
2

Reducing Processing Time for a LCD

Motion Blur Reduction Algorithm

3

Table of Contents

Abstract ... 4

Introduction ... 5

Background ... 5

Previous Attempts .. 7

Signal Processing Approach ... 8

Filter Banks .. 10

Signal Processing Algorithm Results ... 11

Processing a Frame using C/C++ ... 13

Results ...14

Conclusion ... 16

Future Work..16

References ... 18

Table of Figures

Figure 1: LCD and CRT outputs assuming 0 ms response time. .. 6

Figure 2: Typical LCD Output assuming 0 ms response time. ... 6

Figure 3: Human Visual System ... 7

Figure 4: Interpolated frame on 120 Hz LCD screen .. 8

Figure 5: Ideal Conditions for Signal Processing Approach ... 9

Figure 6: Filter Bank Approach ... 10

Figure 7: Stockholm scene before and after processing .. 12

4

 Abstract

This paper presents a solution to implement a LCD screen motion blur reduction

algorithm on a real-time system by vastly decreasing the processing time. LCD screens

inherit motion blur due to their sample-and-hold nature. One way to reduce the motion

blur is to pre-process an image using deconvolution to invert the LCD’s sample-and-hold

nature and the Human Visual System so that the perceived image is sharp. A filter bank

approach comes close to the inversion. This algorithm is implemented in C/C++ utilizing

OpenCV making it up to 80x faster than processing in Matlab.

5

Introduction

Liquid Crystal Displays (LCD) are popular consumer devices due to their low cost,

low power output, high contrast, and thin profile. They are used in multiple applications

such as computer monitors, laptop screens, televisions., and mobile devices. Also, they are

increasingly popular for hospital and military applications. Unfortunately, LCD screens

suffer from motion blur due to their sample-and-hold phenomenon.

This paper describes a process to reduce the processing time for an LCD motion blur

reduction algorithm. This phenomenon is described in the background section along with

multiple solutions to the problem. Next, the signal processing approach is described.

Third, this paper explains using C/C++ with OpenCV instead of Matlab, which led to a vast

decrease in processing time in order to implement the system in real-time. Finally,

conclusions about the effects of a low processing time and future work are discussed.

Background

On an LCD screen, an frame is displayed, and it stays on the screen until the next

frame replaces it, usually at 60 Hz. Cathode-Ray Tube (CRT) screens, on the other hand,

flash an image on the screen for a couple milliseconds, and then the screen turns black.

CRT screens project images as impulse functions while LCD screens use step functions, as

shown in Figure 1.

6

Figure 1: LCD and CRT outputs assuming 0 ms response time.

The LCD’s sample-and-hold nature creates motion blur. Images from both screens

seem identical when the image is still or there is little motion, but the LCD screen is

perceived as more blurry when motion is present. As shown in Fig. 2, the viewer expects to

see continuous motion throughout the scene while the LCD image output is in discrete

values; thus, motion blur is due to the difference between expected and actual motion.

Figure 2: Typical LCD Output assuming 0 ms response time.

Although LCD's output image is not actually blurry, it is perceived as one when it

passes through the human visual system (HVS) [1].The HVS is an attempt to model human

nature. It is modeled as a low pass filter and a motion tracker, as shown in Figure 3.

7

Figure 3: Human Visual System

Since humans notice fast moving objects more than slow ones, the HVS includes a

motion tracker. These fast moving objects appear blurry while in motion to create a low

pass filter. For instance, one can look left and right very quickly to blur the environment.

Since the goal for the motion blur reduction algorithm is for humans to perceive a clear,

sharp image, the HVS is an important filter to the process.

Previous Attempts

A signal processing approach is certainly not the only way to reduce LCD motion

blur. Previous attempts include a flashing backlight, inserting a black frame, or

interpolating a frame [2]. CRT TVs do not create motion blur since they do not have the

sample-and-hold nature, engineers have mimicked the CRT response on the LCD screen in

an attempt to combine the positive characteristics of each system.

One way to mimic the CRT screens is to duplicate the impulse response from each

image. To do this, the LCD screen can flash the blacklight whenever a new image is

displayed [3]. This way, the viewer will likely notice the new image instead of paying

attention to the image throughout the whole frame. This method has reduced motion blur,

but the screen quality is not as clear.

8

Another method to mimic a CRT screen is to insert a black frame in between each

frame on a 120Hz LCD, since this screen can display twice as many images than a normal

LCD screen [4]. Inserting a black frame has reduced motion blur, but it has increased

viewer eye strain. Another attempt using 120Hz LCD is to interpolate a frame [5]. This

principle is shown in Figure 4:

Figure 4: Interpolated frame on 120 Hz LCD screen

An interpolated frame guesses an objects motion based on past and/or future

information. If implemented correctly, motion will appear smoother than normal LCD

screen response since each image is held on the screen half the amount. Like the other

attempts, this method reduces the motion blur, but the blur will not be completely removed

since the LCD exhibits the sample-and-hold nature, and these attempts do not account for

the HVS.

Signal Processing Approach

The goal for the signal processing approach is to invert LCD response and human

visual system (HVS) so that the resulting image appears sharp [6]. The ideal approach is

shown below in Figure 5.

9

Figure 5: Ideal Conditions for Signal Processing Approach

The LCD plus HVS can be grouped together as filter H. Ideally, the system would

invert H to form H-1, and the resulting image from the LCD screen would appear to be

sharp. This way, the viewer will perceive crisp, clear images on a LCD screen. Since the

original blurry output image is a convolution of the images and H filter, the inverted

filter H-1 will have to be a deconvolution of the original filter H. Unfortunately, this ideal

case cannot be implemented in a system due to the LCD and HVS models.

These LCD and HVS models are modeled as sinc functions. Since a sinc functions

have zeros present in the frequency domain, it is non-invertible. Therefore, the ideal case

is unattainable. In response, this signal processing approach tries to come as close to the

inverted case as possible. A filter bank approach decreases the computation time, and it

provides better results than other deconvolution techniques such as the Richardson-Lucy

Algorithm [7].

10

Filter Banks

Filter banks process different frequencies separately and then recombine the

processed signals together. The filter bank approach is shown in Figure 6.

Figure 6: Filter Bank Approach

The filter F0 is a high pass filter, and F1 is a low pass filter. In order to achieve

perfect reconstruction, the following conditions must be met.

• F0(z) = -H(-z)

• F1(z) = G(-z)H(-z)

• P0(z) = -H(-z)H(z)G(z) must be halfband

Halfband filters have alternating zeros when converted to the spatial domain, and

the stopband and passband ripples are the same. In theory, this should achieve ideal

results with an accurate filter H. Unfortunately, if G(z) is a finite impulse response filter,

perfect reconstruction is not possible for the arbitrary filter H(z) since the P0(z) filter

becomes an infinite impulse response filter. To get close to the ideal conditions, the filter

coefficients for G are determined through convex optimization.

Convex optimization minimizes the error of the filter to make the filter more ideal.

 Convex optimization algorithms are computationally expensive, especially when the size

of G increases for a better filter. Since the filter coefficients depend on the motion vector,

11

values for each motion vector length can be stored offline in a table. This helps decrease

the processing time since the program reads coefficients from a table instead of compute

convex optimization equations every frame.

The filter banks account for the LCD’s sample-and-hold nature and the low pass

filter part of the HVS. To account for the motion tracker, this deblurring algorithm includes

a scaled gradient magnitude equation. Humans notice areas of high contrast when a scene

is in motion, so the SGM equation applies the inversion to these areas on a weighted scale.

 Also, smooth areas do not exhibit as much motion blur as high contrast areas. In addition,

these smooth regions usually have poor motion estimation vectors, so the inversion may

output artifacts. The SGM equation limits artifacts and improves performance.

Signal Processing Algorithm Results

The following pictures are from a scene displaying Stockholm, England, as shown in

Figure 7. The camera pans from left to right fairly quickly. The first image is one frame

from the scene. The second image is simulated motion blur, which is the typical LCD output

without any processing. The third image is the inverted scene. This image is displayed on

the LCD screen after processing. The fourth image is the perceived image after passing

through the LCD output and HVS.

12

Figure 7: Stockholm scene before and after processing. Top-Left: Original Image.

Top-Right: Simulated Motion Blur. Bottom-Left: Preprocessed Image. Bottom-Right:

Simulated Perceived Image

Although the final output image is not as good as the original image, it is sharper

than the output image without any processing. The SGM equation is apparent in areas with

high contrast when compared to smooth regions. For instance, the truck has been inverted

more than the low contrast building right above it, and humans are more likely to notice

the truck than smooth regions like the sky.

13

Processing a Frame using C/C++

Matlab is useful for processing images because it has all the toolboxes and libraries

for implementing this signal processing approach. In addition, it is user friendly and easy

to debug when compared to other languages since it is a high level language with multiple

functions available. Utilizing the convex optimization toolbos, it is used to compute the

inverting filter coefficients for storage offline. Unfortunately, it is slow for processing

images.

Using Matlab, processing one frame takes about 12 seconds. On a typical video

scene with 60 frames per second, a minute of video takes 12 hours to process. This is way

too long, especially when this deblurring algorithm is meant to be used on a real time

system. In order to decrease the processing time, the algorithm is implemented in C/C++

with OpenCV.

OpenCV is a computer vision library created by Intel for use with C/C++. It has

many functions for manipulating and displaying images. Since OpenCV was created by

Intel, it takes advantage of the Intel chip designs to dramatically decrease the processing

time through parallel processing. Unfortunately, C/C++ programming is not as user

friendly as Matlab.

Matlab functions were replicated in C/C++. This way, they can be optimized to

reduce the amount of computations and take advantage of OpenCV's quick matrix

operations. When referencing memory in these functions, debugging and memory errors

become much more frequent.

14

Results

Processing an image using C/C++ utilizing OpenCV is 80 times faster than

processing the same image using Matlab. This was achieved through reading and writing

directly to memory, processing filter coefficients before the input image stream, reading

coefficients from a table, and reducing unnecessary computations. This program takes

advantage of C/C++ with OpenCV by implementing the algorithm in a low level language.

Processing a frame using OpenCV takes approximately 0.15 seconds, and a minute of

video at 60 Hz takes about 9 minutes. This result is from using an inverting filter length of

16 coefficients, which gives good results. Inverting filter lengths of 64 and 128 give better

results, but their processing times are 2-3 times longer using OpenCV. About half the time

is for convolving the entire 480x640 image with the inverting filter, and the other half is for

applying the scaled gradient magnitude equation.

This program uses pointers instead of loops to convolve the image. This saves time

because the processor does not have to read a value from memory to a variable, perform

computations with those variables, and then reassign the variable’s value back to memory.

Instead, the processor simply applies OpenCV's quick matrix cross product calculation at

one memory spot and then it moves on to the next memory spot. This decreases time

tremendously, but it is much harder to debug since output values are locations in memory

for a 2-D array instead of variable values in debug mode.

This program first calculates the filter coefficients so that it does not recalculate the

same coefficients for each frame. For example, allocating memory for variables on the first

frame may take one second, but the program does not have to do this again, so each

15

subsequent frames will only take .15 seconds. Since a minute of video has 3600 frames,

preprocessing the variables reduces computations to save time.

Instead of calculating the inverting filter using convex optimization, this program

simply reads the values from a table. Since these coefficients rely only on the motion of the

scene, they can be calculated using Matlab and stored offline. Reading from a table is much

faster than recalculating coefficients using convex optimization equations each frame.

An additional way to decrease the processing time is to reduce unnecessary

computations. Instead of zero padding, Matlab replicates the image on each side to get

information for the sides of the image when convolving the image. This reduces the

artifacts and provides a better inverted filter. Then, Matlab processes the replicated

images in addition to the original image, which doubles or triples the processing time. The

program in C/C++ only replicates the amount of image necessary to convolve the original

image. For example, if the inverting filter has a length of 16, only 15 pixels are added to

each side of the image, while Matlab would add the entire image on each side. Also, outputs

from the scaled gradient magnitude equation and clipping high and low values are only

performed on the output image. Calculations should be minimized since this program is

used for thousands of images.

16

Conclusion

LCD screens are increasing in popularity among consumer devices. This LCD

motion blur reduction approach using signal processing is a viable solution to remove the

blur caused by the nature of LCD screens. Implementing this signal processing approach to

reduce LCD motion blur using C/C++ leads to use on a real time system. Also, more

resources are spent improving the algorithm or testing subjects instead of processing

images. Images need to be processed another 10x faster to actualize it on a real time

system. This can be achieved through a dedicated hardware such as an FPGA.

A C/C++ version of the deblurring algorithm frees up resources to improve the

theory and algorithms for reducing motion blur. Instead of taking days to process images,

those working on the algorithm can spend more time improving the theory by evaluating

image results. Also, the decreased processing shows that the algorithm can be used on a

real-time system, so more money will be devoted to the project.

Future Work

Since this deblurring algorithm does not completely remove the LCD motion blur

problem, more steps will be taken to improve the algorithm or incorporate it with other

existing technologies. To make the inversion more ideal, parameters will be adjusted based

on motion vector error calculations and human subject results. Also, this deblurring

algorithm can be used in tandem with interpolating frames on a 120Hz television.

17

Resulting video sequences from the deblurring algorithm must be tested on human

subjects to quantize the quality of the algorithm. Since students working in the video

processing laboratory work with these images frequently, they know how to find artifacts

and errors in video sequences. This algorithm was created to deblur LCD screens for

everyone, so video sequences will be tested using human subjects. They will look at a

screen featuring both the regular video sequence and a sequence processed using the

deblurring algorithm. Unknowing which sequence was processed beforehand, subjects will

judge one scene compared to the other on a scale from -3 to +3. They will be shown

multiple sequences with different rates of motion. Results from these tests will indicate the

best parameters for the deblurring algorithm.

The scene's set motion is incorporated into the deblurring algorithm. Since each

object in the scene may not have the exact frame motion used in the algorithm, there will

be a slight error. Therefore, this motion vector error will be calculated for different rates of

motion. This error will help adjust parameters to reduce the overall motion vector error.

Also, these error results will be compared to error results from the Richardson-Lucy

algorithm or no algorithm at all.

One way to reduce the overall motion blur from LCD screens would be to

incorporate the deblurring algorithm on a 120 Hz LCD screen. This screen would use

either frame interpolation or a flashing black frame. Since the algorithm can be used in a

real-time system, the 120 Hz screen should provide the best results. This solution will be

more economical when 120 Hz LCD screens become popular and cost less.

18

Since the LCD Motion Blur problem will never be solved absolutely, scientists can

reduce the blur as much as possible by employing multiple solultions. Eventually,

consumers will barely notice the motion blur on LCD screens since more and more

research is spent reducing the blur and improving the overall device.

19

References

[1] M. Klompenhouwer and L. J. Velthoven, “Motion blur reduction for liquid crystal

displays: Motion compensated inverse filtering,” presented at the SPIE-IS&T Electronic

Imaging, 2004.

[2] B. W. Lee, K. Song, D. J. Park, Y. Yang, U. Min, S. Hong, C. Park, M. Hong, and K. Chung,

“Mastering the moving image: Refreshing TFT-LCDs at 120 Hz,” presented at the SID Symp.

Dig. Tech. Papers. SID, 2005.

[3] N. Fisekovic, T. Nauta, H. Cornelissen, and J. Bruinink, “Improved motion- picture quality

of AM-LCDs using scanning backlight,” in Proc. IDW, 2001, pp. 1637–1640.

[4] S. Hong, B. Berkeley, and S. S. Kim, “Motion image enhancement of LCDs,” presented at

the IEEE Int. Conf. Image Processing, 2005.

[5] N. Mishima and G. Itoh, “Novel frame interpolation method for holdtype displays,” in

Proc. IEEE Int. Conf. Image Processing, 2004, vol. 3, pp. 1473–1476.

[6] S. Har-Noy, T. Nguyen, "LCD Motion Blur Reduction: A Signal Processing Approach,"

IEEE Transactions on Image Processing, vol. 17, no. 2, Feb 2008.

[7] L. B. Lucy, “An iterative technique for the rectification of observed distributions,”

Astron. J., vol. 79, no. 6, Jun. 1974.

