
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 2, JUNE 2002 235

The GC-Tree: A High-Dimensional Index Structure
for Similarity Search in Image Databases

Guang-Ho Cha and Chin-Wan Chung

Abstract—With the proliferation of multimedia data, there is an
increasing need to support the indexing and retrieval of high-di-
mensional image data. In this paper, we propose a new dynamic
index structure called theGC-tree(or the grid cell tree) for efficient
similarity search in image databases. The GC-tree is based on a
special subspace partitioning strategy which is optimized for a clus-
tered high-dimensional image dataset. The basic ideas are three-
fold: 1) we adaptively partition the data space based on adensity
function that identifies dense and sparse regions in a data space; 2)
we concentrate the partition on the dense regions, and the objects
in the sparse regions of a certain partition level are treated as if they
lie within a single region; and 3) we dynamically construct an index
structure that corresponds to the space partition hierarchy. The
resultant index structure adapts well to the strongly clustered dis-
tribution of high-dimensional image datasets. To demonstrate the
practical effectiveness of the GC-tree, we experimentally compared
the GC-tree with the IQ-tree, the LPC-file, the VA-file, and the
linear scan. The result of our experiments shows that the GC-tree
outperforms all other methods.

Index Terms—Dynamic index structure, GC-tree, high-dimen-
sional indexing, image database, nearest neighbor search (NN
search), similarity search.

I. INTRODUCTION

SIMILARITY search in high-dimensional image databases
is an interesting and important, but difficult problem. The

most typical type of similarity search is the-nearest neighbor
(-NN) search. The traditional-NN problem is defined as fol-
lows. Consider a databaseDB consisting of points from

, where . Each usually consists of ei-
ther integers or floats. A-NN query consists of a point
and a positive integer. The -NN search finds the nearest
neighbors of with respect to a distance function . The
output set consists of points from the database such that

and

The actual problem in image database applications is how to
process such queries so that the nearestobjects can be returned
within the desired response time. Therefore, our focus is the

Manuscript received April 21, 2001; revised February 26, 2002. This work
was supported by the University Fundamental Research Program of Ministry
of Information and Communication in the Republic of Korea under Grant
2001-116-3. The associate editor coordinating the review of this paper and
approving it for publication was Dr. Sankar Basu.

G.-H. Cha is with the Department of Multimedia Science, Sookmyung
Women’s University, Seoul 140-742, South Korea (e-mail: ghcha@sook-
myung.ac.kr).

C.-W. Chung is with the Department of Computer Science, Korea Advanced
Institute of Science and Technology, Taejon 305-701, South Korea (e-mail:
chungcw@islab.kaist.ac.kr).

Publisher Item Identifier S 1520-9210(02)04857-5.

development of an indexing method to accelerate the speed of
the -NN search.

For applications where the vectors have low or medium di-
mensionalities (e.g., less than 10), the state-of-the-art tree-based
indexing techniques such as the R*-tree [2], the X-tree [5], the
HG-tree [7], and the SR-tree [14] can be usefully employed to
solve the -NN problem. So far, however, there is no effective
solution to this problem for the applications in which the vectors
have high dimensionalities, say over 100. Therefore, the main
issue is to overcome thecurse of dimensionality[20]–a phe-
nomenon that the performance of indexing methods degrades
drastically as the dimensionality increases.

A. Motivation

Recently, we developed a new vector approximation-based
indexing method called thelocal polar coordinate (LPC)-file[6]
for the -NN search. The LPC-file significantly improved the
search performance for large collections of high-dimensional
vectors compared with the linear scan and the VA-file [23]. The
linear scan is often used as the yardstick for comparing with
other indexing methods since most tree-structured indexing
methods could not defeat it in high-dimensional data spaces.
The VA-file was the first vector approximation-based indexing
method to overcome the dimensionality curse. Although the
LPC-file provided significant improvements compared with
previous techniques, it suffers the performance degradation
if the dataset is highly clustered because it employs a simple
space partitioning strategy and the uniform bit allocation
strategy for representing the partitioned region.

In the current vector approximation approach including the
VA-file and the LPC-file, there is an implicit assumption that it
is very unlikely that several points lie in the same cell. Actually,
the vector approximation approach benefits from thesparse-
nessof the high-dimensional data space as opposed to the par-
titioning or clustering-based approach (i.e., the traditional in-
dexing methods) when several data points are assumed not to
fall into the same cell. However, if the data points are highly
clustered as in image datasets, the probability that a certain cell
includes several points increases, and therefore those vectors
may use the same approximation. This means that the discrimi-
natory power of the approximation decreases and thus less elim-
ination of candidates is performed in each phase of the-NN
search, and ultimately more disk accesses are required during
the search.

Figs. 1 and 2 show the vector selectivity comparison between
random and real image datasets during the first filtering and the
second refinement phases of the-NN search in the vector ap-
proximation approach, respectively. Thevector selectivityis de-

1520-9210/02$17.00 © 2002 IEEE

236 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 2, JUNE 2002

(a) (b)

Fig. 1. Selectivity comparison between random and real image datasets in the filtering phase. (a) LPC-file. (b) VA-file.

(a) (b)

Fig. 2. Selectivity comparison between random and real image datasets in the refinement phase. (a) LPC-file. (b) VA-file.

fined as the ratio of the number of vectors visited to the total
number of vectors in a dataset. The vector selectivity is a good
performance estimator because the performance of the-NN
search depends largely on the number of disk blocks visited and
it is affected by the vector selectivity. The selectivity of the first
search phase of the vector approximation approach means the
ratio of candidates not eliminated after the first filtering phase
to the total number of vectors. The selectivity of the second
phase is the ratio of real vectors visited during the second phase
to the total number of vectors. In Fig. 1, the-axis represents
the datasets and query types used in our experiment and the
-axis represents the percentage of remaining vectors after the

first filtering phase (i.e., the vector selectivity of the first phase).
The cluster query means that the query vector is selected from
vectors in the real image dataset itself, and the random query
means that the query vector is selected randomly. In the ex-
periment for the vector selectivity comparison, we used 256-di-
mensional image and random datasets. For the random dataset,
1000 random 10-NN queries were posed, and for the real image
dataset, 1000 random 10-NN queries and 1000 cluster 10-NN

queries were posed, and their results were averaged. In the case
of the LPC-file in Fig. 1(a), the experimental result shows that,
after the first phase filtering, the number of remaining vectors
for a real image dataset is 2.66 to 4.68 times more than that for a
random dataset. Similarly, in the case of the VA-file in Fig. 1(b),
after the first phase filtering, the number of remaining vectors
for a real image dataset is 2.34 to 16.57 times more than that for
a random dataset. These mean that, compared with the random
dataset, for the clustered dataset, the filtering power of the cur-
rent vector approximation approach decreases drastically.

For the second refinement phase, in the case of the LPC-file
as shown in Fig. 2, the number of real vectors visited for a real
image dataset is 2.43 to 6.49 times more than that for a random
dataset. In the VA-file, the number of real vectors visited for a
real image dataset is 2.02 to 76.67 times more than that for a
random dataset. These mean that the I/O cost occurred during
the -NN search for the clustered dataset is much higher than
that for the random dataset.

This performance degeneration for the clustered dataset is a
common problem of the current vector approximation approach.

CHA AND CHUNG: THE GC-TREE: A HIGH-DIMENSIONAL INDEX STRUCTURE 237

TABLE I
SUMMARY OF SYMBOLS AND DEFINITIONS

The reason for the performance degeneration is because bits are
uniformly allocated to each partitioned cell while the data distri-
bution is not uniform depending on the cells and the density of
each cell varies greatly. The way to overcome this problem is to
adaptively assign bits to each cell according to the data statistics
of the cell. This is one of the design objectives of the GC-tree.

Another problem of all vector approximation techniques is
that they have to sequentially read the whole approximation
file. To overcome this limitation of the vector approximation
approach and to take advantage of the multidimensional index
structure, we combine their advantages. In order to achieve this
goal, we partition the data space based on thedensityof sub-
spaces and construct an index structure that reflects the parti-
tion hierarchy of the data space. Compared with the vector ap-
proximation techniques, it can considerably reduce the number
of disk accesses during the search since it narrows the search
space based on the index instead of scanning the whole approx-
imation file.

B. Testbed, Assumptions, and Notations

The testbed for our exploration to the-NN problem is IBM’s
query by image content (QBIC) system [9], [20]. We focus on
the specific problem of retrieving images via a 256-dimensional
color histogram, using a QBIC’s special-purpose color-simi-
larity measure. In this paper, we assume that the domain space
is the -dimensional Euclidean space where the dissimilarity is
measured by the Euclidean distance weighted by the matrix,
where is a symmetric color similarity matrix [20]. In addition,
users are assumed to pose a-NN query using a sample image
stored in the database.

Table I gives the summary of symbols and their definitions
used in the paper.

C. Contribution of the Paper

We present a dynamic index structure, the GC-tree, that com-
bines the capability of the vector approximation technique that
accesses only a small fraction of real vectors with the advan-
tage of the multidimensional index structure that prunes most
of the search space and constructs the index dynamically. The
GC-tree partitions the data space based on the analysis of the
data distribution and identifies subspaces with high density. It
focuses the partitioning on those dense subspaces and dynam-

ically constructs an index that reflects the partition hierarchy.
We provide algorithms for -NN search as well as for the index
construction. An empirical evaluation shows that the GC-tree
significantly improves the performance of the vector approxi-
mation techniques for the real image database.

The organization of the paper is as follows. We begin by dis-
cussing the related work presented in the literature in Section II.
Sections III and IV are the heart of the paper where we present
the GC-tree and its algorithms. We present a performance evalu-
ation in Section V, and conclude with summary and future work
in Section VI.

II. RELATED WORK

In the recent literature, a variety of indexing methods suitable
for high-dimensional data spaces have been proposed. Most of
the work was motivated by the limitation of the state-of-the-art
tree-structured indexing methods. We classify them into six cat-
egories:

1) dimensionality reduction (DR) approach [8], [13], [17];
2) approximate nearest neighbor (ANN) approach [1], [12],

[15];
3) multiple space-filling curves approach [18], [22];
4) vector approximation (VA) approach [6], [23];
5) hybrid approach [3];
6) nearest neighbor (NN) cell approach [4].
The DR approach first condenses most of information in a

dataset to a few dimensions by applying the singular value de-
composition (SVD), the discrete cosine transform (DCT), or the
discrete wavelet transform (DWT). The data in the few con-
densed dimensions are then indexed using a multidimensional
index structure. While the DR approach provides a solution to
the dimensionality curse, it has several drawbacks [6]: 1) loss
of precision of the query result; 2) static method; and 3) dimen-
sionality is still high even after reduction. However, the DR ap-
proach is one of the solutions to improve the search performance
in high-dimensional space if the loss of information is accept-
able within a certain range.

The idea behind the ANN approach is to retrieveANNs
faster within a given error boundinstead of retrieving exact
NNs. Given a query point and a distance error , a point

is a ()-ANNof such that for any other database point
, .
The multiple space-filling curves approach orders the-di-

mensional space in many ways, with a set of space-filling curves
such as Hilbert curves, each constituting a mapping from

. This mapping gives a linear ordering of all points in the data
set. Therefore, when a query point is mapped to the space-filling
curve, one can perform a range search for nearby points along
the curve to find near neighbors in the data space. However,
due to the nature of the mapping, some near neigh-
bors of the query point may be mapped far apart along a single
curve. To make sure that these points are not overlooked, mul-
tiple space-filling curves are used, based on different mappings
from . Although this approach improves the perfor-
mance of the -NN search, it is possible that some near-neigh-
bors may be omitted during the search. To improve the chances
of finding all NNs, more space-filling curves have to be used

238 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 2, JUNE 2002

(a) (b)

Fig. 3. Vectorp and its approximation in the LPC-file. (a) Two-dimensional space. (b) Three-dimensional space.

or a larger neighborhood on each curve has to be scanned. How-
ever, they diminish the benefits of the approximate approach
since both of these methods increase the size of the candidate
set.

The VA approach tries to overcome the dimensionality curse
by filtering the feature vectors so that only a small fraction of
them must be visited during the search. The VA-file [23] and the
LPC-file [6] are classified into this category. We discuss the VA
approach somewhat in detail because the GC-tree combines this
approach with the multidimensional index structure.

The idea of the VA approach starts from the observation
that existing multidimensional structures cannot defeat the
linear scan in high dimensions. Therefore the VA approach
constructs the approximation file for the original data, and
during the search, it sequentially reads the relatively smaller
approximation file instead of the data file and tries to filter the
original vectors so that only a small fraction of them must be
read.

The VA-file divides the data space into 2rectangular cells,
allocates a unique bit-string of lengthto each cell, and ap-
proximates the data points that fall into a cell by that bit-string.
The VA-file itself is simply an array of these bit-string approx-
imations of data points. The performance of the VA approach
heavily depends on the quality of the approximation since the
filtering is performed based on the approximation.

The LPC-file aims at improving the filtering power of the
vector approximation with a minimum amount of additional
information. It enhances the filtering power of the approxima-
tion by adding polar coordinate information of the vector to
the approximation. The LPC-file partitions the vector space
into hyper-rectangular cells and approximates vectors using the
polar coordinateson the partitioned local cells.

In the LPC-file, the approximation for a vector is gener-
ated as follows. The first step is to assign the same number of
bits to each dimension and to divide the whole data space into
2 cells. Thus the lengths of sides of a cell are the same. The
cell is simply represented by the concatenation of the bit pat-
terns for each dimension in turn. Fig. 3(a) shows an example in
a two-dimensional (2-D) space: the cellis represented by the
sequence of bits (01, 10) where and .

The second step is to represent the vectorusing the polar
coordinates () within the cell in which lies. As illustrated
in Fig. 3(a), the local origin of each cell is determined as the
lower left corner of the cell. The distanceof the polar coor-
dinate is computed by the distance between the local origin
and the vector . The angle is computed by the angle between
the vector and the diagonal from the local origin to the op-
posite corner. As a result of this approximation, the vectoris
represented by the triplet , where , , and denote,
respectively, the approximation cell, the distance, and the angle
of based on the local origin .

One of the drawbacks of the VA techniques is that they have to
read the whole approximation file for filtering. This is inevitable
for the VA approach to filter the real data. Thus, the performance
of the VA approach largely depends on the size of the approx-
imation file and the filtering capability of the approximation.
One of the motivations of the design of the GC-tree is to reduce
the amount of approximations that have to be read during the
search by employing the index structure as well as to maintain
the index structure dynamically.

The design objective of the IQ-tree [3] is similar to that of the
GC-tree in the sense that it employs the hybrid approach that
combines the VA approach and the tree-based indexing. The
IQ-tree has a three-level structure: The first level is a flat direc-
tory consisting of minimum bounding rectangles, the second
level contains the approximations and the third level contains
real points. Although the design objective of the IQ-tree is
similar to that of the GC-tree, its approach is very different
from that of the GC-tree. While the GC-tree partitions a space
into 2 cells at a time to identify clusters and outliers based
on the local density of subspaces, the IQ-tree bisects a-di-
mensional space using a ()-dimensional hyper-plane. In
addition, while the GC-tree maintains the hierarchical direc-
tory corresponding to the partition hierarchy, the IQ-tree uses
a flat directory.

The NN-cell approach [4] precomputes the result of any
-NN search which corresponds to a computation of the

Voronoi cell of each data point, and stores the Voronoi cells
in an index tree. Then the-NN search corresponds to a point
query on the index tree.

CHA AND CHUNG: THE GC-TREE: A HIGH-DIMENSIONAL INDEX STRUCTURE 239

III. T HE GC-TREE

The research challenge which has led to the design of the
GC-tree is to combine the capability of the vector approxima-
tion approach that accesses only a small fraction of real vectors
with the advantage of the multidimensional index structure that
prunes most of the search space and constructs the index dy-
namically. In order to achieve this goal, we partition the data
space based on the analysis of the dataset and construct the hi-
erarchical index that reflects the space partition hierarchy.

A. Density-Based Space Partitioning

The GC-tree employs adensity-basedapproach to partition
the data space and to determine the number of bits to represent
a cell vector for a partition. To approximate the density of the
data points, the GC-tree partitions the data space into nonover-
lapping hyper-squarecells and finds the points that lie inside
each cell of the partition. This is accomplished by partitioning
every dimension into the same number of equal length intervals
at a time. This means that every cell generated from the parti-
tion of a space has the same volume, and therefore the number
of points inside a cell can be used to approximate the density of
the cell.

In a static database, thedensityof a cell can be defined as the
fraction of data points in the cell to the total data points. How-
ever, for a dynamic database environment, and especially, in the
case of constructing a database from scratch, it is difficult to es-
timate thedensity thresholdthat identifies the dense and sparse
cells because the density is relatively determined with respect
to the total data points. Therefore, in the GC-tree, we define the
densityof a cell to be the proportion of data points in the cell to
disk page capacity when we divide a space into 2cells by bi-
nary partitioning. A (sub)space in the data space corresponds to
anodein the GC-tree and is physically mapped to a singledisk
page. There is a number that identifies the maximum number
of objects that can be accommodated in a disk page. That is,
represents thepage capacityor thefanoutof a page. When the
number of objects inserted into a page exceeds, the page is
generally split into two. We call a celldenseif the density of

is greater than or equal to a certaindensity threshold . Oth-
erwise, it is calledsparse. We call a dense cell aclusterand call
the points that lie inside sparse cellsoutliers. If we determine
the density threshold to be larger than a half of the page ca-
pacity, at most one cluster can be generated when we partition
a space due to the insertion of an object.

The basic idea of the density-based partitioning is: 1) to iden-
tify clusters and outliers when we partition a space; 2) to focus
the partitioning on the subspaces of the clusters found because
the subspaces covered by the outliers are unlikely to be pruned
in the search; and 3) to deal together with all outliers found in
the partitioning of a certain space.

It is difficult to bind the outliers within a small region since
they are widely spread over the whole subspace. Thus it is very
difficult to prune the outliers collectively during the search
because the large- is likely to intersect the large
bounding region in which the outliers lie. Therefore, we collect
in a single node of the GC-tree all outliers generated from a

Fig. 4. Partitioning strategies. (a) GC-tree partitioning. (b) Traditional par-
titioning.

single subspace partition, and concentrate the partitioning on
the clusters to reduce the possibility that clusters are intersected
by the search sphere- . If the number of outliers
generated from the partition exceeds the page capacity, the
GC-tree allocates more pages for the outliers and simply links
them. It makes multiple pages a singlevirtual page. This is
based on the observation that the volume covered by the outliers
is so large that it may not be pruned in the search.

It is well known that for low-dimensional indexes, it is bene-
ficial to partition the data space asbalancedas possible. How-
ever, in high-dimensional spaces, the balanced partitioning re-
sults in large bounding rectangles for the partitions. When we
apply balanced partitioning on a uniformly distributed dataset,
the data space cannot be split in each dimension. For example,
in a 256-dimensoinal data space, a split in each dimension re-
sults in a 2 partitions (or disk pages). Therefore, the data
space is usually split once in a numberof dimensions. In
the remaining () dimensions it has not been split and
the bounding rectangles include almost the whole data space in
these dimensions. Even for the nonuniformly distributed (e.g.,
clustered) dataset, the bounding rectangles are likely to be large
because they still try to accommodate outliers and the outliers
usually lie far apart. On the contrary, the GC-tree excludes the
outliers in forming the bounding regions to reduce the size of
the bounding regions.

Fig. 4 depicts the partitions resulted from the density-based
partitioning of the GC-tree and the traditional balanced parti-
tioning in a 2-D example. In the GC-tree, a subspace is parti-
tioned into 2 cells at a time by splitting each dimension of the
subspace in its center. In high dimensions, in fact, the vast ma-
jority of cells of the partitioned 2cells must be empty since 2
is much larger than the number of objects in a database when

is large, say over 100. Thus the outliers are far apart one an-
other and the size of the cell that includes clustered objects is
relatively small. We say that the entire data space is in the parti-
tion level 0, the cells partitioned from it is in the partition level

240 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 2, JUNE 2002

1, and so on. In Fig. 4, we assume that the page capacity is 4, and
if a cell contains at least three points we call it the cluster, oth-
erwise the points are called the outliers. Fig. 4(a) shows the par-
titions resulted from three times of partitioning in the GC-tree.
We have fifteen points. After the first partitioning of the entire
space, the points 1, 2, 3, 4, 5, and 6 are identified as outliers and
other points are included in a cluster. Thus we store the six points
in a single virtual page and we partition again the cluster since
the number of points in the cluster exceeds the page capacity.
In the second partitioning, points 7, 8, and 9 are identified as
outliers, and the points 10, 11, and 12 are identified as outliers
in the third partition. In all, we have one cluster page in level 3,
three outlier pages in partition levels 2, 1, and 0. Fig. 4(b) shows
the result from the traditional partitioning. The query point is
denoted by “ ” and the query sphere- to find five
N\!Ns is depicted by the circle around “.” As depicted, the
large search sphere- may intersect most of the par-
titions if we partition the space in a balanced way since the size
of the bounding rectangles are large in high dimensions. How-
ever, in the density-based partitioning of the GC-tree, not only
the small bounding region of a cluster may avoid being inter-
sected by - but also large number of outliers on the
same partition level can be read by a single read of virtual disk
page. These are the key performance improvement achieved by
the GC-tree. The physical adjancy of the pages chained to form
a large virtual page on the disk is implementation dependent
and is not discussed in this paper. When going to higher dimen-
sions, the size of bounding rectangles for the traditional parti-
tioning method grows far larger because the possibility to split
the data space in each dimension is reduced. On the other hand,
for the density-based partitioning, the relative size of bounding
rectangles to the whole data space is reduced because we split
the space as many as the number of dimensions at a time.

In a dynamic environment, the GC-tree partitions the sub-
space corresponding to a cluster or a sparse cell at the center
of every dimension when the corresponding disk page overflows
due to a subsequent insertion. Fig. 5 shows how a 2-D data space
is partitioned and thus the corresponding GC-tree grows upon
repeated insertion. Initially, there is a single space or cell, which
is the whole data space. Conceptually, a number of points are in-
serted into this cell and there exists a disk page corresponding
to this cell. In Fig. 5(a), the data space has already been divided
into four cells. Let us assume that the density thresholdis 3/4,
that is, the leaf node fanout is four, a cluster has to contain at
least three points and the points lying in the cell that has less
than three points are treated as outliers. Fig. 5(a) is the initial
state where the database contains four points in the entire data
space. There are one root node and one leaf node. The leaf node
contains the LPC approximations for four points (outliers) that
lie inside the sparse cells. The cell vector of the root node de-
notes the whole data space. The symbol “–” denotes the entire
domain for a dimension in a given cell. Another point is added
and a cluster is generated in Fig. 5(b). In Fig. 5(b), a new node
B denotes a cluster whose cell vector is (0, 0) and outliers are
redistributed in the node A. More points are added and we parti-
tion the overflowing space into 2cells and make a new cluster
C. New cluster node C is made into a lower level node for the
partitioning node. In this example, we assumed that the fanout

Fig. 5. Space partitioning and dynamic growth of the GC-tree. (a) Initial state.
(b) The fifth point is added. (c) After the partiotin of cell B in (b).

of the nonleaf node is 2. Fig. 5(c) shows the state of the GC-tree
after the partitioning of the space of cell B.

CHA AND CHUNG: THE GC-TREE: A HIGH-DIMENSIONAL INDEX STRUCTURE 241

Fig. 6. Structure of a nonleaf node.

Fig. 7. Structure of a leaf node.

B. Index Structure

The GC-tree is a dynamic index organization that consists of
two components: adirectoryanddata nodes. A directory is com-
posed of nonleaf and leaf nodes. We use the termdirectory node
to represent the nonleaf node or the leaf node. The directory
nodes are employed for indexing and the data node is used for
storing real objects. Each node corresponds to a region (cell) in
the data space and is mapped to a disk page. In the GC-tree, there
are two types of region corresponding toclustersand outlier
regions. The region corresponding to the cluster is a hyper-rec-
tangle with the sides of equal length. The outlier region is the re-
maining region after removing the regions for clusters from the
original region. However, the cell vector for the outlier region
is represented by that of the original region. We use the terms
cluster nodeand theoutlier nodefor the node corresponding to
the cluster and for the node for outliers, respectively.

The entry of the leaf node consists of the LPC approximation
of the real object and the pointer to the data node in which

the real object is stored. The entry in the nonleaf node contains
thecell vectorcorresponding to the region covered by the lower
level node and the pointer to the lower level node. Figs. 6 and 7
show the nonleaf and leaf node structures of the GC-tree. LPC
in the leaf node structure represents the LPCs of an object.

Example 1: To illustrate the correspondence between the
space partition hierarchy and the index tree hierarchy of the
GC-tree, consider a 2-D GC-tree with a four-level index in
Figs. 8 and 9. In Fig. 8, the 2-D data space has already been
partitioned into 4 4 cells by using 2 bits per dimension. The
density threshold is assumed to be , where is the leaf
node fanout.Rootdirectory node has three entries. The second
directory entry with the cell vector (00, 11) inRoot points
to the node C2 in Fig. 9 and represents the cell C2 in Fig. 8
which, in turn, forms a finer partition into a cluster C4 and an
outlier region. Cell C4 in Fig. 8 also forms a finer partition
into a cluster C5 and an outlier region, and their corresponding
nodes exist in the GC-tree in Fig. 9. Note that data points
are approximated by . The LPC information is
represented in the leaf node and the cell vectoris represented
by the index entries of the nonleaf parent of the leaf node.
The cell vector in the index entry of the higher node is used
as a common prefix of the cell vectors in the lower node. For
example, the cell vector (010, 011) of C3 can be obtained by
prefixing the cell vector (01, 01) of the higher node index entry
to its own cell vector (0, 1). By using this common prefix to
represent the lower node cell vector, the GC-tree can increase

Fig. 8. Nonuniform partition of the data space.

Fig. 9. Index for the partition of Fig. 8.

the fanout of the nonleaf node, and thus reduces the number
of disk accesses. Together with the density-based nonuniform
partitioning strategy, it is another advantage of the GC-tree for
reducing disk I/O cost.

242 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 2, JUNE 2002

Fig. 10. Algorithm Insert.

IV. A LGORITHMS

This section describes the algorithms for building the GC-tree
and searching NNs on the GC-tree.

A. Insertion

We limit our discussion to the insertion of a single object to
the level of leaf node. Generalizing this algorithm for the case of
more than one object and to the level of data node can be done in
an obvious manner. In addition, we omit the deletion algorithm
since it is very similar to the insertion algorithm unless deletion
causes an underflow. In this case, the remaining branches of the
node are deleted and reinserted.

We define some parameters that are used as program variables
in describing the algorithms.Rootspecifies the pointer to the
root level directory node of the GC-tree.Feature VectorandLPC
are the feature vector and the LPCs of the object to be inserted,
respectively. is the cell vector representing the cell and
points to the lower level directory node corresponding to the cell
or to the data node.

The algorithmInsert in Fig. 10 descends the GC-tree to lo-
cate the suitable leaf node for accommodating a new object, pos-
sibly causing a split if the leaf is full. Unlike any other dynamic
index tree, the GC-tree does not grow in a bottom-up fashion.
The overflow of a node is managed by allocating a new node

at the same or lower level of , identifying clusters and out-
liers among entries, distributing entries to the two nodes or only
the input object to the newly allocated node, and posting di-
rectory entries to the parent node if necessary. The node split
algorithms can be found in Figs. 11 and 12.

When a node overflows due to the insertion of an outlier point
or a nonleaf entry posted (promoted) from the outlier node,
the GC-tree allocates a new node, inserts the entry to ,
and simply links to the overflowing node. It makes multiple
nodes a single virtual node. This is based on the observation

Fig. 11. Algorithm SplitLeaf.

Fig. 12. Algorithm SplitNonleaf.

that: 1) the volume covered by the outliers is so large that it may
not be pruned in the search, and thus the GC-tree reads all out-
liers on the same cell at a time; and 2) the number of clusters
on a cell is may be large that all nonleaf entries pointing them
cannot not be accommodated in a nonleaf node, but the GC-tree
needs to read them all at a time because we have to examine all
candidates under a node.

If a cluster node overflows due to the insertion of a cluster
point (i.e., the input point that generates a cluster after the
node partition), the GC-tree allocates a new node, identifies
cluster points and outliers, distributes outliers toand cluster
points to , and promotes the directory entries forand
to the parent node.

B. -NN Search

The -NN search algorithm in Figs. 14 retrievesNNs of
a query vector . It consists of two stages as in the VA ap-
proach. However, unlike the VA approach that linearly scans
the whole approximation file, the GC-tree can use a branch-and-
bound technique similar to the one designed for the R-tree [21].
The GC-tree utilizes three global structures: two priority queues

CHA AND CHUNG: THE GC-TREE: A HIGH-DIMENSIONAL INDEX STRUCTURE 243

bl_listandcand_list, and a -element array . The main-
tains the NNs processed to that point and, at the end of exe-
cution, contains the final result. Thebl_list contains branches
of nonleaf nodes with the minimum and maximum distances
to those from the query point. Thecand_listmaintains a set of
candidates, i.e., qualifying objects. Thebl_list and thecand_list
are implemented with amin heap[11]. Also in thecand_list,
the lower bound and the upper bound on the dis-
tance of each candidate to the query vector are kept. Since the
real distance between the query vector and a point represented
by approximation cannot be smaller than the minimum distance
between the query vector and the approximation, the real dis-
tance is lower-bounded by . Similarly, the real distance is
upper-bounded by since it cannot be larger than the max-
imum distance between the query vector and the approximation.
If an approximation is encountered such that its exceeds
the -th smallest upper bound found so far, the corresponding
vector can be eliminated safely sincebetter candidates already
exist.

The routing information used in the nonleaf node and the leaf
node of the GC-tree is different: the cell vector and LPC are used
for the nonleaf node and the leaf node, respectively. Therefore,
the distance bounds and are also different between
them. The bounds and for the nonleaf node are de-
termined as follows:

where

where

where is the component of in -th dimension and lies within
the cell , is a cell into which the database pointfalls
in dimension , and is the -th mark in a given dimension,
i.e., the starting position of the-th partition in the dimension.

For the leaf node, and are computed as follows:

where is the angle between the vectorand the
diagonal of the cell in which lies and is the
angle between the vectorand the diagonal of the cell (as illus-
trated in Fig. 13). In other words, and are determined
when the angle between two vectors and

is minimum and maximum, respectively. The minimum angle
and the maximum angle between two vectorsand are deter-
mined by and (), respectively

In the first search stage, the algorithmk_NN_Search in
Fig. 15 examines the top-level branches of the GC-tree, com-
putes and for each branch, and traverses the most
promosing branch with the depth first order. At each stage of
traversal, the order of search is determined by the increasing

Fig. 13. Lower boundd and upper boundd for a leaf node in a three-
dimensional data space.

Fig. 14. Algorithmk_NN_Query.

244 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 2, JUNE 2002

Fig. 15. Algorithmk_NN_Search.

order of . Since the pruning criterion of-NN search is
dynamic – the search radius is the distance- between

and its current -th NN – the order in which nodes are visited
can affect the search performance. If objects are found whose

exceeds - , then we can safely eliminate them
since better candidates have already been found. At the end
of the first stage, thecand_listcontains a set of candidates.

In the second stage, as in the VA approach, it refines the
candidate set by visiting real vectors themselves in increasing
order of . In this stage, not all remaining candidates are vis-
ited. Rather, this stage ends when an approximation is encoun-
tered whose lower bound exceeds or equals the-th distance

- in the answer set, and the finalnearest vectors in
the answer set are the search result.

The functionReadNodeFromGCtreereads a disk page cor-
responding to the node number provided by the input argument
from the GC-tree. The functionGetFromBranchList fetches a
branch list element with the smallest entry from thebl_list
to the variablebl.

C. Cost Estimation of the Algorithms

Now let us consider the costs for the insertion of an object
and for the -NN search in the GC-tree. The parameters for cost
analysis are defined as follows:is the total number of nodes in
the GC-tree, is the average fanout of the nonleaf node, and the
average length of the chain of each node is, that is, nodes
are linked in a single virtual node. For the nonleaf node, the
larger the number of clusters, the larger the value of, and in
this case, the larger is favorable to the system performance
because it may increase the opportunity of pruning nodes in
the search. For the outlier node among leaf nodes, the larger

means that there are lots of outliers, and this has a negative

effect on the system performance. For the uniformly distributed
dataset, in fact, all leaf nodes are linked in a single virtual node.
In other words, the GC-tree degenerates to the LPC-file.

The insertion cost consists of the cost to find a leaf node into
which to insert the input object and the cost to update the nodes
affected by the insertion. The cost to find the leaf node is

. The update cost to reflect the insertion is only one
disk page write if there is no page overflow. If the page overflow
occurs, the space partition to identify clusters and outliers is
required and the parent node is also updated. The CPU time to
perform the space partition is where is the leaf node
fanout and is the maximum partition level. corresponds to
the maximum number of bits to represent a subspace cell and is
16 in our implementation. In other words, the GC-tree identifies
clusters and outliers by iterating at worsttimes for each object
in the overflowing node. The number of maximum page writes
is three (the writes of the overflowed node, the newly allocated
node, and the parent node). Therefore, the total cost for a single
object insertion is the I/O cost of disk
accesses plus the CPU cost of .

The -NN search algorithm of the GC-tree is the combination
of the branch-and-bound technique developed for the R-trees
and the method for the VA approach. The-NN search cost in
the GC-tree depends mainly on how many nodes are visited (or
pruned) in the first stage of the algorithm and how many real
objects are visited in the second stage of the algorithm. The
number of nodes of the GC-tree visited during the-NN search
can be estimated using the equation given by [16].

To find NNs the algorithmk_NN_Query repeats, in the first
stage, the process of computing the distances to lower nodes
from current node and storing the branches to branch list, the
candidates to the candidate set, andNNs found so far to the
array . Let the total number of nodes in the GC-tree be,
the average number of branches in the branch list be, and the
average number of candidates in the candidate set be. The
size of the array is . Thus the complexity of the first stage
of the algorithm is since the
time complexity of the insertion and deletion for mean-heap is

, where is the number of elements in the min-heap,
and the cost to insert an object to is . The cost for the
second stage is .

V. PERFORMANCEEVALUATION

To demonstrate the practical effectiveness of the new
indexing method, we performed an extensive experimental
evaluation of the GC-tree and compared it with the competitors:
the IQ-tree, the VA-file, the LPC-file, and the linear scan. Our
experiments have been computed under the Microsoft Windows
2000 on Intel Pentium III 800 MHz processor with 256 MB of
main memory.

For our experiments, we used 13 724 256-color images of
U.S. stamps and photos in IBM QBIC image database. Stamps
often come in series (e.g., states, birds, flowers) with common
colors and related designs, and the U.S. post office has often
used similar colors for many long-running stamps. As a result,
this real image dataset shows ahighly clustered distribution.

CHA AND CHUNG: THE GC-TREE: A HIGH-DIMENSIONAL INDEX STRUCTURE 245

For a number of the experiments we performed, datasets con-
taining far more than 13 724 image vectors were required. To
obtain larger databases, the 13 724 256-dimensional data were
synthetically scaled up to 100 000 vectors, while retaining the
original distribution of the image dataset. To generate a new
image vector , we randomly choose a vectorfrom the orig-
inal dataset and find a cell, which is either dense or sparse, in
which lies. We then select two out of the vectors in the cell

and average them for each dimension, . The
averaged vector is stored as a new vector.

We also performed the experiments on the 256-dimensional
random dataset which follows the random distribution and the
256-dimensional skewed dataset which follows the skewed dis-
tribution according to Zipf’s law [20]. The Zipf distribution is
defined as follows, and the value ofused is 0.5:

In all experiments, the Euclidean distance metric was
used, and the number of nearest neighbors to find was always
ten, i.e., . The page size used in the experiment was
8 KB. One-thousand 10-NN queries were processed and the re-
sults were averaged. The query vectorwas randomly selected
from the scaled-up image dataset. The density thresholdused
was 8/15. In other words, the fanout of a leaf node is 15 and we
regard a partitioned cell as a cluster if it contains at least eight
points.

A. Pruning Rate of Directory Nodes

Most tree-structured multidimensional indexing methods fail
to prune directory nodes during the-NN search due to the large
volume of - and large bounding regions caused by
the inherent sparsity of the high-dimensional space. Therefore,
the pruning rate of directory nodes during the-NN search can
be a good indicator to estimate the performance of the index
structure. Fig. 16 shows the result of the experiments for the
directory node pruning rate. In the real image dataset, the direc-
tory node pruning rate of the GC-tree is more than 60%. From
this result the GC-tree can be expected to provide a good search
performance in the highly-clustered dataset such as real images.
However, the experimental results in the Zipf and randomly dis-
tributed datasets shows that the pruning rate is not as good as in
the real datasets. For the random dataset, we could not prune any
node during the search. In all datasets, the GC-tree outperforms
the IQ-tree. The good pruning rate of the GC-tree comes from
the tight bounding regions that accommodate only the clustered
points. In this experiment, the LPC-file and the VA-file were not
included since they read the whole approximation file.

B. Vector Selectivity

In the -NN search algorithm, the vector selectivity for the
first stage is the ratio of vector approximations remained without
being pruned after the first stage. The real vectors corresponding
to the remained approximations have the potential of being ac-
cessed in the second stage. The vector selectivity for the second
stage is the ratio of vectors accessed during the second stage to

Fig. 16. Pruning rate of directory nodes.

Fig. 17. Vector selectivity experiments (real image dataset).

Fig. 18. Vector selectivity experiments (Zipf dataset).

the total number of vectors. The vector selectivity is also a good
estimator to predict the search performance because it can esti-
mate the number of disk accesses for the real vectors that must
be read.

Figs. 17–19 show the results of the vector selectivity exper-
iments in real image dataset, Zipf dataset, and random dataset,
respectively. The vertical axis denotes the vector selectivity in
the first and the second stages. As shown, the vector selectivity
of the GC-tree is better than those of the IQ-tree, the LPC-file,
and the VA-file. This superiority comes from the fact that the
GC-tree adaptively partitions the data space to find subspaces
with high-density clusters and to assign relatively more bits to
them. Therefore, the discriminatory power of the approximation

246 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 2, JUNE 2002

Fig. 19. Vector selectivity experiments (random dataset).

Fig. 20. Disk access experiments.

of the GC-tree increases. This means that the GC-tree preserves
the advantage of the VA approach that accesses only a small
fraction of the real vectors. Although the focus of the GC-tree
is to apply the advantage of the hierarchical indexing technique
to the VA approach, it also improves the vector selectivity since
it adaptively assigns the number of bits to the cell vector (i.e.,
the vector approximation).

C. Number of Disk Accesses

While the directory node pruning rate and the selectivity
experimental results can be used to estimate the search perfor-
mance, it does not fully reflect the search performance because
it lacks the real cost of reading the approximation file or the
index file. We computed the total number of disk accesses for
the -NN search that include the accesses for real vectors,
approximations, and an index (in the case of the GC-tree and
the IQ-tree). Fig. 20 shows the total number of disk accesses
actually performed to find ten NNs. For the real image dataset,
the number of disk accesses performed by the GC-tree is far
smaller that those of the IQ-tree, the LPC-file and the VA-file,
respectively. The performance improvement of the GC-tree
comes from both of the density-based space partitioning and
the hierarchical index structure supporting the partitioning
strategy. This result shows that the hierarchical index structure
can be successfully employed for indexing high-dimensional
data by applying elaborate partitioning strategy based on data
analysis. For the Zipf and random datasets, the performance
of the GC-tree is somewhat better and similar to the vector

Fig. 21. Comparison of the average elapsed time for 10-NN search.

approximation techniques (LPC-file and the VA-file) because
there is not much chance to prune the directory nodes.

D. Elapsed Time Experiments

To demonstrate the practical effectiveness of the GC-tree, we
performed a number of timing experiments. Fig. 21 shows the
elapsed time of the 10-NN search. TheScanin the horizontal
axis is the linear scan that sequentially scans the real vectors
themselves, maintaining a ranked list of theNN vectors en-
countered so far. While the I/O patterns generated by the-NN
search algorithm are inherently random, the linear scan can save
much disk startup time to begin the read. A well-tuned linear
scan algorithm frequently outperforms more sophisticated in-
dexing methods which frequently generate the random disk ac-
cess, and thus the linear scan can be generally used as the yard-
stick for performance comparison in high dimensions.

Fig. 21 shows that the GC-tree achieves a remarkable
speed-up over the IQ-tree, the VA techniques, and the linear
scan. Summarizing the results of our all experiments, we make
the observation that the GC-tree outperforms the competitors.

VI. CONCLUSION

In this paper, we proposed a new dynamic index structure
called the GC-tree for efficient similarity search in high-dimen-
sional image databases. It is based on the density-based space
partitioning and the index structure that reflects the partition
hierarchy. The performance evaluation demonstrated the effec-
tiveness of our technique by comparing the state-of-the-art VA
techniques and the IQ-tree. The design goal of the GC-tree is
to combine the advantages of the VA approach and the multi-
dimensional index structure. However, two approaches are not
readily combined because they have different design principles
and goals. Until now, the multidimensional index structures
based on the conventional data partitioning have been defeated
by the high dimensionality. However, the GC-tree achieves the
performance improvement over both approaches by combining
them based on the careful data analysis.

As a future study, we are considering the technique to control
the density threshold adaptively based on the data distribution.

CHA AND CHUNG: THE GC-TREE: A HIGH-DIMENSIONAL INDEX STRUCTURE 247

REFERENCES

[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu,
“An optimal algorithm for approximate nearest neighbor searching in
fixed dimensions,”J. ACM, vol. 45, no. 6, pp. 891–923, Nov. 1998.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree:
An efficient and robust access method for points and rectangles,” in
Proc. ACM SIGMOD ICMD, 1990, pp. 322–331.

[3] S. Berchtold, C. Boehm, H. V. Jagadish, H.-P. Kriegel, and J. Sander,
“Independent quantization: An index compression technique for high-
dimensional data spaces,”Proc. IEEE Data Engineering, pp. 577–588,
2000.

[4] S. Berchtold, B. Ertl, D. A. Keim, H.-P. Kriegel, and T. Seidl, “Fast
nearest neighbor search in high-dimensional space,”Proc. IEEE Data
Engineering, pp. 209–218, 1998.

[5] S. Berchtold, D. A. Keim, and H.-P. Kriegel, “The X-tree: An Index
structure for high-dimensional data,” inProc. ICVLDB, 1996, pp. 28–39.

[6] G.-H. Cha, X. Zhu, D. Petkovic, and C.-W. Chung, “An efficient in-
dexing method for nearest neighbor searches in high-dimensional image
databases,”IEEE Trans. Multimedia, vol. 4, pp. 76–87, Mar. 2002.

[7] G.-H. Cha and C.-W. Chung, “A new indexing scheme for content-based
image retrieval,”Multimedia Tools Applicat., vol. 6, pp. 263–288, May
1998.

[8] K. Chakrabarti and S. Mehrotra, “Local dimensionality reduction: A new
approach to indexing high-dimensional spaces,” inProc. ICVLDB, 2000,
pp. 89–100.

[9] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M.
Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, “Query
by image and video content: The QBIC system,”IEEE Comput., vol. 28,
pp. 23–32, Jan. 1995.

[10] A. Hinneburg, C. C. Aggarwal, and D. A. Keim, “What is the nearest
neighbor in high-dimensional spaces?,” inProc. ICVLDB, 2000, pp.
506–515.

[11] E. Horowitz, S. Sahni, and D. Mehta,Fundamentals of Data Structures
in C++ . Rockville, MD: Computer Science, 1995.

[12] P. Indyk and R. Motwani, “Approximate nearest neighbors: toward
removing the curse of dimensionality,” inProc. ACM STC, 1998, pp.
604–613.

[13] K. V. R. Kanth, D. Agrawal, and A. Singh, “Dimensionality reduction
for similarity searching in dynamic databases,” inProc. ACM SIGMOD
ICMD, 1998, pp. 166–176.

[14] N. Katayama and R. Satoh, “The SR-tree: An index structure for high-
dimensional nearest neighbor queries,” inProc. ACM SIGMOD ICMD,
1997, pp. 369–380.

[15] E. Kushilevitz, R. Ostrovsky, and Y. Rabani, “Efficient search for ap-
proximate nearest neighbor in high-dimensional spaces,” inProc. ACM
STC, 1998, pp. 614–623.

[16] J.-H. Lee, G.-H. Cha, and C.-W. Chung, “A model fork-nearest
neighbor query processing cost in multidimensional data space,”Inf.
Process. Lett., vol. 69, pp. 69–76, 1999.

[17] K.-I. Lin, H. V. Jagadish, and C. Faloutsos, “The TV-tree: An index
structure for high-dimensional data,”VLDB J., vol. 3, no. 4, pp.
517–542, 1994.

[18] N. Megiddo and U. Shaft, “Efficient nearest neighbor indexing based
on a collection of space-filling curves,” IBM Almaden Research Center,
San Jose, CA, RJ 10 093, 1997.

[19] M. Miyahara and Y. Yoshida, “Mathematical transform of (R,G,B) color
data to Munsell (H, V, C) color data,”Vis. Commun. Image Process., vol.
1001, pp. 650–657, 1992.

[20] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D.
Petkovic, P. Yanker, C. Faloutsos, and G. Taubin, “The QBIC project:
Querying images by content using color, texture, and shape,” inProc.
SPIE Conf. Storage and Retrieval for Image and Video Databases II,
1993, pp. 173–187.

[21] N. Roussopoulos, S. Kelly, and F. Vincent, “Nearest neighbor queries,”
in Proc. ACM SIGMOD ICMD, 1995, pp. 71–79.

[22] J. Shepherd, X. Zhu, and N. Megiddo, “A fast indexing method for
multidimensional nearest neighbor search,” inProc. IS&T/SPIE Conf.
Storage and Retrieval for Image and Video Databases VII, 1999, pp.
350–355.

[23] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and perfor-
mance study for similarity-search methods in high-dimensional spaces,”
in Proc. ICVLDB, 1998, pp. 194–205.

Guang-Ho Cha received the Ph.D. degree in com-
puter engineering from the Korea Advanced Institute
of Science and Technology (KAIST), South Korea,
in 1997.

From 1999 to 2000, he was a Visiting Scientist at
the IBM Almaden Research Center, San Jose, CA. He
was also an Assistant Professor of Multimedia Engi-
neering, Tongmyong University of Information Tech-
nology, Busan, South Korea. He is currently an Assis-
tant Professor in the Department of Multimedia Sci-
ence at the Sookmyung Women’s University, Seoul,

South Korea. His research interests include content-based image/video/music
indexing and retrieval, XML databases, and distance learning.

Chin-Wan Chung received the Ph.D. degree from
the University of Michigan, Ann Arbor, in 1983.

He was a Senior Research Scientist and a Staff
Research Scientist in the Computer Science Depart-
ment at the General Motors Research Laboratories
(GMR). While at GMR, he developed DATAPLEX,
a heterogeneous distributed database management
system integrating relational databases and hierar-
chical databases. Since 1993, he has been a Professor
in the Division of Computer Sciences at the Korea
Advanced Institute of Science and Technology

(KAIST), South Korea. At KAIST, he developed a full-scale object-oriented
spatial database management system call OMEGA, which supports ODMG
standards. His current research interests include XML, multimedia databases,
spatio-temporal databases, and Web databases.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

