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ABSTRACT

We present new results on the Absolute Line Quadric (ALQ),
the geometric object representing the set of lines that in-
tersect the absolute conic. We include new techniques for
the obtainment of the Euclidean structure that lead to an
efficient algorithm for the autocalibration of cameras with
varying parameters.

1. INTRODUCTION

As is well known, the canonical strategy to solve the struc-
ture from motion problem when the intrinsic parameters of
the cameras are unknown relies on a two-step process [1]. In
the first step, a projective reconstruction of the scene is ob-
tained, and, in the second, this reconstruction is upgraded to
a Euclidean reconstruction in an operation that also provides
the camera intrinsic parameters. This second step requires
some restrictions in the internal parameters of the cameras,
such as their constancy or the knowledge of some of their
values. The specific problem of determining the cameras
internal parameters exclusively from the apparent motion of
objects in the images is known as camera autocalibration.

Euclidean upgrading techniques usually have a geomet-
rical motivation, stemming from the fact that identifying a
Euclidean structure in a projective space consists in locat-
ing the plane at infinity and the absolute conic lying in this
plane and this in turn is equivalent to camera autocalibra-
tion [1]. Consequently most autocalibration algorithms aim
at obtaining either the position of the absolute conic in the
projectively reconstructed scene or its projection onto the
image planes.

The possibility of autocalibrating a set of cameras with
constant intrinsic parameters was shown for the first time
in the modern computer vision literature in [2]. Since then
different techniques have been developed to cope with dif-
ferent practical situations.

There exist two geometrical objects that, being equiva-
lent to the absolute conic, are easier to handle: the set of
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planes tangent to the absolute conic and the set of lines that
intersect it. The first one was introduced in the computer
vision literature in [7] and is known as the dual absolute
quadric (DAQ). The second, that we will term the abso-
lute line quadric (ALQ), has been introduced by the authors
in [8] and [9], where it is studied by means of algebraic ge-
ometry techniques. An equivalent matrix is presented in[3].
But, to translate theoretical results into algorithms, the lan-
guage of matrix algebra is more suitable. This paper follows
the latter approach to pursue the study of the ALQ, includ-
ing new properties and new algorithms.

The new results include closed-form expressions for the
camera intrinsic parameters from the ALQ, the obtainment
of the DAQ from the ALQ using straightforward matrix op-
erations, and an equally direct computation of a Euclidean-
upgrading homography. As an application we provide a
computationally efficient new algorithm for the autocali-
bration of cameras with varying parameters that achieves
nearly-optimal performance in terms of reprojection error.
For the sake of concision the mathematical proofs have not
been included in this paper and can be found online in [4].

2. PROBLEM FORMULATION

We will assume that the cameras can be modeled [1] by the
usual linear equation x ∼ PX, where ∼ means equality
up to a non-zero scale factor, X = (x, y, z, t)> denotes the
homogeneous coordinates of a spatial point, x = (u, v, w)>

represents the homogeneous coordinates of an image point,
and P is the 3 × 4 matrix P = K(R| − Rt). The intrinsic
parameter matrix K is given by

K =




αu −αu cot θ u0

0 αv/ sin θ v0

0 0 1


 ,

where u0 and v0 are the affine coordinates of the principal
point, αu and αv are the pixel scale factors and θ is the skew
angle between the axes of the pixel coordinates. We denote
by τ = αu/αv the pixel aspect ratio. The matrix R is a
rotation matrix which gives the camera orientation, and t
are the coordinates of the camera optical center.



As is well known [1], it is possible to obtain a projec-
tive calibration only from point correspondences within two
or more images. This means that, given a set of projected
points xij obtained with m cameras, m ≥ 2, we can obtain
a set of matrices P̂i and a set of point coordinates X̂j such
that xij ∼ P̂iX̂j , where P̂i = PiH−1 and X̂j = HXj for
some non-singular 4× 4 matrix H.

Euclidean calibration can be defined as the obtainment
of a matrix H changing the projective coordinates of a given
projective calibration to some Euclidean coordinate system,
i.e., one in which the absolute conic has equations x2+y2+
z2 = t = 0.

Given a projective calibration of cameras with known θ
and τ it is possible to identify two lines through the optical
center of each camera that intersect the absolute conic [8].
If the aspect ratio is unknown but the skew angle θ = π/2,
it is still possible to identify two orthogonal lines through
each optical center. In any of these situations the analysis
below will provide algorithms for the projective calibration
to a Euclidean calibration.

3. LINE REPRESENTATION

Given two vectors u,v ∈ C4, we define the antisymmetric
matrix. M(u,v) = uv> − vu> We also define the matrix
M∗(u,v) by the property that x>M∗(u,v)y = det(x,u,v,y)
for any vectors x, y. It can be checked that M and M∗ are
related by a self-invertible permutation of their entries.

Given points p, q and planes α and β, defining the
same line l, we define the P -matrix and the Π-matrix of
l as P ∼ M(p,q), Π ∼ M(α,β).It can be checked that
M(p,q) ∼ M∗(α, β).

Given a 4×4 antisymmetric matrix A = (aij) we define
the vector `A ∼ (a23, a03, a13, a20, a12, a01)>.

We define the Plücker coordinates of a line l given by
points p, q or by planes α, β by ` ∼ `M(p,q) ∼ `M∗(α,β).
Defining the 6× 6 antidiagonal matrix Ω = (δi,7−j), a non-
zero vector ` will correspond to the Plücker coordinates of
some line if and only if `>Ω ` = 0. The quadric with matrix
Ω is known as the Klein quadric. Additionally, two lines in-
tersect if and only if their Plücker coordinates are conjugate
with respect to the Klein quadric, i.e., `>P1

Ω `P2 = 0. It can
be checked that `>P1

Ω `P2 = 1
2 traceP1P∗2.

Given vectors u, v of C4, we define
u∧ v = `M(u,v), u∧

∗
v = `M∗(u,v).

If α, β represent planes, the vector α∧
∗

β are the Plücker

coordinates of their line of intersection, and if p,q ∈ C4

represent points of the same line, p∧ q are the Plücker co-
ordinates of the line through them. We have that u∧ v =
0 ⇔ u∧

∗
v = 0 ⇔ u ∼ v and the relationships Ω (u∧ v) =

u∧
∗
v, Ω(u∧

∗
v) = u∧ v.

We consider the change of coordinates of P3 of equa-
tions p′ ∼ Hp. Expressing it in terms of Plücker coordi-
nates we obtain a matrix relation `′ = H̃` corresponding to
the associated change of coordinates in P5, where
H̃ = [h2∧ h3,h0∧ h3,h1∧ h3,h2∧ h0,h1∧ h2,h0∧ h1]
being hi the columns of H. The matrices of this form have
the property H̃>ΩH̃ = det(H)Ω.

An alternative expression is
H̃ = [g2∧ g3,g0∧ g3,g1∧ g3,g2∧ g0,g1∧ g2,g0∧ g1]

>
,

where gi are the rows of H.

4. THE ABSOLUTE LINE QUADRIC

We recall that the dual absolute quadric (DAQ) can be seen
as a mapping that assigns to each plane π the point at infin-
ity corresponding to its orthogonal vector p = Q∗∞π [7].
Here Q∗∞ = (q0,q1,q2,q3) is a rank-three 4 × 4 sym-
metric matrix. Therefore, if we consider the line l repre-
sented by the Π-matrix Π = M(α,β), the matrix P⊥ =
M(Q∗∞α, Q∗∞β) = Q∗∞ΠQ∗∞ turns out to be a P -matrix cor-
responding to the line l⊥ of orthogonal directions to l. Two
lines l and l′ are orthogonal if l′ intersects l⊥. This can be
expressed in terms of Π-matrices as

trace (Π′P⊥) = trace (Π′Q∗∞ΠQ∗∞) = 0, (1)

and in terms of Plücker coordinates as `>Σ`′ = 0, where
the symmetric matrix Σ can be obtained from the columns
of the DAQ as
Σ =

[
q0∧∗ q1,q1∧∗ q2,q2∧∗ q0,q1∧∗ q3,q0∧∗ q3,q2∧∗ q3

]
.

With this expression it is not difficult to verify the fol-
lowing two important properties of the matrix Σ:

1. It verifies the relationship ΣΩΣ = 0.
2. Its kernel is a β-plane.

The quadric Σ will be called the absolute line quadric (ALQ).
Since the lines that intersect the absolute conic are those that
intersect their own orthogonal line, the set of these lines is
characterized by the equation

trace (ΠQ∗∞)2 ∼ `>Σ` = 0. (2)
Since in a projective calibration with cameras with known

pixel shape two lines intersecting the absolute conic are
known for each camera, it is possible to obtain Σ by solving
a linear system of equations of the form (2) (see [8]).

In Euclidean coordinates, since the DAQ has the canon-
ical form Q∗∞ = diag(1, 1, 1, 0), the ALQ has the canonical
form Σ0 = diag(1, 1, 1, 0, 0, 0). If p = Hp0 is a change of
coordinates from Euclidean coordinates p0, the correspond-
ing coordinate change between Plücker coordinates is given
by the corresponding matrix H̃ expressed above. The ALQ
being a quadric, its matrix in the new coordinate system is
thus given by

Σ ∼ H̃>Σ0H̃. (3)
As Σ0 is a rank-three matrix, so is the ALQ in any co-

ordinate system.



4.1. Camera intrinsic parameters from the ALQ

The projected absolute conic (PAC) given by a projection
matrix P = (π1, π2, π3)> can be immediately obtained
from the ALQ as ω = P̂>Σ P̂, where P̂ = (π2∧∗ π3,π3∧∗
π1, π1∧∗ π2) is the matrix assigning to an image point its
back-projected line. As is well known [1], the intrinsic pa-
rameter matrix can be retrieved from the PAC by Cholesky
factorization. Besides, some intrinsic parameters can be ob-
tained explicitly, as next we show.

The angle between two lines ` and `′ can be computed
from the ALQ as

θ = arccos
(
|`>Σ `′|/

√
(`>Σ`)(`′>Σ `′)

)
. (4)

Thus the skew angle θ of the camera can be computed as
the angle of the back-projected lines of image points e0 =
(1, 0, 0)> and e1 = (0, 1, 0)>.

To compute the aspect ratio τ we observe that the image
points of affine coordinates (0, 0), (1, 0), (0, τ), and (1, τ)
are the vertices of a rhomb, so that its diagonals are orthog-
onal. From this we obtain

τ2 =
(π3∧∗ π1)>Σ(π3∧∗ π1)

(π2∧∗ π3)>Σ(π2∧∗ π3)
. (5)

The principal point u0 is the image point whose back-
projected line is orthogonal to the image plane. From this
observation we obtain u0 = (P̂>ΣP̂e0)× (P̂>ΣP̂e1).

4.2. Computing the DAQ from the ALQ

The formula of section 4 giving the ALQ matrix Σ in terms
of the DAQ matrix Q∗∞ can be easily inverted by solving an
homogeneous linear system of equations stemming from the
following properties, that derive easily from the definition
of the M∗ matrix:

M∗(qi,qj)qi = 0 = M∗(qi,qj)qk −M∗(qk,qi)qj .
In our case the M∗ matrices above can be obtained from

the columns of Σ and the ql are the unknowns. The solu-
tion is obtained within the linear space of dimension ten of
the symmetric 4× 4 matrices and then approximated by the
closest rank-three matrix.

4.3. Euclidean coordinate systems from the ALQ

An Euclidean coordinate system can be obtained from the
DAQ or directly from the ALQ using the following result.
Consider any factorization Σ = TΣ0T> with T = (t0, . . . , t5).
It can be proved that the vectors ti, i = 0, 1, 2, are of the
form t0 = g1∧∗ g2, t1 = g2∧∗ g0, t2 = g0∧∗ g1 for some
linearly independent gi, i = 0, 1, 2. Let g3 be such that
the matrix H> = (g0,g1,g2,g3) is regular. Then H is the
matrix of a coordinate change from an Euclidean coordinate
system to the current one.

Observe that the decomposition Σ = TΣ0T> can be ob-
tained by SVD followed by making zero the three lower
singular values. The recovery of the gi vectors from the ti

can be done using the following technique.
It can be proved that for any three vectors u0,u1,u2 ∈

C4 we have M(u0,u1)M∗(u1,u2) = u1 m> where m> =(
M0 −M1 M2 −M3

)
, being each Mi the determinant

of the matrix obtained by suppressing column i of the ma-
trix whose rows are u>0 , u>1 , and u>2 .

Applying this result to our case, we can obtain the matri-
ces M(gi,gj) and M∗(gi,gj) from vectors tk. At least one
of the columns of the product M(g0,g1)M∗(g1,g2) will be
non zero. By selecting it we obtain the vector (−1)iMig1.
Computing in the same way the products M(g1,g2)M∗(g2,g0)
and M(g2,g0)M∗(g0,g1) and selecting the same column
i of the results, we will get all the (−1)iMigj .

5. ALGORITHMS AND EXPERIMENTAL RESULTS

Most of the practical autocalibration algorithms consist in
the concatenation of the phases

(1) Initial projective calibration
(2) Projective bundle adjustment
(3) Initial Euclidean upgrading
(4) Euclidean bundle adjustment.

This scheme has two drawbacks: (i) it requires two costly
bundle adjustment operations and (ii) the initial Euclidean
upgrading does not take into account reprojection errors.
The theory involving the ALQ can be employed to define
new algorithms intended to be free from these limitations.
Our proposed algorithm is the following:

Input: A set of n projected and matched points in m cam-
eras with square pixels.
Output: A 3D Euclidean reconstruction and the correspond-
ing projection matrices.
Steps:
1. Obtain a low-cost projective calibration using the projec-

tive factorization algorithm in [1, p. 430], initialized with
the Gold Standard Algorithm for the fundamental matrix
plus resection, as in [8].
2. Use the linear algorithm in section 4 to obtain an initial

estimation of the ALQ.
3. Obtain the rectifying homography from the ALQ, as ex-

plained in section 4.
4. Minimize the cost function

g(Pi,Xj , H) =
m,n∑

i,j=1

d(PiXj ,xij)2 + ξ

(
m∑

i=1

|εi
θ|2 + |εi

τ |2
)

where d(·, ·) is the Euclidean distance between observed
and projected points, ξ = n2 is a weighting factor, and
εi
θ = εθ(Pi, Σ(H)) and εi

τ = ετ (Pi, Σ(H)) are the relative er-
rors in the θ and τ parameters respectively for camera i, that
can be obtained from (3), (4), and (5). The optimization is



achieved using an sparse Levenberg–Marquardt algorithm.
The aforementioned algorithm has been tested with syn-

thetic data in a series of experiments involving the recon-
struction of a set of 50 points from their projections in 10
to 40 images taken with uncalibrated cameras with varying
parameters. The 3D points lie close to the origin of coordi-
nates of an Euclidean reference and the cameras are located
at random positions lying approximately over a sphere cen-
tered at the origin and roughly pointing towards it, so that
the set of projected points is approximately centered in the
virtual CCD. Skew angle and aspect ratio are fixed at re-
spective values π/2 and 1. Normalized focal length α is
selected in each experiment at random with a uniform dis-
tribution centered at 20 mm with a maximum deviation of
±10% from this value. The principal point is obtained from
a uniform distribution with support in the square [±640,±480],
to simulate a large variation. With these parameters the
projected point coordinates have values within the range
[−1500, 1500] and, in each image the points are contained
inside a square of side 1500 pixels. After computing the
point projections, these are perturbed by the addition of zero-
mean Gaussian noise with different variances.

For each camera configuration, gaussian noise is added
with typical deviations σ between 0 and 5 pixels, in steps of
one. Then, the proposed algorithm is applied and its perfor-
mance is evaluated trough the measurement of the errors in
the estimation of the intrinsic parameters.

Figure 1 shows the measured errors, which are very small.
The relative errors in the estimation of the aspect ratio and
the skew angle are both lower than 0.001%, meaning it is a
very good approximation to projection matrices with square
pixels. But the major advantage is the computacional ef-
ficiency because only one bundle adjustment is performed
and there is no need to find a Euclidean parametrization of
the projection matrices.

The RMS residual reprojection error obtained is very
close to the theoretical curves [1, p. 121] for a similarity
reconstruction εres/σ = (1− (3n+9m−7)/(2mn))1/2, so
the performance of the algorithm is very close to optimal,
indicated by the Cramer–Rao bound. This leads to a very
competitive algorithm within the current state of the art.
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