IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 2, JUNE 2002 235

The GC-Tree: A High-Dimensional Index Structure
for Similarity Search in Image Databases

Guang-Ho Cha and Chin-Wan Chung

Abstract—With the proliferation of multimedia data, thereisan ~ development of an indexing method to accelerate the speed of
incres_tsing _need to support t_he indexing and retrieval of high-di-_ the k-NN search.
mensional image data. In this paper, we propose a new dynamic pqr angjications where the vectors have low or medium di-

index structure called the GC-tree(or the grid cell treg for efficient . "
similarity search in image databases. The GC-tree is based on a_rnen5|onal|t|es (e.g., less than 10), the state-of-the-art tree-based

special subspace partitioning strategy which is optimized for aclus- indexing techniques such as the R*-tree [2], the X-tree [5], the
tered high-dimensional image dataset. The basic ideas are three-HG-tree [7], and the SR-tree [14] can be usefully employed to
fold: 1) we adaptively partition the data space based on @ensity solve thek-NN problem. So far, however, there is no effective

function that identifies dense and sparse regions in a data space; 2) 55| tion to this problem for the applications in which the vectors

we concentrate the partition on the dense regions, and the objects h hiah di . lti 100. Theref th .
in the sparse regions of a certain partition level are treated as if they ave nigh dimensionaliies, say over - Iherelore, the main

lie within a single region; and 3) we dynamically constructan index iSSue is to overcome theurse of dimensionalitj20]-a phe-
structure that corresponds to the space partition hierarchy. The nomenon that the performance of indexing methods degrades
re_sult_ant ind_ex structure adapts well to the strongly clustered dis- drastically as the dimensionality increases.

tribution of high-dimensional image datasets. To demonstrate the
practical effectiveness of the GC-tree, we experimentally compared
the GC-tree with the 1Q-tree, the LPC-file, the VA-file, and the
linear scan. The result of our experiments shows that the GC-tree Recently, we developed a new vector approximation-based
outperforms all other methods. indexing method called tHecal polar coordinate (LPC)-fil§6]

Index Terms—Dynamic index structure, GC-tree, high-dimen- for the k-NN search. The LPC-file significantly improved the
sional indexing, image database, nearest neighbor search (NNsearch performance for large collections of high-dimensional
search), similarity search. vectors compared with the linear scan and the VA-file [23]. The

linear scan is often used as the yardstick for comparing with
|. INTRODUCTION other indexing methods since most tree-structured indexing
o , i i methods could not defeat it in high-dimensional data spaces.
S_'MlLA,RITY search in high-dimensional image databasegy,q _file was the first vector approximation-based indexing
San Interesting "?‘”F‘ |mportant, b_Ut difficult problgm. Th?nethod to overcome the dimensionality curse. Although the
most typical type ofS|m|_If_;1r|ty search is ttinen_eare_st neighbor LPC-file provided significant improvements compared with
(k-NN) search. The tradition#-NN problem is defined as fol- o ioys techniques, it suffers the performance degradation
lows. Consider a databa&B consisting of points front’ = ¢ yhe gataset is highly clustered because it employs a simple

[y X X Ra, whereR; ¢ R. Eachk; usgally consi§ts of ei- space partitioning strategy and the uniform bit allocation
ther integers or floats. &-NN query consists of a poit € S strategy for representing the partitioned region.

and a positive integek. The k-NN search finds the nearekt In the current vector approximation approach including the

neighbors ofg with respect_ to a distance functigh- ||. The \x fie and the LPC-file, there is an implicit assumption that it
output se) consists of: points from the database such that g ery ynjikely that several points lie in the same cell. Actually,

the vector approximation approach benefits from sparse-
nessof the high-dimensional data space as opposed to the par-

A. Motivation

Vaec Oandvbe DB — O |lg—a| < |lg—b].

The actual problem in image database applications is howi}t(l)onlng or clustering-based approach (i.e., the traditional in-

process such queries so that the nedresiects can be returned exing methods) when several data points are assumed not to

o . . . Lall into the same cell. However, if the data points are highly
within the desired response time. Therefore, our focus is t R L . .
clustered as in image datasets, the probability that a certain cell

includes several points increases, and therefore those vectors

Manuscript received April 21, 2001; revised February 26, 2002. This Worflﬁay use the same approximation. This means that the discrimi-
was supported by the University Fundamental Research Program of Ministr

of Information and Communication in the Republic of Korea under Grarﬂ‘yit(_)ry power ofthe apprOX|mat|0n d_ecreases and thus less elim-
2001-116-3. The associate editor coordinating the review of this paper df@ition of candidates is performed in each phase ofitiNN

approving it for publication was Dr. Sankar Basu. search, and ultimately more disk accesses are required during
G.-H. Cha is with the Department of Multimedia Science, Sookmyun h

Women’s University, Seoul 140-742, South Korea (e-mail: ghcha@soo 1€ ;earc : o .

myung.ac.kr). Figs. 1 and 2 show the vector selectivity comparison between

C.-W. Chung is with the Department of Computer Science, Korea Advancﬁﬁndom and real image datasets during the first filtering and the
Institute of Science and Technology, Taejon 305-701, South Korea (e-maill:

chungcw@islab. kaist.ac.kr). Second refinement phases of &N search in the vector ap-
Publisher Item Identifier S 1520-9210(02)04857-5. proximation approach, respectively. TWextor selectivitys de-

1520-9210/02$17.00 © 2002 IEEE

236 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 2, JUNE 2002

w

1
py
(=]

2.3831

8387

0.5097

% of remaining vectors after filtering
% of remaining vectors after filtering

: 0.1
0
random real image real image random real image real image
(random (cluster (random (random (cluster (random
queries) queries) queries) queries) queries) queries)
dataset (query type) dataset (query type)

(@) (b)

Fig. 1. Selectivity comparison between random and real image datasets in the filtering phase. (a) LPC-file. (b) VA-file.

05t 0.4579
- 10 Z.2767
o 04
[3
F 2
7]
2 03 s 1
] 2
3 2
> 02 8
&0 > 0.0949
Gy
° 5 0.1 7
=4
0.1 &
0 = 0.01 ' '
random realimage realimage random realimage real image
(cluster (random (cluster (random
queries) queries) queries) queries)
dataset (query type) dataset (query type)

(@) (b)

Fig. 2. Selectivity comparison between random and real image datasets in the refinement phase. (a) LPC-file. (b) VA-file.

fined as the ratio of the number of vectors visited to the totglieries were posed, and their results were averaged. In the case
number of vectors in a dataset. The vector selectivity is a goofithe LPC-file in Fig. 1(a), the experimental result shows that,
performance estimator because the performance oktN&l after the first phase filtering, the number of remaining vectors
search depends largely on the number of disk blocks visited donda real image dataset is 2.66 to 4.68 times more than that for a
it is affected by the vector selectivity. The selectivity of the firstandom dataset. Similarly, in the case of the VA-file in Fig. 1(b),
search phase of the vector approximation approach meansdfter the first phase filtering, the number of remaining vectors
ratio of candidates not eliminated after the first filtering phader a real image dataset is 2.34 to 16.57 times more than that for
to the total number of vectors. The selectivity of the secoradlrandom dataset. These mean that, compared with the random
phase is the ratio of real vectors visited during the second phasgaset, for the clustered dataset, the filtering power of the cur-
to the total number of vectors. In Fig. 1, theaxis represents rent vector approximation approach decreases drastically.

the datasets and query types used in our experiment and thEor the second refinement phase, in the case of the LPC-file
y-axis represents the percentage of remaining vectors after #seshown in Fig. 2, the number of real vectors visited for a real
first filtering phase (i.e., the vector selectivity of the first phase)mage dataset is 2.43 to 6.49 times more than that for a random
The cluster query means that the query vector is selected frdataset. In the VA-file, the number of real vectors visited for a
vectors in the real image dataset itself, and the random queeal image dataset is 2.02 to 76.67 times more than that for a
means that the query vector is selected randomly. In the eandom dataset. These mean that the I/O cost occurred during
periment for the vector selectivity comparison, we used 256-die £-NN search for the clustered dataset is much higher than
mensional image and random datasets. For the random dataket, for the random dataset.

1000 random 10-NN queries were posed, and for the real imagd his performance degeneration for the clustered dataset is a
dataset, 1000 random 10-NN queries and 1000 cluster 10-Kbdimmon problem of the current vector approximation approach.

CHA AND CHUNG: THE GC-TREE: A HIGH-DIMENSIONAL INDEX STRUCTURE 237

TABLE | ically constructs an index that reflects the partition hierarchy.
SUMMARY OF SYMBOLS AND DEFINITIONS We provide algorithms fok-NN search as well as for the index
“Symbols Defnitions c.ons.,t.ruction._ An empirical evaluation shows that the GC—trge
- - significantly improves the performance of the vector approxi-
d number of dimensions mation techniques for the real image database.
N number of data points in a database The organization of the paper is as follows. We begin by dis-
k number of nearest neighbors to find cussing the related work presented in the literature in Section Il
p database point Sections Ill and IV are the heart of the paper where we present
4 query point) _ the GC-tree and its algorithms. We present a performance evalu-
¢ cell vector representing the region ation in Section V, and conclude with summary and future work
. inside which p lies in Section VI.
k-NNst distance between ¢ and the k-th nearest
neighbor of ¢
k-NNPhere sphere with center ¢ and radius k-NN"*' Il RELATED WORK

In the recent literature, a variety of indexing methods suitable
for high-dimensional data spaces have been proposed. Most of
The reason for the performance degeneration is because bitslgevork was motivated by the limitation of the state-of-the-art
uniformly allocated to each partitioned cell while the data distriree-structured indexing methods. We classify them into six cat-
bution is not uniform depending on the cells and the density gfjories:
each cell varies greatly. The way to overcome this problemis to 1) dimensionality reduction (DR) approach [8], [13], [17];

adaptively assign bits to each cell according to the data statisticsz) approximate nearest neighbor (ANN) approach [1], [12]
of the cell. This is one of the design objectives of the GC-tree. [15]; ’ ’

Another problem of all vector approximation techniques is 3) multiple space-filling curves approach [18], [22]:

that they have to sequentially read the whole approximation 4) vector approximation (VA) approach [6], [23]:
file. To overcome this limitation of the vector approximation 5) hybrid approach [3]; Y

approach and to take advantage of the multidimensional index
structure, we combine their advantages. In order to achieve thi:sl_he DR approach first condenses most of information in a
goal, we patrtition the data space based ondbesityof sub- d

. taset to a few dimensions by applying the singular value de-
spaces and construct an index structure that reflects the pacrg}hposition (SVD), the discrete cosine transform (DCT), or the

tion hierarchy of the data space. Compared with the vector g %crete wavelet transform (DWT). The data in the few con-

proximation techniques, it can considerably reduce the numiy ecrﬁsed dimensions are then indexed using a multidimensional

of disk accesses during the search since it harrows the seaF]c L structure. While the DR aporoach provides a solution to

space based on the index instead of scanning the whole appllﬂx- X structure. vl . PP provi Ut

N the dimensionality curse, it has several drawbacks [6]: 1) loss

imation file. S . .

of precision of the query result; 2) static method; and 3) dimen-

sionality is still high even after reduction. However, the DR ap-

_ _ . proachis one of the solutions to improve the search performance
The testbed for our exploration to theNN problemis IBM'S i, high-dimensional space if the loss of information is accept-

query by image content (QBIC) system [9], [20]. We focus 08y within a certain range.

the specific problem of retrieving images via a 256-dimensional The idea behind the ANN approach is to retrigvéANNs

color histogram, using a QBIC’s special-purpose color-siMfzgter within a given error boundinstead of retrieving exadt

larity measure. In this paper, we assume that the domain spRG&s. Given a query poing and a distance errar> 0, a point

is thed-dimensional Euclidean space where the dissimilarity'pis a (I + ¢)-ANN of ¢ such that for any other database point
measured by the Euclidean distance weighted by the mAtrixp/ lg—p|l < (1+)lg—#|.

whereA is a symmetric color similarity matrix [20]. In addition,” e multiple space-filling curves approach orders dhdi-
users are assumed to posk-BIN query using a sample imagemensional space in many ways, with a set of space-filling curves

6) nearest neighbor (NN) cell approach [4].

B. Testbed, Assumptions, and Notations

stored in the database. __ suchas Hilbert curves, each constituting a mapping fRfm-—
Table | gives the summary of symbols and their definitiong: This mapping gives a linear ordering of all points in the data
used in the paper. set. Therefore, when a query point is mapped to the space-filling

curve, one can perform a range search for nearby points along
the curve to find near neighbors in the data space. However,
We present a dynamic index structure, the GC-tree, that codue to the nature of thB¢ — R! mapping, some near neigh-
bines the capability of the vector approximation technique thlabrs of the query point may be mapped far apart along a single
accesses only a small fraction of real vectors with the advaturve. To make sure that these points are not overlooked, mul-
tage of the multidimensional index structure that prunes mdgile space-filling curves are used, based on different mappings
of the search space and constructs the index dynamically. Ttem B¢ — R*. Although this approach improves the perfor-
GC-tree partitions the data space based on the analysis of ritence of thek-NN search, it is possible that some near-neigh-
data distribution and identifies subspaces with high density.dbrs may be omitted during the search. To improve the chances
focuses the partitioning on those dense subspaces and dynafiinding all £ NNs, more space-filling curves have to be used

C. Contribution of the Paper

238 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 2, JUNE 2002

cell ¢ for vector p

\ data space \
11
P .
10 ly , 4
P
0
01 r L9
00
O
00 01 10 11

(@) (b)

Fig. 3. Vectorp and its approximation in the LPC-file. (a) Two-dimensional space. (b) Three-dimensional space.

or a larger neighborhood on each curve has to be scanned. Howrhe second step is to represent the vegptasing the polar
ever, they diminish the benefits of the approximate approachordinates, #) within the cellc in whichp lies. As illustrated
since both of these methods increase the size of the candidatEig. 3(a), the local origir) of each cell is determined as the
set. lower left corner of the cell. The distaneeof the polar coor-
The VA approach tries to overcome the dimensionality cursknate is computed by the distance between the local ofigin
by filtering the feature vectors so that only a small fraction aind the vectop. The angle is computed by the angle between
them must be visited during the search. The VA-file [23] and thtbe vectorp and the diagonal from the local origin to the op-
LPC-file [6] are classified into this category. We discuss the VAosite corner. As a result of this approximation, the veptir
approach somewhat in detail because the GC-tree combines thpresented by the triplat= {c, r, 8}, wherec, », andé denote,
approach with the multidimensional index structure. respectively, the approximation cell, the distance, and the angle
The idea of the VA approach starts from the observati@f p based on the local origi®.
that existing multidimensional structures cannot defeat theOne of the drawbacks of the VA techniques is that they have to
linear scan in high dimensions. Therefore the VA approachad the whole approximation file for filtering. This is inevitable
constructs the approximation file for the original data, anfrthe VA approach to filter the real data. Thus, the performance
during the search, it sequentially reads the relatively smallefrthe VA approach largely depends on the size of the approx-
approximation file instead of the data file and tries to filter thenation file and the filtering capability of the approximation.
original vectors so that only a small fraction of them must b®ne of the motivations of the design of the GC-tree is to reduce
read. the amount of approximations that have to be read during the
The VA-file divides the data space int8 Bectangular cells, search by employing the index structure as well as to maintain
allocates a unique bit-string of lengthto each cell, and ap- the index structure dynamically.
proximates the data points that fall into a cell by that bit-string. The design objective of the 1Q-tree [3] is similar to that of the
The VA-file itself is simply an array of these bit-string approxGC-tree in the sense that it employs the hybrid approach that
imations of data points. The performance of the VA approadombines the VA approach and the tree-based indexing. The
heavily depends on the quality of the approximation since th@-tree has a three-level structure: The first level is a flat direc-
filtering is performed based on the approximation. tory consisting of minimum bounding rectangles, the second
The LPC-file aims at improving the filtering power of thelevel contains the approximations and the third level contains
vector approximation with a minimum amount of additionaleal points. Although the design objective of the 1Q-tree is
information. It enhances the filtering power of the approximasimilar to that of the GC-tree, its approach is very different
tion by adding polar coordinate information of the vector trom that of the GC-tree. While the GC-tree partitions a space
the approximation. The LPC-file partitions the vector spadato 2 cells at a time to identify clusters and outliers based
into hyper-rectangular cells and approximates vectors using the the local density of subspaces, the 1Q-tree bisectsda
polar coordinateson the partitioned local cells. mensional space using d { 1)-dimensional hyper-plane. In
In the LPC-file, the approximatioa for a vectorp is gener- addition, while the GC-tree maintains the hierarchical direc-
ated as follows. The first step is to assign the same numbertofy corresponding to the partition hierarchy, the 1Q-tree uses
bits b to each dimension and to divide the whole data space irddlat directory.
24 cells. Thus the lengths of sides of a cell are the same. TheThe NN-cell approach [4] precomputes the result of any
cell is simply represented by the concatenation of the bit pat-NN search which corresponds to a computation of the
terns for each dimension in turn. Fig. 3(a) shows an example\faronoi cell of each data point, and stores the Voronoi cells
a two-dimensional (2-D) space: the celis represented by the in an index tree. Then the-NN search corresponds to a point
sequence of bits (01, 10) whede= 2 andbd = 2. query on the index tree.

CHA AND CHUNG: THE GC-TREE: A HIGH-DIMENSIONAL INDEX STRUCTURE 239

lll. THE GC-TREE " 5 vells For ouliers
i

The research challenge which has led to the design of the ; g _:'_. P L
GC-tree is to combine the capability of the vector approxima- R e 1 T
tion approach that accesses only a small fraction of real vectors T v ~_—!_—.- -
with the advantage of the multidimensional index structure that i R N (P
prunes most of the search space and constructs the index dy- ml ?'_
namically. In order to achieve this goal, we partition the data P N] cluster in bevel 3
space based on the analysis of the dataset and construct the hi- L)

erarchical index that reflects the space partition hierarchy.

A. Density-Based Space Partitioning

-
e K »
The GC-tree employs density-basedpproach to partition :' F_1l: +
the data space and to determine the number of bits to represent | 3 | 2 i
——l | & |
E iI

a cell vector for a partition. To approximate the density of the
data points, the GC-tree partitions the data space into nonover-
lapping hyper-squareells and finds the points that lie inside
each cell of the partition. This is accomplished by partitionin
every dimension into the same number of equal length intervéﬁ%
at a time. This means that every cell generated from the parti-
tion of a space has the same volume, and therefore the number
of points inside a cell can be used to approximate the densitysdfigle subspace partition, and concentrate the partitioning on
the cell. the clusters to reduce the possibility that clusters are intersected
In a static database, tidensityof a cell can be defined as thepy the search spherke-NNsPtere | the number of outliers
fraction of data points in the cell to the total data points. Hovwgenerated from the partition exceeds the page capacity, the
ever, for a dynamic database environment, and especially, in tb€-tree allocates more pages for the outliers and simply links
case of constructing a database from scratch, it is difficult to efem. It makes multiple pages a singlgtual page This is
timate thedensity thresholdhat identifies the dense and sparspased on the observation that the volume covered by the outliers
cells because the density is relatively determined with resp&gko large that it may not be pruned in the search.
to the total data points. Therefore, in the GC-tree, we define thelt is well known that for low-dimensional indexes, it is bene-
densityof a cell to be the proportion of data points in the cell téicial to partition the data space hslancedas possible. How-
disk page capacity when we divide a space irft@élls by bi- ever, in high-dimensional spaces, the balanced partitioning re-
nary partitioning. A (sub)space in the data space correspondsifts in large bounding rectangles for the partitions. When we
anodein the GC-tree and is physically mapped to a sirdisk apply balanced partitioning on a uniformly distributed dataset,
page There is a numbep that identifies the maximum numberthe data space cannot be split in each dimension. For example,
of objects that can be accommodated in a disk page. That isin a 256-dimensoinal data space, a split in each dimension re-
represents thpage capacityr thefanoutof a page. When the sults in a 2°¢ partitions (or disk pages). Therefore, the data
number of objects inserted into a page exceBdshe page is space is usually split once in a numbé#rof dimensions. In
generally split into two. We call a cetl denséf the density of the remaining ¢ — d’) dimensions it has not been split and
cis greater than or equal to a certaensity threshold. Oth- the bounding rectangles include almost the whole data space in
erwise, itis callecsparse We call a dense cell@usterand call these dimensions. Even for the nonuniformly distributed (e.g.,
the points that lie inside sparse cedistliers If we determine clustered) dataset, the bounding rectangles are likely to be large
the density threshold to be larger than a half of the page cabecause they still try to accommodate outliers and the outliers
pacity, at most one cluster can be generated when we partitigfually lie far apart. On the contrary, the GC-tree excludes the
a space due to the insertion of an object. outliers in forming the bounding regions to reduce the size of
The basic idea of the density-based partitioning is: 1) to idethe bounding regions.
tify clusters and outliers when we partition a space; 2) to focusFig. 4 depicts the partitions resulted from the density-based
the partitioning on the subspaces of the clusters found becapagtitioning of the GC-tree and the traditional balanced parti-
the subspaces covered by the outliers are unlikely to be prungshing in a 2-D example. In the GC-tree, a subspace is parti-
in the search; and 3) to deal together with all outliers found tfoned into 2’ cells at a time by splitting each dimension of the
the partitioning of a certain space. subspace in its center. In high dimensions, in fact, the vast ma-
It is difficult to bind the outliers within a small region sincejority of cells of the partitioned 2cells must be empty sincé' 2
they are widely spread over the whole subspace. Thus it is vésymuch larger than the number of objects in a database when
difficult to prune the outliers collectively during the search is large, say over 100. Thus the outliers are far apart one an-
because the largk-N N°Phere js ikely to intersect the large other and the size of the cell that includes clustered objects is
bounding region in which the outliers lie. Therefore, we collectlatively small. We say that the entire data space is in the parti-
in a single node of the GC-tree all outliers generated fromtian level 0, the cells partitioned from it is in the partition level

1)

4. Partitioning strategies. (a) GC-tree partitioning. (b) Traditional par-
ning.

240 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 2, JUNE 2002

1, and soon. In Fig. 4, we assume that the page capacity is 4, and
if a cell contains at least three points we call it the cluster, oth-
erwise the points are called the outliers. Fig. 4(a) shows the par- .
titions resulted from three times of partitioning in the GC-tree.
We have fifteen points. After the first partitioning of the entire a—
space, the points 1, 2, 3, 4, 5, and 6 are identified as outliers and
other points are included in a cluster. Thus we store the six points .
in a single virtual page and we partition again the cluster since
the number of points in the cluster exceeds the page capacity.
In the second partitioning, points 7, 8, and 9 are identified as
outliers, and the points 10, 11, and 12 are identified as outliers
in the third partition. In all, we have one cluster page in level 3,
three outlier pages in partition levels 2, 1, and 0. Fig. 4(b) shows
the result from the traditional partitioning. The query point is
denoted by %” and the query spherke-NN®Phere to find five
N\INs is depicted by the circle around'” As depicted, the
large search sphefe NVP<*¢ may intersect most of the par-
titions if we partition the space in a balanced way since the size PRSI B =
of the bounding rectangles are large in high dimensions. How- -1 * * 1A
ever, in the density-based partitioning of the GC-tree, not only
the small bounding region of a cluster may avoid being inter-
sected byk-N NsPhere put also large number of outliers on the A e —
same partition level can be read by a single read of virtual disk)
page. These are the key performance improvement achieved by 58
the GC-tree. The physical adjancy of the pages chained to form f

a large virtual page on the disk is implementation dependent cluster
and is not discussed in this paper. When going to higher dimen-

sions, the size of bounding rectangles for the traditional parti- / \
tioning method grows far larger because the possibility to split @
the data space in each dimension is reduced. On the other hand,)

for the density-based partitioning, the relative size of bounding

rectangles to the whole data space is reduced because we split ‘

the space as many as the number of dimensions at a time.

In a dynamic environment, the GC-tree partitions the sub-
space corresponding to a cluster or a sparse cell at the center
of every dimension when the corresponding disk page overflows
due to a subsequentinsertion. Fig. 5 shows how a 2-D data space
is partitioned and thus the corresponding GC-tree grows upon
repeated insertion. Initially, there is a single space or cell, which
is the whole data space. Conceptually, a number of points are in-
serted into this cell and there exists a disk page corresponding R
to this cell. In Fig. 5(a), the data space has already been divided e« * IC
into four cells. Let us assume that the density thresha$d3/4,
that is, the leaf node fanout is four, a cluster has to contain at
least three points and the points lying in the cell that has less
than three points are treated as outliers. Fig. 5(a) is the initial
state where the database contains four points in the entire data ©0,0) =) o
space. There are one root node and one leaf node. The leaf node
contains the LPC approximations for four points (outliers) that
lie inside the sparse cells. The cell vector of the root node de-
notes the whole data space. The symbol “~” denotes the entire ©
domain for a dimension in a given cell. Another point is added
and a cluster is generated in Fig. 5(b). In Fig. 5(b), a new HOQ@. 5. Space partitioning and dynamic growth of the GC-tree. (a) Initial state.
B denotes a cluster whose cell vector is (0, 0) and outliers gbgThe fifth point is added. (c) After the partiotin of cell B in (b).
redistributed in the node A. More points are added and we parti-
tion the overflowing space int*Zells and make a new cluster
C. New cluster node C is made into a lower level node for thaf the nonleaf node is 2. Fig. 5(c) shows the state of the GC-tree
partitioning node. In this example, we assumed that the fanaiter the partitioning of the space of cell B.

W/

0.0 -

cluster

CHA AND CHUNG: THE GC-TREE: A HIGH-DIMENSIONAL INDEX STRUCTURE

241

number of pointer cell pointer cell pointer pointer to
elements to parent vector 1 to child 1 vector i to child i overtlow page
Fig. 6. Structure of a nonleaf node.
number of pointer LPC pointer to LPC, pointer to pointer to
1 . J . .
elements to parent object | object j overflow page

Fig. 7. Structure of a leaf node.

B. Index Structure 2-dimensional data space

The GC-tree is a dynamic index organization that consists of
two components: directoryanddata nodesA directory is com-
posed of nonleaf and leaf nodes. We use the t#irettory node
to represent the nonleaf node or the leaf node. The directory
nodes are employed for indexing and the data node is used for
storing real objects. Each node corresponds to a region (cell) in
the data space and is mapped to a disk page. In the GC-tree, ther¢10 C1
are two types of region corresponding dlustersand outlier
regions The region corresponding to the cluster is a hyper-rec- T0g]®
tangle with the sides of equal length. The outlier region is the re- 11
maining region after removing the regions for clusters from the 01 °
original region. However, the cell vector for the outlier region .
is represented by that of the original region. We use the terms
cluster nodeand theoutlier nodefor the node corresponding to
the cluster and for the node for outliers, respectively. 00

The entry of the leaf node consists of the LPC approximation
(r, 8} of the real object and the pointer to the data node in which
the real object is stored. The entry in the nonleaf node contains 00 01 10 11
thecell vectorcorresponding to the region covered by the lower
level node and the pointer to the lower level node. Figs. 6 and 7
show the nonleaf and leaf node structures of the GC-tree,; LPC
in the leaf node structure represents the LPCs of an olpject

Example 1:To illustrate the correspondence between the
space partition hierarchy and the index tree hierarchy of the
GC-tree, consider a 2-D GC-tree with a four-level index in
Figs. 8 and 9. In Fig. 8, the 2-D data space has already bee
partitioned into 4x 4 cells by using 2 bits per dimension. The @ 1)|(' ')| (00 01)| (0 0
density threshold- is assumed to b&/ P, whereP is the leaf
node fanoutRootdirectory node has three entries. The second

directory entry with the cell vector (00, 11) iRoot points C5 @ @

8 9 10 11
to the node C2 in Fig. 9 and represents the cell C2 in Fig. 8
which, in turn, forms a finer partition into a cluster C4 and an
outlier region. Cell C4 in Fig. 8 also forms a finer partition
into a cluster C5 and an outlier region, and their correspondinc
nodes exist in the GC-tree in Fig. 9. Note that data pomts
are approximated bye;,r,8). The LPC information(r, 6 v

represented in the leaf node and the cell vectis represented DATA NODES
by the index entries of the nonleaf parent of the leaf node.
The cell vector in the index entry of the higher node is used
as a common prefix of the cell vectors in the lower node. For
example, the cell vector (010, 011) of C3 can be obtained bye fanout of the nonleaf node, and thus reduces the number
prefixing the cell vector (01, 01) of the higher node index entrgf disk accesses. Together with the density-based nonuniform
to its own cell vector (0, 1). By using this common prefix tgartitioning strategy, it is another advantage of the GC-tree for
represent the lower node cell vector, the GC-tree can increasducing disk I/O cost.

o7

11 .': e3

el

Fig. 8. Nonuniform partition of the data space.

Root

01,00{ (00,11

c1 / c2 g

]

Fig. 9. Index for the partition of Fig. 8.

242 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 2, JUNE 2002

Algorithm Insert(Node N, Object O) Algorithm SplitLeaf(Node N, Object O)
/{ Insert object O into the GC-tree rooted at N. {
{ 1. Allocate a new node N .
1.If Nis NULL { 2. Partition the subspace covered by the overflowing node
// This is the initial state. N based on the space partition strategy of the GC-tree,
1.1. Create a leaf node with a directory entry (, 8, Ptr), and identify the cluster and the outliers.
where (r, 0) is the local polar coordinates of the input 3. Ifacluster is found {
object O and Ptr points to the data node of the input 3.1. Move the outliers to the node N and move the clus-
object. The local cell vector Cell in which the input ter points to node N'.
object lies is stored in the parent nonleaf node and is 3.2. Construct directory entries £ and E for nodes N
used to guide the traversal of the GC-tree. and N, respectively.
1.2. Create a nonleaf node with an index entry (Cell, Ptr), 3.3. Let N, be the parent node of the node N.
where Cell represents the cell vector and each com- 3.4. If N, is not full, store entries £ and £ in N,.
ponent of it is 11, and P#r points to a leaf node con- 3.5. Else Invoke SplitNonleaf(N,, E, E).
taining the local polar coordinates of the object O. ¥
1.3. Let Root point to the above nonleaf node. 4. Else {
3 4.1. Insert the object O into node N .
2.Else { 4.2. Chain the node N to node N .
2.1. Perform an exact-match query on Feature Vector of ¥
the input object O to choose a leaf node L in which }
to place the input object.
2.2. If node L is not full, Add the object O to L. Fig. 11. Algorithm SplitLeaf.
2.3. Else invoke SplitLeaf(L, 0).
)) Algorithm SplitNonleaf(Node N, Entry E, Entry E)
{

1. Allocate a new node N .

Fig. 10. Algorithm Insert. . . .
9 9 2. Let E, be the directory entry in N that points to the over-

flowed node.
IV. ALGORITHMS 3. If E, poinis to the cluster node {
. 3.1.AddEand E to N.
This section describes the algorithms for building the GC-tree 3.2. Adjust £, so that it points to N .
and searching NNs on the GC-tree. 3.2. Write nodes Nand N .
i
A. Insertion 4. Else { // E, points to the outlier node. //
- 4.1.Replace E, with E .
We limit our discussion to t_hg insertion of_a single object to 42.Insert E to N,
the level of leaf node. Generalizing this algorithm for the case of 4.3.Chain the node N to node N .
more than one object and to the level of data node can be done in 4.4. Write nodes V and V.
an obvious manner. In addition, we omit the deletion algorithm }

since it is very similar to the insertion algorithm unless deletion
causes an underflow. In this case, the remaining branches of the
node are deleted and reinserted.

We define some parameters that are used as program variables o)
in describing the algorithm&ootspecifies the pointer to the that: 1) the volu_me covered by the outliers is so large that it may
root level directory node of the GC-trefeeature VectoandLPC Ot be pruned in the search, and thus the GC-tree reads all out-
are the feature vector and the LPCs of the object to be insertdgfS on the same cell at a time; and 2) the number of clusters
respectivelyCell is the cell vector representing the cell aRer " @ cell is may be large that all nonleaf entries pointing them

points to the lower level directory node corresponding to the c&fNNOt not be accommodated in a nonleaf node, but the GC-tree
or to the data node. needs to read them all at a time because we have to examine all

The algorithminsert in Fig. 10 descends the GC-tree to loandidates under a node.

cate the suitable leaf node for accommodating a new object, pos! @ cluster nodeV overflows due to the insertion of a cluster

sibly causing a split if the leaf is full. Unlike any other dynami@int (i-., the input point that generates a cluster after the

index tree, the GC-tree does not grow in a bottom-up fashidiPde partition), the GC-tree allocates a new nodeidentifies

The overflow of a nodéV is managed by allocating a new nod(’;lu_:ster p0|r/1ts and outliers, d|str|t_)utes outhergi\t’cand clust(/ar

N’ at the same or lower level o¥ , identifying clusters and out- POINts to’, and promotes the directory entries fsrand vV

liers among entries, distributing entries to the two nodes or orlfyy (€ parent node.

the input object to the newly allocated na¥é, and posting di-

rectory entries to the parent node if necessary. The node spiit*-NN Search

algorithms can be found in Figs. 11 and 12. The k-NN search algorithm in Figs. 14 retrievé&sNNs of
When a node overflows due to the insertion of an outlier poiat query vectorg. It consists of two stages as in the VA ap-

or a nonleaf entry posted (promoted) from the outlier nodproach. However, unlike the VA approach that linearly scans

the GC-tree allocates a new nodg, inserts the entry t&V/, the whole approximation file, the GC-tree can use a branch-and-

and simply linksN’ to the overflowing node. It makes multiplebound technique similar to the one designed for the R-tree [21].

nodes a single virtual node. This is based on the observatibime GC-tree utilizes three global structures: two priority queues

Fig. 12. Algorithm SplitNonleaf.

CHA AND CHUNG: THE GC-TREE: A HIGH-DIMENSIONAL INDEX STRUCTURE

bl_listandcand_list and a-element arraynn. Theknn main-

tains thek NNs processed to that point and, at the end of exe-
cution, contains the final result. TH#_list contains branches

of nonleaf nodes with the minimum and maximum distances
to those from the query point. Tleand_listmaintains a set of
candidates, i.e., qualifying objects. Thie listand thecand_list

are implemented with ain heap[11]. Also in thecand_list

the lower boundd,,;;, and the upper bound,,, on the dis-
tance of each candidate to the query vector are kept. Since the
real distance between the query vector and a point represented
by approximation cannot be smaller than the minimum distance
between the query vector and the approximation, the real dis-
tance is lower-bounded b¥.,;,,. Similarly, the real distance is
upper-bounded by, Since it cannot be larger than the max-
imum distance between the query vector and the approximation.
If an approximation is encountered such thatditg, exceeds

the k-th smallest upper bound found so far, the corresponding

243

cellcforp

) dmax dmin

B

vector can be eliminated safely sincbetter candidates alreadyFig- 13. Lower boundl.;, and upper bounds.. for a leaf node in a three-

exist.

The routing information used in the nonleaf node and the leaf
node of the GC-tree is different: the cell vector and LPC are used
for the nonleaf node and the leaf node, respectively. Therefore,
the distance bounds,,;, andd,,..,. are also different between
them. The boundd,,;;, andd,,.x for the nonleaf node are de-
termined as follows:

d G —mrp + 1] 1 <7gi
d12nin = Z ZZQ where I, = 0 Tpi = Tqi
i=1 mrpi + 1 — ¢ rpi > Tqi
d
Dax = D45
i=1
4 — m[rp] Tpi < Tqi
where u; = ¢ max(g — m[rp], m[rp +1] — ¢ T =74
m[Tpi + 1] — 4 Tpi > Tqi

whereg; is the component af in i-th dimension and lies within
the cellry;, r,; is a cell into which the database poptalls
in dimensioni, andm[j] is thej-th mark in a given dimension,
i.e., the starting position of thgth partition in the dimension.
For the leaf nodeq,,,;, andd,,,,, are computed as follows:

i =lpI” + la]” — 2lp||g| cos |61 — 6]

min

47 o =IPI* + lal” — 2|p||q| cos(6: + 62)

wheref; (= L AOD) is the angle between the vecand the
diagonal of the cell in whiclp lies andf:(= /BOD) is the
angle between the vectgiand the diagonal of the cell (as illus-
trated in Fig. 13). In other wordd,,,;,, andd,,,.. are determined
when the angle)(0° < ¢ < 180°) between two vectorg and
¢ is minimum and maximum, respectively. The minimum angle
and the maximum angle between two vecipendg are deter-
mined by|6; — 62| and @ + 62), respectively

In the first search stage, the algorithkn NN_Searchin
Fig. 15 examines the top-level branches of the GC-tree, com-
putesd.,;, andd,,., for each branch, and traverses the most
promosing branch with the depth first order. At each stage of
traversal, the order of search is determined by the increasing

dimensional data space.

Algorithm k_NN_Query(Query ¢, Integer k)

{

/I MAX: a value that exceeds the possible largest distance

between any two points in a database //

/I NN: nearest neighbor //

/1 k-NN: k-th nearest neighbor //

/1 oid(x): object identifier of x //

/I dist(x): distance between x and ¢ //

I @ik %): diy between x and ¢ //

// bl_list: min heap to maintain the branch list //

/l cand_list: min heap to maintain the candidate set //

/1 bl: a variable that represents an element in bl_list;

it consists of object no, d,;, and d... //

/l knn: k-element array with the element [oid(x), dist(x)] //

/l The insertion into knn is an ordered insertion, i.c., the new
element x is inserted into the correct position in knn with
respect to dist(x). //

. for i:=0 tokdo {
knnlil.dist .= MAX.

H
2. k-NN“¥ == MAX.
3. bl.node_no := Root,
// Root is the number of root node of the GC-tree

// stage 1
4. do {
next_node := ReadNodeFromGCtree(bl.node_no);
k_NN_Search(next_node, g, k);
} while (GetFromBranchList(&bl) # NULL);

// stage 2
5.for i:=0tokdo{
knnlil.dist .= MAX;

6. while (get the candidate O from cand_list and
din(0) < k-NN") do {
6.1. Read original vector p corresponding to O.
6.2. If (dist (p) < k-NN**"y {
6.2.1. Insert the NN [0id(O), dist (p)] into knn.
6.2.2. k-NN"':= dist(k-NN in knn).
}

Fig. 14. Algorithmk_NN_Query.

244

Algorithm k_NN_Search(Node N, Query ¢, Integer k)
{
1. If N is a leaf node {
For every entry N;in N {
1.1. Compute d,,;, and d,,,, between N; and the query
object q.
1.2, If (dpin < k-NN™) {
1.2.1. Insert the [0id(N;), dypins da] into cand_list.
1.2.2. 1 (A < k-NN {
Insert the NN [0id(N)), d,q] into knn.
k-NN""" .= dist(k-NN in knn).
}
}
}

}
2. Else {

For every entry N; in N {
2.1. Compute d,;, and d,,, between N; and the query
object q.
2.2. Insert [N}, d,,;,] into the min-heap bl_list.
2.3, If (e < k-NNT* {
Insert the NN |ptr(N}), dy.] into knn.
k-NN“* = dist(k-NN in knn).
}
¥
}
}

Fig. 15. Algorithmk_NN_Search

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 2, JUNE 2002

effect on the system performance. For the uniformly distributed
dataset, in fact, all leaf nodes are linked in a single virtual node.
In other words, the GC-tree degenerates to the LPC-file.

The insertion cost consists of the cost to find a leaf node into
which to insert the input object and the cost to update the nodes
affected by the insertion. The cost to find the leaf node(gL +
|log s n])-m). The update cost to reflect the insertion is only one
disk page write if there is no page overflow. If the page overflow
occurs, the space partition to identify clusters and outliers is
required and the parent node is also updated. The CPU time to
perform the space partition {(3(P - [) whereP is the leaf node
fanout andl is the maximum partition level. corresponds to
the maximum number of bits to represent a subspace cell and is
16 in our implementation. In other words, the GC-tree identifies
clusters and outliers by iterating at woksimes for each object
in the overflowing node. The number of maximum page writes
is three (the writes of the overflowed node, the newly allocated
node, and the parent node). Therefore, the total cost for a single
object insertion is the 1/O cost 6¥((1+ [log; n|) -m +3) disk
accesses plus the CPU cost@fP - 1).

Thek-NN search algorithm of the GC-tree is the combination
of the branch-and-bound technique developed for the R-trees
and the method for the VA approach. TheNN search cost in
the GC-tree depends mainly on how many nodes are visited (or
pruned) in the first stage of the algorithm and how many real

order of dy,in. Since the pruning criterion of-NN search is gpjects are visited in the second stage of the algorithm. The
dynamic — the search radius is the distahe®’N** between number of nodes of the GC-tree visited during thBIN search

g and its current-th NN —the order in which nodes are visiteq;a pe estimated using the equation given by [16].

can affect the search performance. If objects are found whoserg find : NNs the algorithnk_NN_Queryrepeats, in the first
dinin €Xceedsk-NN“**, then we can safely eliminate theMgiage, the process of computing the distances to lower nodes

sincek better candidates have already been found. At the epdy current node and storing the branches to branch list, the
of the first stage, theand_listcontains a set of candidates.

candidates to the candidate set, @ZndNs found so far to the

In the second stage, as in the VA approach, it refines thgay 7., | et the total number of nodes in the GC-treerhe
candidate set by visiting real vectors themselves in increasm average number of branches in the branch ligt bad the
order ofd,,,;,,. In this stage, not all remaining candidates are Vi%fverage number of candidates in the candidate set bEhe
ited. Rather, this stage ends when an approximation is @ncOWfys of theknn, array isk. Thus the complexity of the first stage

tered whose lower bound exceeds or equalsktiie distance
k-NN®=t in the answer set, and the finalnearest vectors in

the answer set are the search result.

The functionReadNodeFromGCtreereads a disk page cor-
responding to the node number provided by the input argument. ;4 stage i9(
from the GC-tree. The functioBetFromBranchList fetches a
branch list element with the smallegt;,, entry from thebl_list

to the variablébl.

C. Cost Estimation of the Algorithms

of the algorithm isO(n - max(logm,log!)) + O(k) since the
time complexity of the insertion and deletion for mean-heap is
O(log s), wheres is the number of elements in the min-heap,
and the cost to insert an objectiten is O(k). The cost for the

m - (logm + k)).

V. PERFORMANCEEVALUATION

To demonstrate the practical effectiveness of the new
indexing method, we performed an extensive experimental

Now let us consider the costs for the insertion of an objegaluation of the GC-tree and compared it with the competitors:
and for thet-NN search in the GC-tree. The parameters for Cogife |Q-tree, the VA-file, the LPC-file, and the linear scan. Our

analysis are defined as followsis the total number of nodes in experiments have been computed under the Microsoft Windows
the GC-treef is the average fanout of the nonleaf node, and thi®00 on Intel Pentium 111 800 MHz processor with 256 MB of
average length of the chain of each noderisthat is,m nodes main memory.

are linked in a single virtual node. For the nonleaf node, the For our experiments, we used 13724 256-color images of
larger the number of clusters, the larger the valuewotind in - U.S. stamps and photos in IBM QBIC image database. Stamps
this case, the larger is favorable to the system performanceften come in series (e.g., states, birds, flowers) with common
because it may increase the opportunity of pruning nodesdolors and related designs, and the U.S. post office has often
the search. For the outlier node among leaf nodes, the largeed similar colors for many long-running stamps. As a result,
m means that there are lots of outliers, and this has a negatiuis real image dataset showshighly clustered distribution

CHA AND CHUNG: THE GC-TREE: A HIGH-DIMENSIONAL INDEX STRUCTURE 245

-tree—|

For a number of the experiments we performed, datasets con- L GC-tree
taining far more than 13 724 image vectors were required. To
obtain larger databases, the 13 724 256-dimensional data were

synthetically scaled up to 100 000 vectors, while retaining the . 80
original distribution of the image dataset. To generate a new & 60
image vectow, we randomly choose a vectarfrom the orig- 8
inal dataset and find a cel| which is either dense or sparse, in =8
which « lies. We then select two out of the vectors in the cell g 40
¢ and average them for each dimensipf < ¢ < 255. The E
averaged vector is stored as a new veetor %; 20
We also performed the experiments on the 256-dimensional =
random dataset which follows the random distribution and the 0

256-dimensional skewed dataset which follows the skewed dis- Real Zipf Random
tribution according to Zipf's law [20]. The Zipf distribution is

defined as follows, and the value piused is 0.5: Fig. 16. Pruning rate of directory nodes.

1
f(L) 3z i=1.2 N & first stage B second stage
-) -) 1t N

«

=

1
=1’

In all experiments, the Euclidean distance metfkic was
used, and the number of nearest neighbors to find was always
ten, i.e.,k = 10. The page size used in the experiment was
8 KB. One-thousand 10-NN queries were processed and the re-
sults were averaged. The query veajavas randomly selected
from the scaled-up image dataset. The density threshakkd
was 8/15. In other words, the fanout of a leaf node is 15 and we
regard a partitioned cell as a cluster if it contains at least eight GC-tree 1Q-tree LPC-file VA-file
points.

% of vectors remained

Fig. 17. \ector selectivity experiments (real image dataset).
A. Pruning Rate of Directory Nodes

Most tree-structured multidimensional indexing methods fail
to prune directory nodes during theNN search due to the large
volume of k-NN®Ptere and large bounding regions caused by
the inherent sparsity of the high-dimensional space. Therefore,
the pruning rate of directory nodes during &N search can
be a good indicator to estimate the performance of the index
structure. Fig. 16 shows the result of the experiments for the
directory node pruning rate. In the real image dataset, the direc-
tory node pruning rate of the GC-tree is more than 60%. From
this result the GC-tree can be expected to provide a good search
performance in the highly-clustered dataset such as real images. GC-tree 1Q-tree LPC-file VA-file
However, the experimental results in the Zipf and randomly dis-
tributed datasets shows that the pruning rate is not as good as in Fig. 18. Vector selectivity experiments (Zipf dataset).
the real datasets. For the random dataset, we could not prune any
node during the search. In all datasets, the GC-tree outperfoii total number of vectors. The vector selectivity is also a good
the 1Q-tree. The good pruning rate of the GC-tree comes fraf8timator to predict the search performance because it can esti-

the tight bounding regions that accommodate only the clustergg@te the number of disk accesses for the real vectors that must
points. In this experiment, the LPC-file and the VA-file were noge read.

B first stage Esecond stage

% of vectors remained

included since they read the whole approximation file. Figs. 17-19 show the results of the vector selectivity exper-
. iments in real image dataset, Zipf dataset, and random dataset,
B. Vector Selectivity respectively. The vertical axis denotes the vector selectivity in

In the £-NN search algorithm, the vector selectivity for thehe first and the second stages. As shown, the vector selectivity
first stage is the ratio of vector approximations remained withoaf the GC-tree is better than those of the I1Q-tree, the LPC-file,
being pruned after the first stage. The real vectors correspondargl the VA-file. This superiority comes from the fact that the
to the remained approximations have the potential of being &8C-tree adaptively partitions the data space to find subspaces
cessed in the second stage. The vector selectivity for the secuiiith high-density clusters and to assign relatively more bits to
stage is the ratio of vectors accessed during the second stagheon. Therefore, the discriminatory power of the approximation

246 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 2, JUNE 2002

B3 first stage B second stage real @ Zipf ORandom
3000

2500

2000

1500

% of vectors remained

1000

average elapsed time (ms)

GC-tree IQ-tree LPC-file VA-file 500

Fig. 19. \Vector selectivity experiments (random dataset).

GC-tree 1Q-tree LPC-file VA-file Scan

Ereal BZipf Brandom

Fig. 21. Comparison of the average elapsed time for 10-NN search.

approximation techniques (LPC-file and the VA-file) because
there is not much chance to prune the directory nodes.

D. Elapsed Time Experiments

To demonstrate the practical effectiveness of the GC-tree, we
performed a number of timing experiments. Fig. 21 shows the
elapsed time of the 10-NN search. T&eanin the horizontal

GC-tree 1Q-tree LPC-file VA-file axis is the linear scan that sequentially scans the real vectors

themselves, maintaining a ranked list of thé&IN vectors en-
Fig. 20. Disk access experiments. countered so far. While the 1/0 patterns generated by:thi\
search algorithm are inherently random, the linear scan can save

of the GC-tree increases. This means that the GC-tree preseR#h disk startup time to begin the read. A well-tuned linear
the advantage of the VA approach that accesses only a srigRn algorithm frequently outperforms more sophisticated in-
fraction of the real vectors. Although the focus of the GC-treeXxing methods which frequently generate the random disk ac-
is to apply the advantage of the hierarchical indexing techniqG@Ss. and thus the linear scan can be generally used as the yard-
to the VA approach, it also improves the vector selectivity sinddick for performance comparison in high dimensions.

it adaptively assigns the number of bits to the cell vector (i.e., Fi9. 21 shows that the GC-tree achieves a remarkable

number of disk accesses

the vector approximation). speed-up over the 1Q-tree, the VA techniques, and the linear
scan. Summarizing the results of our all experiments, we make
C. Number of Disk Accesses the observation that the GC-tree outperforms the competitors.

While the directory node pruning rate and the selectivity
experimental results can be used to estimate the search perfor-
mance, it does not fully reflect the search performance becausén this paper, we proposed a new dynamic index structure
it lacks the real cost of reading the approximation file or thealled the GC-tree for efficient similarity search in high-dimen-
index file. We computed the total number of disk accesses feional image databases. It is based on the density-based space
the k-NN search that include the accesses for real vectomartitioning and the index structure that reflects the partition
approximations, and an index (in the case of the GC-tree dnigrarchy. The performance evaluation demonstrated the effec-
the 1Q-tree). Fig. 20 shows the total number of disk accesgagness of our technique by comparing the state-of-the-art VA
actually performed to find ten NNs. For the real image datasétchniques and the 1Q-tree. The design goal of the GC-tree is
the number of disk accesses performed by the GC-tree is farcombine the advantages of the VA approach and the multi-
smaller that those of the 1Q-tree, the LPC-file and the VA-filajimensional index structure. However, two approaches are not
respectively. The performance improvement of the GC-treeadily combined because they have different design principles
comes from both of the density-based space partitioning aadd goals. Until now, the multidimensional index structures
the hierarchical index structure supporting the partitioningased on the conventional data partitioning have been defeated
strategy. This result shows that the hierarchical index structung the high dimensionality. However, the GC-tree achieves the
can be successfully employed for indexing high-dimensiongérformance improvement over both approaches by combining
data by applying elaborate partitioning strategy based on d#tem based on the careful data analysis.
analysis. For the Zipf and random datasets, the performancé\s a future study, we are considering the technique to control
of the GC-tree is somewhat better and similar to the vecttire density threshold adaptively based on the data distribution.

VI. CONCLUSION

CHA AND CHUNG: THE GC-TREE: A HIGH-DIMENSIONAL INDEX STRUCTURE 247

(1]

(2

(3]

(4]

(3]
(6]

(71

(8]

9]

[10]

[11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

REFERENCES [19] M. Miyahara and Y. Yoshida, “Mathematical transform of (R,G,B) color

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, ggga}[topl\rl)lug;gﬂég,?vigggolordata\?’ls. Commun. Image Proceseol.
“An optimal algorithm for approximate nearest neighbor searching in[20] W N’ibla.ck R Ba’arber W Equitz, M. Flickner, E. Glasman, D

fixed dimensions,J. ACM vol. 45, no. 6, pp. 891-923, Nov. 1998. . P it
- h . . Petkovic, P. Yanker, C. Faloutsos, and G. Taubin, “The QBIC project:
N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree: Querying images by content using color, texture, and shapeton.

An efficient and robust access method for points and rectangles,” in :
Proc. ACM SIGMOD ICMD 1990, pp. 322-331. fggl)l; Cpgng%tggge and Retrieval for Image and Video Databases I

S Berchtold, C. Bo?h”.‘v H V. Qagadish, H.-P. Kriegel, a_nd J. San_der[21] N. Roussopoulos, S. Kelly, and F. Vincent, “Nearest neighbor queries,”

Independent quantization: An index compression technique for high- in Proc. ACM SIGMOD ICMD 1995, pp. 71-79

giong(énsional data spacesfoc. IEEE Data Engineeringop. 577-588, [22] J. Shebherd, X. Zhu, and N. Megyiddo., “A fast indexing method for
. . . o multidimensional nearest neighbor search,Pioc. IS&T/SPIE Conf.

S. Berchtold, B. Ertl, D. A. Keim, H.-P. Kriegel, and T. Seidl, "Fast Storage and Retrieval for Image and Video Databases 3989, pp.

nearest neighbor search in high-dimensional spaemt. IEEE Data 350-355

Engineering pp. 209-218, 1998. [23] R.Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and perfor-

S. Berchtold, D. A. Keim, and H.-P. Kriegel, “The X-tree: An Index PR R .) ,,
. ; .' i ’ mance study for similarity-search methods in high-dimensional spaces,
structure for high-dimensional data,"Rroc. ICVLDB 1996, pp. 28-39. in Proc. ICVLDB 1998, pp. 194-205.

G.-H. Cha, X. Zhu, D. Petkovic, and C.-W. Chung, “An efficient in-
dexing method for nearest neighbor searches in high-dimensional image
databases[EEE Trans. Multimediavol. 4, pp. 76-87, Mar. 2002.

G.-H. Chaand C.-W. Chung, “A new indexing scheme for content-based
image retrieval,'Multimedia Tools Applicat.vol. 6, pp. 263-288, May
1998.

K. Chakrabartiand S. Mehrotra, “Local dimensionality reduction: A ne
approach to indexing high-dimensional spacesPrioc. ICVLDRB 2000,
pp. 89-100.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M
Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, “Qu
by image and video content: The QBIC systefEEE Comput.vol. 28, the IBM Almaden Research Center, San Jose, CA. He
pp. 23-32, Jan. 1995. was also an Assistant Professor of Multimedia Engi-

A. Hinneburg, C. C. Aggarwal, and D. A. Keim, “What is the neares I neering, Tongmyong University of Information Tech-

Guang-Ho Chareceived the Ph.D. degree in com-
puter engineering from the Korea Advanced Institute
of Science and Technology (KAIST), South Korea,
in 1997.

From 1999 to 2000, he was a Visiting Scientist at

neighbor in high-dimensional spaces?,”Rmoc. ICVLDB 2000, pp. nology, Busan, South Korea. He is currently an Assis-
506-515. tant Professor in the Department of Multimedia Sci-

E. Horowitz, S. Sahni, and D. Mehtaundamentals of Data Structures _ ence at the Sookmyung Women’s University, Seoul,
in C++. Rockville, MD: Computer Science, 1995. _South_ Korea. Hls_ research interests include c;ontent-base_d image/video/music
P. Indyk and R. Motwani, “Approximate nearest neighbors: towartpdexing and retrieval, XML databases, and distance learning.

removing the curse of dimensionality,” ifroc. ACM STC 1998, pp.
604-613.

K. V. R. Kanth, D. Agrawal, and A. Singh, “Dimensionality reduction
for similarity searching in dynamic databases,Piroc. ACM SIGMOD
ICMD, 1998, pp. 166-176.

N. Katayama and R. Satoh, “The SR-tree: An index structure for higl
dimensional nearest neighbor queries,Pimnc. ACM SIGMOD ICMD
1997, pp. 369-380.

E. Kushilevitz, R. Ostrovsky, and Y. Rabani, “Efficient search for ap
proximate nearest neighbor in high-dimensional space®tac. ACM
STG 1998, pp. 614-623.

J.-H. Lee, G.-H. Cha, and C.-W. Chung, “A model fbrnearest
neighbor query processing cost in multidimensional data spaeg,”
Process. Lett.vol. 69, pp. 69-76, 1999. chical databases. Since 1993, he has been a Professor
K.-I. Lin, H. V. Jagadish, and C. Faloutsos, “The TV-tree: An inde in the Division of Computer Sciences at the Korea
structure for high-dimensional datayLDB J, vol. 3, no. 4, pp. Advanced Institute of Science and Technology
517-542, 1994. (KAIST), South Korea. At KAIST, he developed a full-scale object-oriented
N. Megiddo and U. Shaft, “Efficient nearest neighbor indexing basespatial database management system call OMEGA, which supports ODMG
on a collection of space-filling curves,” IBM Almaden Research Centestandards. His current research interests include XML, multimedia databases,
San Jose, CA, RJ 10093, 1997. spatio-temporal databases, and Web databases.

Chin-Wan Chung received the Ph.D. degree from
the University of Michigan, Ann Arbor, in 1983.

He was a Senior Research Scientist and a Staff
Research Scientist in the Computer Science Depart-
ment at the General Motors Research Laboratories
(GMR). While at GMR, he developed DATAPLEX,

a heterogeneous distributed database management
system integrating relational databases and hierar-

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

