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Abstract

Computer assisted or automated histological grad-

ing of tissue biopsies for clinical cancer care is a long-

studied but challenging problem. It requires sophis-

ticated algorithms for image segmentation, tissue ar-

chitecture characterization, global texture feature ex-

traction, and high-dimensional clustering and classi-

fication algorithms. Currently there are no automatic

image-based grading systems for quantitative pathol-

ogy of cancer tissues. We describe a novel approach

for tissue segmentation using fuzzy spatial clustering,

vector-based multiphase level set active contours and

nuclei detection using an iterative kernel voting scheme

that is robust even in the case of clumped touching nu-

clei. Early results show that we can reach a 91% detec-

tion rate compared to manual ground truth of cell nuclei

centers across a range of prostate cancer grades.

1. Introduction

The availability of high resolution multispectral mul-

timodal imaging of tissue biopsies provides a new op-

portunity to develop improved tissue segmentation al-

gorithms for computer-aided diagnostic classification of

histopathological images in a clinical setting. Typical

histopathology imagery are RGB-color based on scan-

ning hematoxylin and eosin stained (prostate) tissue

and imaged at 40× optical magnification using a rapid
whole slide scanner. Quantitative Gleason grading of

prostate cancer tissue patches approaching expert levels

can be achieved using a combination of low level image

texture features and high level graph-based tissue archi-

tecture features [2]. A multiresolution approach using

global texture features including first- and second-order

statistics combined with a Gabor filter set was able to

achieve over 90% overall accuracy in distinguishing be-

tween cancerous and benign tissue, and nearly 77% in

distinguishing between two complex grades of cancer

(Gleason grade 3 and 4 adenocarcinoma). However,
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the architectural features of gland structures including

spatial distribution of cell nuclei and the arrangement

of glands were manually determined [2]. Recently,

semi-automated image segmentation algorithms requir-

ing prior probability estimates for the lumen structures

and pixel-wise classification was developed to facilitate

the extraction of spatial arrangement information [5].

In this paper, we develop a fully automatic robust im-

age segmentation algorithm for histopathology imagery

using a three step process including fuzzy spatial clus-

tering for class initialization, tissue class refinement us-

ing vector-based multiphase level sets to accurately ex-

tract lumen area, epithelial cytoplasm and epithelial nu-

clei regions [5], followed by detection of nuclei centers

even within merged groups using iterative voting and

oriented kernels.

2. Fuzzy C-means with Spatial Constraint

A modified version of the fuzzy c-means (FCM) al-

gorithm is used to initialize the level set segmentation

refinement process. FCM minimizes the sum of simi-

larity measures objective function J(U, V ) given by

J(U, V ) =

C∑

i=1

N∑

j=1

um
ij‖ xj − vi ‖

2
(1)

where X = {x1, x2, ..., xN} denotes the set of data
(pixel feature vectors), V = {v1, v2, ..., vC} represents
the prototypes, known as the clusters centers, U = [uij ]
is the partition matrix which satisfies the condition,
∑C

i uij = 1 ∀j, and m is a fuzzifier which indi-

cates the fuzziness of membership for each point. The

FCM algorithm is an iterative process for minimizing

the membership distance between each point and the

prototypes. However, the objective function Eq. 1 does

not explicitly include any spatial information. Incorpo-

rating spatial information provides more robustness and

efficiency to the fuzzy c-means algorithm by adding a

second term to the FCM objective function [3],
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JM (U, V ) =

C∑

i=1

N∑

j=1

um
ij‖ xj − vi ‖

2

+ α

C∑

i=1

N∑

j=1

um
ij e−

P

k∈Ω
um

ik (2)

where Ω is a set of neighbors. The parameter α is a

weight that controls the influence of the second term.

The objective function (2) has two components. The

first component is the same as FCM, the second is

a penalty term. This component reaches a minimum

when the membership value of neighbors in a particu-

lar cluster is large. The optimization of (2) with respect

to U is solved by using Lagrange multipliers and the

membership function update equation is,

uij =
1

∑C

p=1

(

‖xj−vi‖
2+αe

−
P

k∈Ω um
ik

‖xj−vp‖
2+αe

−
P

k∈Ω um
pk

) 1

m−1

(3)

The neighboring membership values (upk) influence uij

to follow the neighborhood behavior. For instance if a

given point has a high membership value to a particu-

lar cluster and its spatial neighbors have a small mem-

bership values to this cluster, the penalty term plays the

role to force the point to belong to the same cluster as its

neighbors. The weight α controls the importance of the

regularization term. The prototype update equation is

the same as standard FCM. The spatial constraint FCM

(SCFCM) algorithm consists in the same steps as the

original fuzzy c-means algorithm.

3. Multiphase Vector-based Active Con-

tours
A single level set has two-phases and provides a bi-

nary partition of a scalar image by minimizing an en-

ergy functional composed of grayscale intensity varia-

tions and the interface length between boundaries [1].

Histopathology imagery are typically color which re-

quires a vector-based level set formulation, and have

four classes (lumen, cytoplasm, nuclei, other) which

requires either multiple level sets (one per class) or

multiple phases [8]. We propose combining both ap-

proaches to develop a multiphase vector-based active

contour segmentation algorithm. Multiphase level sets

usually minimize a reduced or weak, minimal partition

Mumford-Shah functional [4],

Fn(c,Φ) =
∑

1≤i≤n=2m

λi

∫

Ω

(u0 − ci)
2 χi dx

︸ ︷︷ ︸

Energy Term

+
∑

1≤i≤n=2m

µi

∫

Ω

|∇χi|

︸ ︷︷ ︸

Length Term

(4)
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Figure 1: A four-phase level set partitioning, with two level set functions φ1

and φ2, for segmenting a grey level image u0. c = (c00, c01, c10, c11) rep-
resents the average gray-level values for various phases. H(φ1) and H(φ2)
are the Heaviside functions associated with the level set functions.

where, n is the total number of classes associated with

m level set functions, u0 is the gray-level image being

segmented, Φ is a vector of level set functions, c is a
vector of mean gray-level values (i.e., ci = mean(u0)
in the class i), χi is the characteristic function for each

class i represented by the associated Heaviside func-

tions H(φi), and (λi, µi) are constants associated with

each energy and length term of the functional Fn(c,Φ).
In order to simplify computation of the length term

in the reduced Mumford-Shah energy functional, we

replace the measure of the characteristic functions by

the sum of the length of the zero-level sets of φi,∑

1≤i≤n µi

∫

Ω
|∇H(φi)|. Instead of an unweighted to-

tal length, this approximation weights some edges more

than others, but is faster to compute and still leads to

satisfactory segmentation results.

Using multiple phases the number of level sets grows

only logarithmically with the number of classes instead

of linearly and also has the advantage of avoiding vac-

uums and overlaps in the final multiclass segmenta-

tion. Usually two- or three-level set multiphase seg-

mentations (four to eight classes) is often sufficient for

histopathology imagery. Let us consider the two level

set case (i.e., m = 2) that partitions a domain Ω into
at most four classes as illustrated in Fig. 1. Let c =
(c00, c01, c10, c11) represent a vector of average color-
intensity values corresponding to each class/region with

Φ = (φ1, φ2) being the two level set functions. The en-
ergy functional Fn(c,Φ) can thus be written as,

Fn(c,Φ) =λ1

∫

Ω

|u0 − c00|
2 (1 − H(φ1))(1 − H(φ2))dx

+ λ2

∫

Ω

|u0 − c01|
2 (1 − H(φ1))H(φ2) dx

+ λ3

∫

Ω

|u0 − c10|
2 H(φ1)(1 − H(φ2)) dx

+ λ4

∫

Ω

|u0 − c11|
2 H(φ1)H(φ2) dx

+ µ1

∫

Ω

|∇H(φ1)| dx + µ2

∫

Ω

|∇H(φ2)| dx

(5)



The Euler-Lagrange equations obtained by minimizing

Eq. 5 is used to embed (c,Φ) in a dynamical system [8],

∂φ1

∂t
= δ(φ1)

{

µ1 div
( ∇φ1

|∇φ1|

)

−
(
{λ1|u0 − c11|

2 − λ3|u0 − c01|
2}H(φ2)

+ {λ2|u0 − c10|
2 − λ4|u0 − c00|

2}{1 − H(φ2)}
)}

,

∂φ2

∂t
= δ(φ2)

{

µ2 div
( ∇φ2

|∇φ2|

)
(6)

−
(
{λ1|u0 − c11|

2 − λ2|u0 − c10|
2}H(φ1)

+ {λ3|u0 − c01|
2 − λ4|u0 − c00|

2}{1 − H(φ1)}
)}

where, cij are the mean regional color intensities for

each corresponding phase and δ(φk) = H ′(φk) is the
Dirac delta function. For numerical stability of the delta

function, Chan and Vese propose using a regularized

Heaviside function, H2,ǫ(x) = 1
2

[

1 + 2
π

{

tan−1
(

x
ǫ

)}]

with δǫ(x) = 1
π

ǫ
π2+ǫ2

The motivation for using a mul-

tiphase, rather than a two-phase, level set framework is

to accurately detect adjacent regions that meet at a junc-

tion (i.e., the triple junction in [8]).

4. Nucleus Center Detection

The shape and organization of glandular and nuclear

structures within a histological image is related to tis-

sue type and can be used in classifying Gleason grades.

Graphs describing the spatial arrangement of nuclei (i.e.

Delaunay triangulation of nuclei centers) along with

other spatial features can be used for Gleason grad-

ing [2]. The algorithm described in this section is based

on a recent Hough transform-like approach for detect-

ing centers of individual cell nuclei based on the seg-

mented nucleus clusters (see previous section). We ex-

tend the iterative voting using oriented kernels method

developed by Parvin, et al [6] and refined by Schmitt

and Hasse [7] to incorporate an improved shaping func-

tion for more robust segmentation of touching nuclei in

densely clustered regions.

The approach detects nuclei centers from incomplete

or merged boundary information through voting and

perceptual grouping. A series of cone-shaped kernels

(Fig. 2) is applied that vote iteratively along the radial

or tangential directions [6]. The iterative process re-

fines the center of mass at each iteration and terminates

after convergence to a focal response. At each iteration,

for each location along the contour, the voting kernel

is aligned along the maximum response in the voting

space. The shape of the kernel is refined and focused

within the iterative process, which we have improved

for better noise immunity and to handle closely grouped

θ

rmax

A

P (i, j)

α

rmin

Figure 2: Cone shaped kernel and the voting area A.
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Figure 3: Evolution of the voting landscapeV(i , j ) for
a nucleus cluster image. (a) iteration=1, (b) iteration=5,

(c) iteration=10, (d) nucleus contours (red) and centers

(green) superimposed on the original image.

nuclei. Fig. 3 shows evolution of the voting landscape

V(i , j ) and the resulting centers for a small group of
nuclei.

5. Results and Discussion

We used 8 images for testing1, two per class: Be-
nign Epithelium, Benign Stroma, Grade 3 and Grade
4. Performance was evaluated by measuring the detec-
tion and localization accuracy of extracted nuclei cen-
ters compared to ground truth provided by histopathol-
ogy experts. Fig. 4 shows a reduced resolution Grade 4
image, with initial regions from SCFCM segmentation
and the final four class segmentation using the multi-
phase vector Chan and Vese level-set algorithm. Once
the cell nuclei regions are segmented their centers are
estimated using the improved iterative voting scheme
which also provides an accurate measure of tissue cell
count. A number of more general nuclei or point match-
ing statistics are measured to evaluate the quality of
the automatically detected (DT) nuclei centers com-
pared to the ground truth (GT). A one-to-one match
is where each detected nucleus corresponds exactly
to one ground truth point. A many-to-one match (ie
fragmentation/over-segmentation) means that multiple
detected nuclei centers are close enough to be matched
to one ground truth point (ie nuclei center). A one-to-
many match (iemerge/under-segmentation) is the oppo-

1Histopathology imagery provided by Michael Feldman (Dept. of

Surgical Pathology, Univ. of Pennsylvania) and ground truth from

Anant Madabhushi (Rutgers).



(a) (b) (c)
Figure 4: Example of segmentation (a) original Grade 3 image (812 b s50 p1.tif) (b) initial segmentation with SCFCM

(c) final segmentation using level sets.

Category #GT #DT #TP #Match #Match #Match #FN #FP

1-to-1 1-to-Many GT Many-to-1 GT

Benign Epithelium 281 245 222 199(71%) 65(23%) 15(5%) 2(1%) 3(1%)

Benign Stroma 286 382 234 224(78%) 44(15%) 7(2%) 11(4%) 59(20%)

Grade 3 553 601 463 427(77%) 83(15%) 22(4%) 21(4%) 8(1%)

Grade 4 1425 1361 1225 1140(80%) 234(16%) 47(3%) 4(0%) 10(1%)

Table 1: Detailed statistics comparing automatic nuclei center detection accuracy compared to ground truth.

site case where one detected center corresponds to mul-
tiple ground truth points often corresponding to a clus-
ter. False negatives (FN) are missed nuclei. False detec-
tions or false positives (FP) are those detected centers
which do not match to any nearby ground truth point.
Table 1 shows the results for 8 images compared to the
number and spatial distribution of nuclei in the ground
truth (GT).The different error statistics are related as,

#(TP) = #(1-to-1) + #(Fragmented)

+ #(Merged clusters) (7)

#(GT) = #(1-to-1) + #(Many-to-1)

+ #(1-to-Many) + #(FN) (8)

Recall =
#(TP)

#(GT)
Precision =

#(TP)

#(DT)
(9)

Table 2 shows the overall performance using the quality

measures Recall and Precision. Surprisingly, Grade 4

images have the best percentage of recall and precision

even though they contain the largest number of epithe-

lial nuclei compared to the other histological imagery.

6 Conclusions

We have developed a promising, fully automatic ap-
proach for segmenting and counting epithelial nuclei in
histopathology imagery, one of the most difficult tasks
for automated prostate gland cancer grading. It is inter-
esting to note that the proposed algorithm performs best
for the complex Grade 4 cases where the density and
number of clustered nuclei in Grade 4 images is high-
est. This is likely due to the salient spectral color and
distinct boundaries between epithelial nuclei and sur-
rounding epithelial cytoplasm regions reflecting mor-
phological changes in late stage cancer tissue. In fu-
ture work we will incorporate an incremental learning
process to achieve higher overall detection rates.

Category Recall Precision

Benign Epithelium 79% 91%

Benign Stroma 82% 61%

Grade 3 84% 77%

Grade 4 86% 90%

Table 2: Recall and precision rates for nuclei detection

in different cancer grade images.
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