST = 12 and hHST = 96 . (5.47)
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Calculation of these optimal parameters is according to the algorithm presented
in Sec. 5.2.4. For the ECG and the RPS signal, the embedding parameters are:

pRPS,ECG = 56 and hRPS,ECG = 18 , (5.48)

as already derived in Sec. 5.4.2. Both embedding vectors HRPS,ECG ≈ HHST cover
about 1100 samples, which is about 10 sec. The memory in which the embedding
vectors DRPS,ECG

k and DHST
k are matched, contains 8000 samples, and the best

MRPS,ECG = 8 and MHST = 5 matches are chosen for prediction.

The artificial disturbances (no valid position of the landmark considered is avail-
able) for the HSTs (ECG signal and RPS remain undisturbed) are summarized
in Tab. 5.5:

Table 5.5: Disturbances of HSTs.

Landmark Start (istart) End (iend) Duration

LM1 9000 10000 10 sec
LM6 9500 11000 15 sec
LM7 9800 11400 16 sec

After i = 9800 no valid landmarks are available, only the ECG and the RPS
signal can be used for estimation. After i = 10000 the landmarks become valid
again. The performance of the prediction of landmark LM1 is given in Fig. 5.30.
The prediction results of landmark LM6 and landmark LM7 are not shown here
in detail, but summarized in Tab. 5.6. Figure 5.31 shows the prediction error of
LM1 in detail.

Table 5.6: Prediction quality.

LM1 tx LM1 ty LM6 tx LM6 ty LM7 tx LM 7 ty

µ̂err 0.056 0.17 0.13 0.20 0.10 0.35
σ̂err 0.045 0.15 0.45 0.45 0.081 0.20

The high quality of the prediction, compared to Sec. 5.3.2, is mainly due to three
reasons: First, additional information, which is strongly correlated with the heart
motion, is used. Second, the two pacemakers are responsible for a very periodic
ECG signal and therefore for very periodic HSTs. Third, the long memory which
is available here (8000 samples) allows a very accurate matching of the DRPS,ECG

k

and DHST
k , which leads to a very good subsequent prediction of the heart motion.

Of course one can think of other, approaches to describe the correlation between
ECG and RPS signal as the input signals and the HSTs as the output signal. An

123



8800 9000 9200 9400 9600 9800 10000 10200
380

390

400

410

420

430

440

t x [p
x]

data      
prediction

8800 9000 9200 9400 9600 9800 10000 10200
97

98

99

100

101

102

103

i

t y [p
x]

data      
prediction

Comparison of Predicted Points with Measured Data (LM 1)

Figure 5.30: Trajectory and prediction of landmark 1.

9000 9200 9400 9600 9800 10000
- 3

- 2

- 1

0

1

2

3

er
r x [p

x]

9000 9200 9400 9600 9800 10000
 - 1

 - 0.5

0

0.5

1

i

er
r y [p

x]

Figure 5.31: Prediction error of landmark 1.
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artificial neural network (ANN) e.g. might be able to capture this correlation.
During this work two types of ANNs have been examined: Perceptron Backprop-
agation Networks with one hidden layer, as described in [63] and Elman Networks
[46], with a so called context unit, which holds a copy of the hidden layer. This
context unit can be interpreted as a short-term memory that builds the time lag
of the ANN. As the results using ANNs for prediction are not as good as the
results presented in Sec. 5.4.2 and as ANNs additionally have the drawback of a
long training period, they are not presented here.

5.6 Conclusions

The previous sections presented a variety of algorithms to bridge disturbances of
the tracking scheme: A framework, based on Takens Theorem, was introduced,
which allows to capture the (observable) inner states being responsible for HSTs,
ECG as well as RPS signals. This was shown by high accuracy one-step pre-
dictions. With one-step prediction of HSTs, robust outlier detection, as well as
positioning of the search area of the tracker are possible. More-step predictions
can be used to bridge a few subsequent outliers. Additionally, more-step predic-
tions increase the bandwidth of the closed control loop (here closed control loop
means the complete MIRS framework that is necessary to compensate the heart
motion), because the delay time (communication time, computing time, etc.) can
be reduced.

To handle longer disturbances reliably, a global prediction scheme is introduced
in Sec. 5.3. The HSTs of visible landmarks are used to estimate the motion of
landmarks which are occluded or disturbed. Tracking parts of the mechanical
stabilizer, which can serve as prominent landmarks themselves, increases the
quality of the global prediction scheme.

Section 5.4 showed that ECG as well as RPS signals are strongly correlated with
HSTs. Therefore, these signals can be included in a new tracking scheme. The
experimental results validate the performance of an overall tracking scheme that
exploits several natural landmarks in combination with the ECG signal and the
RPS. This scheme allows robust detection of single outliers as well as a robust
long-term prediction of occluded landmarks.

The methods presented here are a prerequisite to establish motion compensation
with a surgical robot in minimally invasive beating heart surgery. Robust motion
compensation simplifies the surgical task and will lead to a safer and more secure
surgery and reduce the patient’s risks to a minimum.
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Chapter 6

Conclusion and Perspectives

Conclusion Minimally invasive surgery is a new technique, established in the
1980’s. Due to the small incisions, which are necessary to insert the surgical
instruments, it is far less traumatic than open surgery. As the access to the oper-
ating area is restricted, new operation techniques have been developed. Besides
the advantages for the patient, the surgeon has to cope with numerous disadvan-
tages, such as restricted motion inside the body and loss of haptic feedback. To
overcome these drawbacks robotics plays an important role: Scaling of the in-
put leads to more accurate motion of the instruments. Tremor filters reduce the
undesired jitter of the surgeon’s hand and new surgical instruments reestablish
full manipulability inside the human body. Nevertheless, only few advantages
of MIRS systems are currently exploited: Intelligent control laws, establishing
shared control, are hardly used. Force feedback and force control have not been
introduced into the operating room. Motion estimation and motion compensation
allowing a more accurate therapy is investigated at research institutes mainly.

This work takes a closer look at motion estimation and motion compensation
in beating heart surgery. Once the motion has been captured reliably, it can be
compensated by the robot with high accuracy and bandwidth. The surgeon cares
about complicated tasks, which require special knowledge and are performed with
low bandwidth. The goal of motion compensation in beating heart surgery is to
enable the surgeon to work on a virtually stabilized beating heart as he got used
to in on-pump surgery.

Motion compensation has two prerequisites: motion estimation and control laws
to command the surgical robot. Therefore, several Cartesian control laws have
been developed, providing a standard interface for motion estimation algorithms
and reestablishing the correct hand-eye coordination for the surgeon (see control
module of Fig. 6.1). Position and velocity control of surgical instruments are
a very common way to command a surgery robot. Unintentional damage of
tissue can be avoided by force control, which is why new surgical instruments
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with miniaturized force/torque sensors have to be built. It is expected that the
application of different control strategies depending on the current situation of
the operation increases safety and reduces the operation duration. However, an
evaluation by surgeons is necessary.

To capture the motion of the heart surface by exploiting natural landmarks, a
reduced affine motion model is sufficient. After appropriate handling of specular
reflections, tracking can be performed with high accuracy, even if the motion
model is reduced to pure translation (this compuation is carried out in the track-
ing module of Fig. 6.1). Considering the amplitude spectrum of the computed
trajectories, respiration rate and heart beat rate can be identified.

Tracking is more robust with respect to short occlusions or other disturbances if
additional information is considered. Therefore, several landmarks are tracked si-
multaneously. The position of the unoccluded landmarks can be used to estimate
the position of the occluded ones. To be not only dependent on visual informa-
tion, the electrocardiogram and the respiration pressure signal can be included
in the tracking framework. This leads to a robust motion estimation framework
which is able to bridge longer disturbances of the visual tracking (see prediction
module of Fig. 6.1).

Figure 6.1: Overall Motion Compensation Scheme (heart picture from [50], con-
sole picture from [34]).
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Perspectives To increase the reliability of the motion estimation scheme fur-
ther, additional markers, such as small (colored) clips placed near the anastomosis
seem to be appropriate. They might allow robust motion estimation, even under
severe disturbances and provide additional information about the heart motion,
that can be considered by the proposed motion estimation scheme.

A new experimental setup has to be built, allowing the evaluation of the control
and motion estimation algorithms proposed here. The evaluation should take
special care of ergonomics, accuracy, operation time, and overall reliability of the
system. The question if force feedback is important for MIRS systems has to be
answered. In addition, the benefit of different control laws can be quantified. And
last but not least, the importance of motion compensation has to be justified.
Of course, other applications, such as tumor therapy and biopsy, are a promising
field for motion estimation and compensation, too.

Furthermore, online motion estimation plays an important role in the registration
of preoperative planning data, because deviations between preoperative data and
the current situation in the operating room can be reduced. The combination of
motion estimation with intraoperative navigation promises high accuracy ther-
apy of the patient, as an online update of the work space is possible. Overall,
motion estimation in combination with intelligent control laws allow a variety of
new therapies, reducing the patient’s risk and enabling a fast recovery from the
surgical intervention.

In order to support the surgeon who sits in front of the console (see Fig. 6.1) and
to improve the quality of immersion it is important to stabilize the laparoscopic
images: The surgeon needs a stabilized image of the area of interest at the remote
side, where almost no motion occurs. This can be either achieved electronically
by appropriate image warping algorithms or mechanically by moving the camera
which is attached to a robot. The commands of the surgeon are superimposed to
the motion compensation commands computed by the prediction module.

The following paragraphs present the advanced DLR MIRS system which is cur-
rently under development.

Advanced DLR MIRS System Taking into account the insights gained from
the preliminary DLR MIRS system, an advanced robotic surgery system is cur-
rently designed: It is based on technology developed for the DLR light weight
robot [30] and the DLR four finger hand [8].

The electronics of the robot is fully integrated into the light weight structure. This
allows easy and fast handling of the robot by one person if the robot has to be
removed from the patient in case of emergency. All joints of the robot are motor
driven, therefore the robot is designed for both open and endoscopic surgery. The
passive joints, which make sure that no forces are exerted at the entry point, can
be realized by torque controlled joints. Setting the desired torque value of these
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joints to zero ensures that the forces at the entry point remain small and the
patient is not injured. Additionally, torque controlled joints allow a variety of
advanced control laws, such as high quality impedance control which are useful
if the robots cooperate with humans [1].

The new robot has seven degrees of freedom, which allows null space motion to
avoid collision between two robots or between robots and OR equipment. In
combination with port planning software which considers the individual anatomy
of the patient optimal dexterity can be provided to surgeons.

In telepresence applications such as bypass grafts the Cartesian position control
loop is closed via the surgeon. Therefore, the absolute positioning accuracy of the
robot is not critical whereas the relative position accuracy is. In the applications
considered here, the highest demands occur during suturing the anastomosis in
bypass surgery, where the relative position accuracy has to be less than 0.2 mm.
Absolute position accuracy is important if autonomous tasks have to be executed
by the robot, such as positioning screws in spinal surgery or motion compensation
in beating heart surgery, and should be 0.2 mm at least. The maximum work
space occurs in abdominal surgery and is about 6 cm high, 9 cm wide and 14 cm
long.

According to [59] the bandwidth of input trajectories generated by the human
(so called non-voluntary arm motion which is typically used to perform tracking
or sensor controlled tasks) is about 1 − 2 Hz. As shown before, the heart beat
rate is about 1 Hz, the first harmonic can be found at 2 Hz, the second at
3 Hz. Respiration rate is less than 0.2 Hz. Compensating heart motion up to
the first harmonic leads to the same dynamic demands for the telesurgery system
as pure telesurgery without motion compensation: The bandwidth of the input
trajectories is about 2 Hz.

New surgical instruments provide two additional degrees of freedom inside the
patient and enable full dexterity for the surgeon. Miniaturized force sensors are
a prerequisite for force feedback and allow supervision of contact forces during
surgery.

The complete advanced DLR MIRS system is sketched in Fig. 6.2 and consists
of (at least) five identical robots: two hold sensorized and actuated instruments
as described above, one moves the camera, and two robots are used as a force
feedback master system. Furthermore, a second master system (located in the
same operating room or in different hospitals) connected to the first one enables
new training and surgical procedures. An unexperienced surgeon can get support
by his supervisor during difficult situations or complicated tasks: The experienced
surgeon takes control of the surgical instruments as well as of the trainee’s master
arms. As result, the trainee does not only see the surgical intervention, but his
hands are also moved according to the surgical procedure.

Autonomous functions such as automatic camera guidance or motion compensa-
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Figure 6.2: Advanced DLR MIRS System

tion make surgical interventions safer and faster. By these efforts the applications
of robotic surgery are expected to increase dramatically.
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[70] Norbert O. Stöffler. Realzeitfähige Bestimmung und Interpretation des op-
tischen Flusses zur Navigation mit einem mobilen Roboter. PhD thesis,
Technical University Munich, 2001.

[71] Floris Takens. Detecting strange attractors in turbulence. Lecture Notes in
Mathematics, 898:366–381, 1981.
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