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Abstract 

We present a fast and robust gradient-based scale-invariant image registration technique 

which operates in the frequency domain. The algorithm combines the natural advantages of 

good feature selection offered by gradient-based methods with the robustness and speed 

provided by FFT-based correlation schemes. Experimentation with real images taken from a 

popular database showed that, unlike any other Fourier-based techniques, the method was 

able to estimate translations, arbitrary rotations and scale factors up to 6. 

Introduction 

The estimation of the relative motions 

between two or more images is probably at 

the heart of any autonomous system which 

aims at the efficient processing of visual 

information. Motions in images are induced 

due to camera displacements or 

displacements of the individual objects 

composing the scene. Image registration 

techniques for global motion estimation 

address the problem of compensating for 

the camera ego-motion and finally aligning 

the images. Practical applications are 

numerous: from global scene representation 

and image mosaicing to object detection / 

tracking and video compression. 

We propose a robust correlation-based 

scheme which operates in the Fourier 

domain for the estimation of translations, 

rotations and scalings in images. For the 

class of similarity transforms, a frequency 

domain approach to motion estimation 

possesses several appealing properties. 

First, through the use of correlation, it 

enables an exhaustive search for the 

unknown motion parameters and, therefore, 

large motions can be recovered with no a 

priori information (good initial guess). 

Second, the approach is global which 

equips the algorithm with robustness to 

noise [16]. Third, the method is 

computationally efficient. This comes from 

the shift property of the Fourier Transform 

(FT) and the use of Fast Fourier Transform 

(FFT) routines for the rapid computation of 

correlations. 

The work in [13] introduces the basic 

principles for translation, rotation and 

scale-invariant image registration in the 

frequency domain.  Given two images 

related by a similarity transform, the 

translational displacement does not affect 

the magnitudes of the FTs of the two 

images. Re-sampling the Fourier 

magnitudes on the log-polar grid reduces 

the problem of estimating the rotation and 

scaling to one of estimating a 2D 

translation. Thus, the method relies on 

correlation twice: once in the log-polar 

Fourier domain to estimate the rotation and 

scaling and once in the spatial domain to 

recover the residual translation.  In the 

usual way, the authors use phase 

correlation (PC) [10] instead of standard 

correlation while they perform conversion 

from Cartesian to log-polar using standard 

interpolation schemes (e.g. bilinear 

interpolation). 

To enhance accuracy, the authors in 

[9,11,12] introduce new sampling schemes 

and algorithms which reduce the 

inaccuracies induced by re-sampling the 

magnitude of the FT on the log-polar grid. 

To recover the rotation and scaling, the 
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method in [9] relies on the pseudopolar 

FFT [3] which rapidly computes a discrete 

FT on a nearly polar grid. The pseudopolar 

grid serves as an intermediate step for a 

log-polar Fourier representation which is 

obtained using nearest neighbour 

interpolation. Overall, the total 

accumulated interpolation error is 

decreased; nevertheless the pseudopolar 

FFT is not a true polar Fourier 

representation and the method estimates the 

rotation and scaling in an iterative fashion. 

In [11], the authors propose to approximate 

the log-polar DFT by interpolating the 

pseudo-log-polar FFT. The method is non-

iterative but the gain in registration 

accuracy is not significant. The main idea 

in [12] is to obtain more accurate log-polar 

DFT approximations by efficiently over-

sampling the lower part of the Fourier 

spectrum using the Fractional FT. The 

presented experimental results do not 

explicitly show the applicability of the 

algorithm in real images related by large 

scale factors while over-sampling 

inevitably increases the execution time. 

In this work, we provide reasoning, 

intuition and experimentation which show 

that accuracy in FFT-based motion 

estimation depends on the image 

representation used and the type of 

correlation employed rather than the 

method used to approximate the log-polar 

DFT. In our scheme, we first replace image 

functions with complex gray-level edge 

maps and then compute the standard 

Cartesian FFT. Using simple arguments, 

we show that this step both captures the 

structure of salient image features and 

provides an efficient solution to problems 

induced by the low-pass nature of images, 

interpolation errors, border effects and 

aliasing. Next, we simply resample the 

Cartesian FFT on the log-polar grid using 

bilinear interpolation.  Neither 

sophisticated FFT nor over-sampling is 

employed to enhance accuracy. To perform 

robust correlation, we replace phase 

correlation with gradient-based correlation 

schemes [5,1]. We present a novel 

theoretical analysis which shows that under 

a reasonable assumption, the use of image 

gradients tailors correlation to the nature of 

real images and provides a mechanism to 

reject outliers induced by real-world 

registration problems. Following our 

analysis, we introduce the normalized 

gradient correlation (NGC) and, finally, we 

estimate the rotation and scaling using 

NGC in the log-polar Fourier domain. 

Exhaustive experimentation with popular 

image datasets [4] demonstrated that the 

merits of a gradient-based approach 

combined with the speed which typifies a 

frequency domain approach provide a fast 

and robust framework for scale-invariant 

image registration. 

FFT-based Scale-invariant Image 

Registration 

Let  be 

two image functions.  We denote: 

  

the Cartesian FT of Ii and Mi the magnitude 

of . Polar and log-polar Fourier 

representations refer to computing the FT 

as a function of  and 

 respectively, where 

 and . 

Translation Estimation using Correlation 

Assume that we are given two images, I1 

and I2, related by an unknown translation 

  

 

We can estimate t from the 2D cross-

correlation function  

as: 
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where:
1
 

 

From the convolution theorem of the FT 

[6], C can be alternatively obtained by 

 

where F
-1

 is the inverse FT and * denotes 

the complex conjugate operator. The shift 

property of the FT [6] states that if the 

relation between I1 and I2 is given by (1), 

then, in the frequency domain, it holds: 

 

and therefore (4) becomes: 

 

The above analysis summarises the main 

principles of frequency domain correlation-

based translation estimation. For finite 

discrete images of size N × N, correlation is 

efficiently implemented through (4), by 

zero padding the images to size (2N - 1) × 

(2N - 1) and using FFT routines to compute 

the forward and inverse FTs.  If no zero 

padding is used, the match is cyclic and, in 

this case, the algorithm’s complexity is 

O(N
2
 log N). 

Estimation of Translation, Rotation and 

Scaling using Correlation 

Assume that we are given two images, I1 

and I2, related by a translation t, rotation 

θ0 ∈  [0, 2π) and scaling s > 0, that is: 

 

where 

 

In the Fourier domain, it holds [14] 

                                                
1 To be more precise, we assume hereafter that the 

images are of finite energy such that correlation 

integrals such as the one in (3) converge. 

 

 

where 

 

and ∆  is the determinant of D. Taking the 

magnitude in both parts of (8) and 

substituting D
-T

 =  gives 

 

Using the log-polar representation yields 

(ignoring the term 1/s
2
) [13] 

 

We can observe that in the log-polar 

Fourier magnitude domain, the rotation and 

scaling reduce to a 2D translation which 

can be estimated using correlation. After 

compensating for the rotation and scaling, 

we can recover the remaining translation 

using correlation in the spatial domain. 

Note that if  is the estimated rotation, 

then it is easy to show that  or 

.  To resolve the ambiguity, one 

needs to compensate for both possible 

rotations, compute the correlation functions 

and, finally, choose as valid solution the 

one that yields the highest peak [13]. 

Robust FFT-based Scale-invariant 

Image Registration 

Robust Translation Estimation 

To estimate the translational displacement, 

we can replace standard correlation with 

gradient-based correlation schemes. 

Gradient correlation (GC) combines the 

magnitude and orientation of image 

gradients [1] 

 

where 

 

and  and  are the 

gradients along the horizontal and vertical 
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direction respectively. Orientation 

correlation (OC) considers orientation 

information solely [5] 

 

where 

 

and  is the value of a threshold. 

Thresholding |Gi(x)| aims at removing the 

contribution of pixels where gradient 

magnitude takes negligible values. 

In the following analysis, the focus is 

primarily on GC. 

Spatial Domain Analysis 

From the definition of GC and using (13), 

we can easily derive 

 

The imaginary part in the above equation is 

equal to zero, therefore 

 

Using the polar representation of complex 

numbers, we define  

  and 

  

Based on this representation, (17) takes the 

form: 

 

Each term in (18) has its own special 

importance.  The magnitudes Ri reward 

pixel locations with strong edge responses 

and suppress the contribution of areas of 

constant intensity level which do not 

provide any reference points for motion 

estimation. Orientation information is 

embedded in the cosine kernel. This term is 

responsible for the dirac-like shape of GC 

and its ability to reject outliers induced by 

the presence of dissimilar parts in the two 

images. 

To roughly show the latter point, let us first 

assume that at u≠t the orientation difference 

function  is 

uniformly distributed over [-π,π). This 

assumption appears to be reasonable, since 

for displacements other than the correct, the 

images do not match and therefore we 

expect that differences in gradient 

orientation can take any value in the range 

[0,2π) with equal probability. 

Let us further impose Ri = 1, i = 1; 2 , that 

is, we essentially compute a modified 

orientation correlation function (mOC) 

where, in contrary to (14), the orientation 

of all pixels is taken into consideration 

 

To model dissimilar parts, we modify the 

perfect translational model of (1) as 

follows: 

 

That is after shifting I1 by t, I1 and I2 match 

only in x ∈ Ω. 

At u≠t, we may observe that : 

 

since  we have assumed that 

∆Φ(u,x) is uniformly distributed. At u=t, 

we have: 

  

since  and  

is uniformly distributed if .  

Overall, mOC will be non-zero only for 

u=t, and its value at that point will be the 
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contribution from the areas in the two 

images that match solely. 

Essentially, using image gradients to 

perform correlation, the errors induced by 

outliers are mapped to a uniform 

distribution for which correlation is well-

known to feature robust performance.  Our 

analysis does not impose any bound to the 

number of outliers. In fact, as their number 

increases, one would expect that accuracy 

is enhanced, since ∆Φ will better 

approximate the uniform distribution. In 

practice, we expect that deviations from our 

above assumptions will limit the dynamic 

range of the algorithm. Additional sources 

of performance degradation are errors in 

estimating the image gradients, possible 

image noise and aliasing effects induced by 

the FFT.  To conclude, we mention that the 

above analysis agrees with experimental 

results which have shown that gradient-

based correlation schemes are able to 

estimate translational displacements 

reliably even when the overlap between the 

given images is less than 20%. Note that 

phase correlation is able to register images 

when the overlap is of the order of 40% [8]. 

Normalized Gradient Correlation 

In the above analysis, we assumed Ri = 1, i 

= 1,2. To optimise the orientation 

difference function ∆Φ of the image salient 

structures solely, we introduce the 

normalized gradient correlation 

 

Following the above analysis, (23) takes 

the form: 

 

NGC has two interesting properties: 

1. 0 ≤ |NGC(u)| ≤ 1. 

2. Invariance to affine changes in 

illumination. 

The first property provides a measure to 

assess the correctness of the match. To 

show the second property, consider: 

 

with a ∈  and b ∈  

Then, by differentiation, ; 

therefore the brightness change due to b is 

removed. Additionally,  and 

 ; thus the effect of the 

contrast change due to a will cancel out in 

(24). Note that if a ∈ , we can achieve 

full invariance by looking for the maximum 

of the absolute correlation surface. 

Robust Estimation of Rotation and Scaling 

In our scheme, to estimate the rotation and 

scaling, we replace Ii with Gi and then use 

 as a basis to perform correlation in the 

log-polar Fourier domain. This is possible 

since from (9) we have  and 

therefore: 

 

 

Figure 1: (a) ‘Lena’ and (b) the 1D 

representations A (dashed line) and AG (solid 

line) 

The use of  is a key element of our 

approach. It equips the method with 

accuracy and robustness. We discuss the 

above arguments in detail as follows. 

First,  captures the frequency response 

of the image salient features solely. Areas 

of constant intensity level induce low 
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frequency components which hinder the 

estimation of the rotation and scaling. To 

illustrate this, consider the ‘Lena’ image 

and the scenario where the motion is purely 

rotational. To estimate the rotation, we use 

the 1D representation A(kθ) = 

 and correlation over the 

angular parameter kθ. The image contains a 

wide range of frequencies and, 

consequently, A is almost flat (Figure 1 (b), 

dashed line). In this case, matching by 

correlation can be unstable. In contrary, AG 

(obtained by averaging MG) efficiently 

captures possible directionality of the 

image salient features: the two main 

orientations of the edges in the image give 

rise to two distinctive peaks in AG (Figure 

1 (b), solid line). Using AG to perform 

correlation, matching will be more accurate 

and robust. 

Second, conversion from Cartesian to polar 

/ log-polar induces much larger 

interpolation error for low frequency 

components.  This is because near the 

origin of the Cartesian grid less data are 

available for interpolation. It is also evident 

that for Cartesian-to-log-polar conversion 

the situation becomes far more problematic 

since the log-polar representation is 

extremely dense near the origin. Thus, 

recently proposed DFT schemes [9,11,12] 

sample the FT on non-Cartesian grids 

which geometrically are much closer to the 

polar / log-polar ones.  Therefore, accuracy 

is enhanced, however, at the cost of 

additional computational complexity. In 

contrary, our approach to alleviating the 

problem differs substantially: eliminate the 

effect of low frequency components by 

using the representation .  This comes 

naturally since the bottom line from the 

‘Lena’ example is that discarding low 

frequencies from the representation will 

also result in more robust and accurate 

registration.  Our algorithm uses the 

standard Cartesian FFT and bilinear 

interpolation without over-sampling, thus it 

is significantly faster than the schemes in 

[9,11,12]. 

Third, the periodic nature of the FFT 

induces boundary effects which result in 

spectral leakage in the frequency domain. 

Attempting to register images with no pre-

processing, typically returns a zero-motion 

estimate (θ0 = 0, s = 0).  To reduce the 

boundary effect, one can use window 

functions [7]. Assuming that there is no 

prior knowledge about the motion to be 

estimated, the reasonable choice is to place 

the same window at the centre of both 

images. In this case, windowing not only 

results in loss of information but also 

attenuates pixel values in regions shared by 

the two images in different ways. For large 

motions, the result can be a dramatic 

decrease in performance. 

On the other hand, the proposed scheme is 

based on gray-level edge maps and, 

therefore, discontinuities due to 

periodisation will appear only if very strong 

edges exist close to the image boundaries. 

In practice, the method does not apply any 

windowing to the input images.  

Fourth, using FFT routines to approximate 

the Fourier spectrum of images results in 

significant aliasing effects. Rotations and 

scalings in images induce additional 

sources of aliasing artefacts which are 

aggravated by the presence of high 

frequencies. For example, the 

commutativity of the FT and image rotation 

does not hold in the discrete case: The DFT 

of a rotated image differs from the rotated 

DFT of the same image resulting in 

rotationally depending aliasing [15]. Using 

filters with band-pass spectral selection 

properties to compute Gi reduces the effect 

of high-frequency noise and aliasing in the 

estimation process. Elementary filter design 

suggests that we can obtain filters with 

such properties by approximating the ideal 

differentiator with central differences of 

various orders [6]. 

The Algorithm 

Based on our analysis in the previous 

subsections, we propose a robust gradient-
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based approach to estimate translations, 

rotations and scalings in images as follows. 

 

Algorithm 1: Robust FFT-Based Scale-

invariant Image Registration Algorithm 

Inputs: Two images Ii, i = 1;2 related by a 

translation t, rotation θ0 and scaling s. 

Step 1: Estimate Gi and compute  using 

the standard Cartesian FFT. 

Step 2: Resample  on the log-polar grid 

using bilinear interpolation. 

Step 3: Estimate θ0 and s using NGCorr in the 

log-polar domain. 

Step 4: Scale down and rotate the zoomed 

image. Resolve the π ambiguity and recover t 

using NGCorr in the spatial domain. 
 

Results 

To evaluate the performance of our 

scheme, we used a popular database with 

real images [4]. We examined two 

registration problems: 

• P.1. Translations and scalings 

• P.2. Translations, rotations and scalings 

The database provides a set of 6 and 10 

datasets for P.1 and P.2 respectively. Each 

dataset consists of a collection of images 

capturing a particular scene. Depending on 

the dataset, the image resolution varies 

from 348×512 to 650×850. We used 

approximately 1000 image pairs, covering a 

wide range of rotations and scale factors up 

to 6. 

The target of our experiments is twofold. 

First, we present a comparison between 

OC, PC and the proposed NGC. For this 

purpose, we also implemented the proposed 

scheme (Algorithm 1) using OC and PC in 

the log-polar Fourier domain (Step 4). 

Second, we assess the performance of the 

state-of-the-art in FFT-based image 

registration.  In particular, we implemented 

an improved version of method given in [9] 

as follows.  We replaced the pseudopolar 

FFT with an accurate polar FFT recently 

proposed in [2]. Next, to approximate the 

log-polar FT, we re-sampled the polar FFT 

on the log-polar grid using bilinear 

interpolation. Finally, to estimate the 

rotation and scaling, we used PC. Since we 

observed that the method failed badly for 

most datasets without windowing, we pre-

processed all images using a Tukey 

window prior applying the algorithm. 

To compare all schemes, we examined the 

maximum scale factors that each method 

recovered successfully for each dataset. We 

obtained these factors by attempting to 

register the first image in each dataset 

(reference image) with all the other images 

in the particular dataset (target images).  

Table 1 gives an overview of the results. 

For each dataset, we present the maximum 

scale factor  and the corresponding 

rotation  estimated by all schemes along 

with the ground truth s and θ0 as given in 

[4].  

The proposed scheme (using NGC) gave 

excellent results. For most datasets 

(‘Asterix’, ‘Belledonee’, ‘Bip’, ‘Laptop1’, 

‘Bark’, ‘Boat’, ‘East Park’, ‘East South’, 

‘Laptop2’, ‘Resid’, ‘UBC’), the algorithm 

correctly estimated the maximum scale 

change considered. Moreover, the method 

estimated translations and rotations to 

nearly one pixel and degree accuracy 

respectively. 

Replacing NGC with OC gave considerably 

worse results. In particular, the maximum 

scale factors recovered were approximately 

reduced by half compared to those detected 

using NGC. OC is robust only if the 

orientation difference function ∆Φ follows 

a uniform distribution for displacements 

others than the correct. This is not the case 

for images re-sampled on a log-polar grid. 

More specifically, near the origin, re-

sampling induces artefacts since very few 

data are available for interpolation in the 

original Cartesian representation. The 
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structure (and therefore the orientation) of 

the artefacts is more related to the 

Cartesian-to-log-polar conversion rather 

than the image to be interpolated. The 

result is a bias in the detection process. 

Overall, we conclude that to achieve robust 

performance, both magnitude and 

orientation information must be considered. 

Table 1: Experiment 1. The maximum scale factors and the corresponding rotations recovered by the 

proposed scheme using NGC, OC, PC and the state-of-the-art respectively 

 

 

Figure 2: Registration accuracy achieved by the proposed scheme. (a) (s,θθθθ0) = (3.97,0.0°),  = 

(4.01,0.7°). (b) (s,θθθθ0) = (2.69,0:0°),  = (2.68,0.0°). (c) (s,θθθθ0) = (4.36,46.0°),  = (4.26,45.7°). (d) (s,θθθθ0) 

= (5.89,33.2°),  = (5.85,31.6°) 

Additionally, a simple visual inspection of 

Table 1 reveals the performance 

improvement obtained using NGC instead 

of PC. In particular, using our NGC, we 

were able to detect successfully maximum 

scale changes in the range [4,6].  Replacing 

NGC with PC, the maximum scale factors 

recovered were limited in the range [2.5,4]. 

Finally, the gain in performance compared 

to the state-of-the-art is evident. 

Interestingly, we can observe that the 

implementation of our scheme using PC in 

the log-polar Fourier domain gave 

significantly better results. We conclude 

that the choice of sophisticated methods to 

approximate the log-polar DFT is not a 

critical element of robustness in FFT-based 

scale-invariant image registration. 

Figure 2 illustrates the accuracy of 

registration achieved by the proposed 

scheme. The reference image is scaled 

down, rotated and translated according to 

the estimated motion parameters, and then 

superimposed on the target image. 

Conclusions 

We presented a gradient-based approach 

which operates in the frequency domain for 

the estimation of scalings, rotations and 

translations in images.  We attribute the 

robustness of the proposed scheme to both 

the image representation used and the type 

of correlation employed. We provided 
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reasoning and experimentation which 

verify the validity of our arguments. There 

is no other FFT-based technique which is 

able to recover large motions in real 

images. 

A key feature of Fourier-based registration 

methods is the speed offered by the use of 

FFT routines. The proposed scheme 

estimates large motions accurately and 

robustly without the need of excessive 

zero-padding and over-sampling, thus 

without sacrificing part of the 

computational efficiency which typifies the 

frequency domain formulation. To register 

a pair of 512×512 images, a nearly 

optimised Matlab implementation of the 

algorithm on a 3 GHz Pentium IV 

computer requires about 1 second. It is 

expected that, using parallel machine-

specific optimised implementations of the 

FFT, near real-time performance can be 

achieved. 

Finally, a further advantage of the proposed 

approach is that the method is 

complementary to other state-of-the-art 

FFT-based image registration methods. 

Ongoing research is focused on 

performance evaluation of such composite 

schemes. 
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