
A Scalable Multicast Architecture for One-to-many Telepresentations

Jim Gemmell
Microsoft Research

jgemmell@microsoft.com

Eve Schooler
California Institute of

Technology
schooler@cs.caltech.edu

Roger Kermode
MIT Media Lab

woja@media.mit.edu

Abstract

We have developed a scalable reliable multicast
architecture for delivering one-to-many telepresentations.
In contrast to audio and video, which are often
transmitted unreliably, other media, such as slides,
images and animations require reliability. Our approach
transmits the data in two layers. One layer is for session-
persistent data, with reliability achieved by FEC alone,
using the Fcast protocol. The other layer is for dynamic
data, with reliability achieved using the ECSRM protocol,
which combines FEC with NACK suppression. Our
approach is scalable to large heterogeneous receiver sets,
and supports late-joining receivers. We have implemented
our approach in a multicast version of PowerPoint, a
graphical slide presentation tool.

1 Introduction

A telepresentation is a presentation in which the
presenter and/or some of the audience members, are not
physically and temporally co-located but are telepresent,
distributed in different locations and/or are participating
at different times [11]. We believe that telepresentations
have begun to revolutionize education, conferences,
training, etc. by reducing associated costs and making the
material available to much larger audiences. In this paper,
we describe a scalable architecture for live multicast
telepresentations, consisting of audio, video and
presentation graphics. Presentation graphics may include
data objects that are text, graphics, images, animations
and special effects.

IP multicast is an excellent means of transmitting data
to multiple destinations. However, it provides an
unreliable datagram service, where there are no delivery
guarantees. This is not an issue for some telepresentation
media. For example, demonstrations of real-time audio
and video transmissions regularly take place on the
Multicast Backbone (MBone), a multicast-capable portion
of the Internet [9]. Occasional packet loss is acceptable,
both visually and audibly. If a lost packet were
retransmitted, it often would arrive too late for the

receiver to process the missing data. Consequently, packet
audio and video typically are carried by a real-time
transport protocol, such as RTP, which concerns itself
more with timely delivery rather than reliable delivery.
Although there are reliable protocols that exist for real-
time media [16], at the present time the mainstream
approach for robustness is to add forward error correction
to the data stream [4]. We assume in this paper that
solutions exist to transmit audio and video in
telepresentations, and focus our attention on the
presentation graphics.

In contrast to individual video frames, some
presentation graphics may be displayed for a considerable
length of time. For example, a slide with text bullet points
may be displayed for several minutes. Therefore, reliable
transmission is required. Furthermore, there is sufficient
time to perform retransmissions. Our goal is to provide a
reliable multicast solution for presentation graphics that is
scalable to large audiences. As we expect the largest
audiences to involve users connected via slow modems,
accommodating low bandwidth connections is also an
important goal.

Individual objects transmitted as part of the
telepresentation graphics may persist for different
timeframes. For example, a background image may be
used throughout the entire presentation, while a particular
graphic may only be used for a short time in the middle of
the presentation. We want to ensure that resources are not
wasted on objects that will no longer be used. To this end,
we support three kinds of data persistence: no persistence,
sliding-window persistence, and session-persistence. Our
solution uses two transport protocols built on top of IP
multicast to achieve these goals: Erasure-Correcting
Scalable Reliable Multicast (ECSRM) and FEC-
multicasting (Fcast). ECSRM is used for sliding-window
persistence, while Fcast is used for session-persistent
data. Non-persistent data is sent unreliably.

While ECSRM [11] and Fcast [25] are useful in many
applications, in this paper we are particularly concerned
with their applicability to one-to-many telepresentations.
We have designed a Multicast PowerPoint prototype that
utilizes ECSRM and Fcast. PowerPoint is a presentation
graphics application built on a slide-show metaphor. For

live telepresentations, we have used Multicast PowerPoint
in conjunction with packet audio and video transmitted
via RTP. We hope to release Multicast PowerPoint on the
Internet in the near future.

In the remainder of the paper, we discuss persistence
issues and our implementation of Multicast PowerPoint in
more detail. We present the underlying collaboration
model, architectural assumptions, and the idea of data
persistence. We review the properties of IP multicast, and
outline the difficulties faced in building scalable
reliability on top of it. We provide an overview of FEC in
practice, then elaborate on how it can be integrated with
multicast to handle both static and dynamic data in
telepresentations. We describe the Fcast and ECSRM
protocols and highlight the complementary nature of their
tasks within large telepresentations. Finally, we discuss
open issues for future work.

2 The problem of persistence

In a typical reliable unicast protocol, such as TCP, a
data packet is cached at the sender until the receiver sends
an acknowledgment (ACK) of the packet’s receipt. Once
acknowledged, the packet may be flushed from the cache.
In a scalable reliable multicast, this simple scheme is
often infeasible. If the receiver set is unknown or new
receivers are allowed to join in mid-session, then it is
impossible for the sender to determine when a packet may
be flushed [12]. An obvious solution is to cache
everything for the duration of the session. However, all
session data would be treated as if it were equally useful
throughout the session, even though some data may
become “stale” later in the session. Maintaining cache
space and utilizing transmission bandwidth on such data
would be wasteful. Therefore, the problem is one of
identifying the persistence of data: when is it created and
for how long does it remains valid?

A popular approach in the reliable multicast research
community uses Application Level Framing (ALF) [7].
With ALF, the application is responsible for recovering
lost data. Data is broken down for transmission into
Application Data Units (ADUs), which are self-
identifying so that they may be interpreted even if
received out of order. In this manner the application could
recognize what ADUs have become stale, and could avoid
wasting cache space or communications bandwidth on
them. However, this supposes that the persistence of each
ADU in the application namespace is communicated to
receivers. With large, dynamic namespaces, the amount
of bandwidth required to communicate this information
could be prohibitive. Providing arbitrary persistence in an
ADU namespace remains an open research problem, and
it is not clear that it is generally useful; we believe that
many applications can work well with the persistence
scheme we describe below.

Instead of allowing an arbitrary level of persistence for
every data object, with negligible overhead we support
three levels of persistence based on the specific
characteristics of our application:
• no persistence (i.e., data that may be unreliably

transmitted because its usefulness is transient),
• sliding-window persistence (i.e., dynamic, but critical

data that is temporarily cached), and
• session persistence (i.e., data that is used throughout

the entire presentation or session).
Sliding-window persistence is achieved by assigning

each packet a sequence number, and allowing the
application to explicitly increase the lowest sequence
number that is to remain in the cache. Therefore, a sliding
window allows variations on the Least Recently Used
(LRU) strategy. Our protocols have no knowledge of
ADUs, but only of packet sequence numbers. However,
the sliding window is most useful when it is advanced
according to ADU boundaries, e.g., a slide of presentation
graphics. Our Multicast PowerPoint application uses the
sliding window in this fashion.

In the case of Multicast PowerPoint, the session-
persistent data is known before the telepresentation
begins; no new session persistent data is generated
dynamically during the session. Therefore, receivers will
only need this data when they first join. We send the
session-persistent data on a separate multicast channel so
that transmitting it to late joiners will not impact the
performance of the dynamic, sliding-window data.
Additionally, the static nature of the session data allows
us to utilize the Fcast protocol, as explained below.

3 Architecture of Multicast PowerPoint

One of the most successful demonstrations of scalable
reliable multicast to date has been the MBone whiteboard
tool, wb, which uses the SRM reliable multicast
framework [10]. SRM stands for the Scalable Reliable
Multicast protocol, which is constructed on top of IP
multicast. Because some confusion may result between
SRM and scalable reliable multicast in general (i.e.,
reliable multicast that is scalable) we will only refer to
SRM by its acronym, and will use “scalable reliable
multicast” in the general sense. We will use both wb and
SRM as a point of departure in this paper.

While wb is designed to allow anyone in a session to
write on the whiteboard, Multicast PowerPoint is
designed for one sender presenting to an extremely large
audience. This distinction is intentional; there is an
inherent limit to the number of users who can draw
concurrently on a whiteboard or who can present material
simultaneously in a telepresentation. Even if the number
of senders could technically be scaled, practically and
socially the number of senders is not scalable. Imagine
thousands of people scribbling on a whiteboard at once!
As the audience scales you cannot allow an “open floor”

in which any audience member addresses the group or
presenter at any time.

To avoid chaos at a practical and social level there
must be a scalable floor control mechanism that admits a
limited number of senders, whether to present, write on a
white board, or give feedback to the presenter. There has
been some work in this area, for example, the UC
Berkeley question board [17]. Having a scalable floor
control mechanism allows us to trivially extend our
single-sender scheme to share the session bandwidth
among a dynamic, but limited number of senders. We
consider this issue beyond the scope of this paper. For
now, we focus on a one-to-many model for data flow,
from presenter to audience, and assume that floor-control
methods such as these will co-exist with the scalable
transport provided by our software.

As a stand-alone application, PowerPoint is a slide
preparation and presentation tool. PowerPoint slides may
include text, graphics, images, etc. These elements may be
animated or combined with special effects. For example,
one slide may dissolve into another or text may move
across a slide when the mouse is clicked.

A Multicast PowerPoint telepresentation has four
components: (1) the slide master, which is the background
template used by all slides and which can include images,
text, default colors, etc., (2) the individual slides, (3)
annotations made on the slides, and (4) control
information, indicating when to change slides or to
perform an animation or effect. These four kinds of
information are mapped into the three persistence levels
discussed above.

The slide master is persistent for the whole session, as
it is needed to render any slide.

Control information is sent as non-persistent data that
is piggybacked on each data packet. When no data is
being sent, control information is sent in a heartbeat
message every half second. The control information
indicates the current slide of the presentation and the step
or animation point within that slide. Therefore, with the
receipt of the most recent control information, old control
information becomes irrelevant. Thus unreliable
transmission of control messages is acceptable, not only
because each control message is aged and expired quite
rapidly, but also because new packets constantly update
the most current control information.

Every effort is made to transmit the currently-viewed
slide and its annotations in a timely fashion. In addition,
Multicast PowerPoint pre-sends the next anticipated slide
while the current slide is being displayed. Thus, when a
control message is received that advances the slide show,
the new slide can be rendered immediately without delay.
Also, pre-sending the next slide allows more time to
recover lost packets – an important consideration with
ECSRM, as we shall see below. When the presenter
moves past a slide, we do not want to use up network and
other resources to complete the reliable transfer of the
slide or annotations, as they are no longer displayed.

Therefore, sliding-window persistence is used such that
the window only contains the current slides, its
annotations, and the next anticipated slide. Note that if the
next slide is not the one anticipated, then the pre-send can
be aborted (if it has not yet completed) and the correct
slide can begin to be sent immediately.

Figure 1. Transmission progress in Multicast PowerPoint.

The presenter in Multicast PowerPoint is given
graphical feedback indicating how much of the current
slide has been transmitted, how much of the next slide has
been transmitted, and how many re-sends are currently
queued to be resent (Figure 1). By giving the presenter an
indication of what progress has been made by the
protocol, the presentation may be paced accordingly.

Non-
persistent
data

Sliding-
window
persistent
data

Slides

Annotations

Slide master

Full presentation

Control information

Session-
persistent
data

Figure 2. Logical channels of a telepresentation.

In addition to the timely delivery of the currently-
viewed slide and its annotations, there may be a further
goal to obtain a copy of the full presentation (the slide
master plus the original slide set). We handle this via
what is essentially a second session dedicated to
transferring the entire presentation. However, it may be
useful to logically couple this session with the live
telepresentation for the purpose of cache-stuffing. That is,
some receivers with poor connections may desire to tune
in early and stuff their cache with as much of the
presentation as possible, reducing how much they must
rely on reception during the live multicast. Likewise, late
joiners may wish to fill in missed slides, but opt to do so
in background. The full presentation is considered
session-persistent data.

Thus, we have five logical channels: control, slides,
annotations, slide master, and the full presentation (Figure
2). It is possible to assign each logical channel to a
different multicast address. However, to conserve
multicast addresses it is also possible to combine some

logical channels on a single multicast address. For
example, in our prototype, the control information, slides,
and annotations are sent together.

Receivers may opt to receive all the logical channels at
once, but are likely to join and leave logical channels as
necessary and as a function of bandwidth availability. For
instance, in Figure 3 a receiver first tunes in for the slide
master. Once it is received, the receiver drops out of that
transmission (which is devoted solely to repeated
transmission of the slide master template) and tunes in to
the slides, annotations, and control messages. After the
live telepresentation completes, the receiver tunes in to
the full presentation (which is dedicated to the repeated
transmission of the slide master as well as original slide
set) and picks up any pieces it has missed. Figure 4
depicts another scenario where the receiver tunes in to the
full presentation prior to the live telepresentation. Then
when the telepresentation starts, it only needs to receive
control information and annotations.

Control information

Annotations

Slide master

Full presentation

time

Slides

Figure 3. A receiver channel membership scenario

We assume that there exists an outside mechanism to
share session descriptions between the sender and
receiver. The session description might be located on a
Web page, or conveyed via E-mail or other out-of-band
methods. The session description indicates what multicast
addresses are being used, when they are being used, and
what kind of media is being carried over them. It also
carries other information, such as the associated port
number(s), data rate(s), TTL (a time-to-live or “scope”
that defines how far each multicast packet can travel),
type of FEC encoding, and a high-level description of the
session.

Control information

Full presentation

time

Annotations

Figure 4. Another receiver channel membership scenario

Note that the data rates associated with each multicast
address are likely to be different and to be tailored to the
relative importance of the data in the telepresentation. For
our particular application, we assume that each multicast

address is rate-limited, and that receivers who cannot
keep up with that rate do not join the address.

In order to pre-fetch the full presentation, a session
description might indicate an earlier start time for the
multicast address carrying the full presentation channel
than for the multicast address(es) devoted to the live
telepresentation. The full presentation multicast address
may also have a completion time further in the future than
the other channels, for example to accommodate late
joiners who are only able to fill in missing slides after the
official completion time of the live telepresentation.

In our current Multicast PowerPoint prototype, we
identify each slide (ADU) simply by a number, which is
compact enough to include in each packet. However, in
the future we may split up the collection of slides into
smaller units and refer to them by URL. In such a case, it
would be necessary to communicate a cross-reference
between the URL and an integer identifier used in its
place during transmission. This information may be
carried in the session description, or transmitted in-band.

4 Scalable reliable multicast

A number of efforts have been undertaken to provide
reliability on top of IP multicast [3][6][8][10][14][21][26]
[29][30]. However, some of these approaches do not
scale. In designing a reliable multicast scheme that scales
to arbitrarily large receiver sets, there are typically two
problems. First, if the sender must keep state information
for each receiver, the state can become too large to store
or manage, resulting in state explosion. Second, there is
the danger of reply messages coming back to the sender
causing message implosion, i.e., overwhelming the sender
or the network links to the sender. These reply messages
may be ACKs that a packet has been successfully
received or negative acknowledgments (NACKs) that
indicate a packet has not been received.

State explosion can be avoided by simply keeping no
state at the sender and making the receiver responsible for
detecting loss. Such schemes are referred to as receiver-
reliable, and some reliable multicast protocols adopt this
approach. In order to deal with implosion, a number of
techniques have been devised:

• No Back Channel [2][23][24]: In this receiver-
reliable approach, redundant data is sent for loss
repair. No messages are sent back in the direction
from receiver to sender. In the simplest case the data
is simply looped as a data carousel or broadcast disk.
A more effective approach uses forward error
correction (FEC) to encode packets.

• Local Repair [10]: NACKs and repairs are not sent
to the whole group, but are kept within a restricted
area. Any member of the group may perform a re-
send. This method keeps losses in one topological
region from impacting the rest of the group.

• Hierarchy [14][21][30]: Hierarchical approaches
organize the receiver set into a tree, with the sender at
the root and the degree of the tree limited. Each inner
node is only responsible for reliable transmission to
its children, which limits state explosion and message
implosion and accomplishes local repairs.

• Suppression [22][10]: This receiver-reliable scheme
uses delay to avoid implosions. All NACKs are
multicast. When a receiver detects a lost packet, it
delays (“suppresses”) the NACK for a random
amount of time, in hopes of receiving a NACK for
the same packet from some other host. Whether it has
sent or suppressed the NACK, a receiver then resets
its timer for that packet and repeats the process until
the packet is received.

• Polling and Key Matching [13][5]: All nodes
generate a random key of sufficient bits so that
uniqueness is extremely likely. The sender sends a
polling message, which includes a key and a value to
indicate the number of bits that must match between
the sender’s key and a receiver’s key. When there is a
match with the given number of bits, a receiver is
allowed to request a re-transmission. The sender
therefore is able to throttle the amount of traffic
coming from receivers, and to obtain a random
sampling of feedback.

All of these approaches have drawbacks. Data
carousels can only be used when the data is static and
long lived and when the receiver is willing to wait an
entire loop to obtain missed data. Multicast receivers will
have differing loss rates, so any FEC targeted at a
particular rate is bound to be too much for some and too
little for others. Hierarchies raise the question of tree
management. A static tree has problems with setup,
inflexibility, and maintenance. A dynamic tree may
become unstable when the membership is unstable
(consider viewers who “channel-surf”), and may select
unsuitable interior nodes (a slow processor behind a slow
modem). Local repairs are only marginally helpful when
losses are near the sender. Both hierarchical and local
repair approaches need to map to network topology, but
have only the very crude use of TTL at their disposal.
Suppression essentially trades off delay for scalability. At
a certain point the delay becomes so long as to render it
useless. Polling also trades delay for scalability.

Naturally, hybrids are possible. Local repairs are often
combined with hierarchy. Polling may be used as a means
to tune delay in a suppression scheme. Multicast
PowerPoint supports scalable reliable multicast via a
hybrid of FEC with other techniques. For dynamic session
data, it uses ECSRM, which combines FEC with
suppression. For session-persistent data, it relies on Fcast,
combining FEC with a data carousel.

5 FEC: (n,k) linear block encoding

Most of the FEC literature deals with error correction,
that is, the ability to detect and repair with both erasures
(losses) and bit-level corruption. However, in the case of
IP multicast, lower network layers will detect corrupted
packets and discard them. Therefore, an IP multicast
application need not be concerned with corruption; it can
focus on erasure correction only.

The form of erasure correction (EC) utilized in the
Multicast PowerPoint prototype is known as (n,k) linear
block code. k source packets are encoded into n>k
packets, such that any k of the encoded packets can be
used to reconstruct the original k packets (Figure 5). For
example, parity can be used to implement (k+1, k)
encoding. (n,k) encoding and decoding algorithms have
been developed that are efficient enough to be used by
general purpose personal computers [1][24][15]. For
example, Rizzo’s public domain codec has been shown to
operate at rates of over 11 MB/s on a 133 MHz Pentium
and at rates over 350 KB/s on a 25 MHz 386 [24].

1 2 k. . .Original packets

1 2 k. . . k+1 n. . .

encode

take any k

.

decode

1 2 k. . .Original packets

Figure 5. (n,k) encoding and decoding: k original packets are
reconstructed from any k encoded packets.

In practice, k cannot be arbitrarily large. For example,
typical k values are 16 and 32, and n is generally less than
255 [24]. The basic EC unit is a block and a typical block
size is 1024 bytes. We use the terms block and packet
interchangeably, because the transmission payload is one
and the same as an EC block. Each packet in the session
must be assigned into an EC group of k packets, which
may then be encoded into n packets. Each packet is
identified by an index specifying which of the n encoded
packets it is, as well as a group identifier associating it
with an EC group.

Some encoding schemes, including the one we have
chosen for our prototype, simplify matters by making the
first k of the n encoded blocks be copies of the original
blocks. Therefore, if no packets are lost, a receiver does
not incur any processing overhead decoding the k packets.
Another nice property of FEC encoding is that encoded
packets are approximately the same size as original
packets. The only overhead introduced in the packet
header is the need to indicate the index and group (40 bits
in our prototype).

6 Persistent session data

For the persistent session data, we employ Fcast [25].
The Fcast protocol combines (n,k) encoding with a data
carousel; its use of (n,k) encoding reduces the time taken
for a receiver to receive a missing packet, as compared to
a plain data carousel. In the Multicast PowerPoint
context, Fcast is used for the logical channel containing
the slide master, as well as the channel meant for the full
presentation. That is, the channels containing only static
session-persistent data. When a receiver joins such a
channel, Fcast is able to deliver the data to it in near-
optimal time, as we shall see below. Because it uses no
back-channel, it is as scalable as IP Multicast.

In most regards, the Fcast protocol is a straightforward
adaptation of the algorithms presented in [23][27]. Fcast
has network and codec performance essentially like the
one-layer case in [23]. However, there are two notable
aspects about its implementation: its ability to multiplex
any number of static objects (e.g., files or slides) onto a
single channel, and its treatment of memory versus disk
storage.

6.1 Multiplexing static objects

The transmission order of the blocks from an EC group
is important. The receiver must obtain k distinct blocks
out of the n blocks to reconstruct the original k blocks.
Any duplicates that are received must be discarded.
Therefore, we do not want to repeat transmission of any
block until all the others have been sent. Furthermore, the
ordering among the groups is important. If all n packets
for a group were to be sent at once, this could create a
long delay for a receiver waiting for a packet from some
other group. Therefore a packet is sent from each group in
turn.

Because k and n are values constrained by software
complexity, an object of size N blocks is partitioned into
G=N/k groups. Thus, the typical transmission order for an
N block object, with G groups might be as suggested by
[23] and shown in Figure 6: block 0 from each group,
block 1 from each group, … block n-1 from each group.
When the last packet of the last group is sent, the next
transmission cycle begins again with block 0. Note that

the darkly shaded area represents the original object of
size N=Gk and the transmission order is such that original
blocks (indices < k) are sent before any encoded blocks.

G

 1

Group

Index

k
(original blocks)

…

n-k
(encoded blocks)

…

Figure 6. Transmission order: Packet 1 of each group is sent,
then packet 2, etc.

Suppose a receiver gets to the point where it only
needs one packet from a certain group to have a complete
transmission. Then, in the worst case, it may require the
receipt of G additional packets. In other words, the
receiver may have to receive a packet from each of the
other groups before getting a packet from the desired
group. Suppose now that somehow losses were correlated
so that k packets were received from all groups but one,
and no packets from that one group. Then at least kG
more packets would need to be received. However, such
correlation is unlikely unless some periodic failure occurs
in the network. Even so, correlation may be avoided by a
number of techniques, including randomly perturbing the
group order in each cycle. An alternate approach (that we
do not use) is to take advantage of correlation and to split
FEC onto different channels [15]. For more detailed
analysis, we refer the reader to [23] and simply point out
that without correlation the number of unnecessary
packets received is quite low. Furthermore, while a packet
may be unnecessary to one given receiver it is likely to be
useful to some other receiver within the session.

Fcast can be used to convey multiple objects. This is
useful when we combine multiple objects onto a single
channel, as in the case of the channel for the full
presentation, consisting of each slide including the
master. Each object is split into groups of size k. Every
packet header then identifies its contents by object ID,
group number, and index. The packet transmission order
for multiplexed objects is as follows. The packet ordering
begins with block 0 of the first group of the first object.
The sender slices the object along block indices, then
steps through index i for all groups within all objects
before sending blocks with index i+1. When block n of
the last group of the last object is sent, the transmission
cycles. Figure 7 shows an example for three objects,
where the first object contains G groups, the second
object G’ groups, and the third object G’’ groups.

G

k
(original blocks)

n-k
(encoded blocks)

G’

G’’

… …

Figure 7. Transmission order for multiple objects

The multiplexing capability of Fcast allows for flexible
coupling and de-coupling of logical channels. This may
prove to be especially useful when the Multicast
PowerPoint prototype begins supporting live Web links,
which would need to be multicast along with other live
telepresentation data. Each link might be considered its
own static slide, which very likely will point to still other
links that should be treated as static slides. Fcast will be
able to multiplex the content of several links onto a single
multicast channel. Presently, the coherent indexing
scheme allows a receiver to avoid processing redundant
information, by comparing the indices of an incoming
packet (object, group, index) with those received across
the aggregate of the channels. For instance, a late joiner
may only have had time to subscribe to the slide master
channel, followed by the live telepresentation channel(s).
Afterwards, when the receiver chooses to tune into the
full presentation, it will be able to detect and ignore
already-received packets.

6.2 Memory versus disk storage

As shown in Figure 7, Fcast sends both original and
encoded blocks. To construct an encoded block, k original
blocks must be processed in memory. A number of
caching options are possible:
• Cache original blocks in memory to avoid repeated

disk access
• Cache encoded blocks in memory to avoid repeated

computation
• Cache encoded blocks on disk to avoid repeated

computation and disk access of originals

Computation is unlikely to be the bottleneck. A typical
CPU (133 MHz Pentium) can encode at 88 Mb/s, which is
faster than the typical LAN (10 Mb/s Ethernet), and
certainly faster than typical Internet access. Additionally,
it is common for there to be many more encoded blocks

than originals, e.g., k=32, n=255. Therefore, in-memory
caching of encoded blocks is unlikely to be worthwhile.

Network connection Transmission Rate Required Disk
Rate, k=32

Modem 56 Kb/s 1.75 Mb/s
ISDN 128 Kb/s 4 Mb/s
xDSL/Cable Modem 1 Mb/s 32 Mb/s
Ethernet 2 Mb/s 64 Mb/s
Fast Ethernet 4 Mb/s 128 Mb/s
Fast Ethernet 10 Mb/s 320 Mb/s

Table 1. Required disk throughput rate (sustained) for sender
assuming no caching.

However, disk access could become a bottleneck, as k
original blocks are required to create each encoded block.
Storing only originals on disk, with no caching of any
kind, requires that the disk have a sustained rate that is k
times faster than the network transmission speed. Table 1

gives examples of disk rates required for various
transmission speeds. Note that performance in an Ethernet
begins to degrade at about 30% utilization, so we consider
4 and 10 Mb/s to be in the domain of a Fast (100 Mb/s)
Ethernet.

We assume that a typical disk can sustain > 0.5 MB/s,
so supporting modem and ISDN connections should not
be a problem. However, for higher speed connections the
disk may well be the bottleneck. For such scenarios,
either encoded blocks could be cached on disk (requiring
extra disk space), or the original blocks should be cached
in memory. We are primarily concerned with large
Internet audiences with low speed modems, so no caching
is necessary. To simultaneously support both high and low
rate receivers, a layered approach may be adopted (see
remarks in the Conclusion).

The Fcast receiver has a more complicated task.
Blocks may or may not arrive in the order sent, portions
of the data stream may be missing, and redundant blocks
will need to be ignored. Because the receiver is designed
to reconstruct the file(s) regardless of the sender’s block
transmission order, the receiver does not care to what
extent the block receipt is out of order, or if there are gaps
in the sender’s data stream. As each block is received, the
receiver tests:

• Does the block belong to the Fcast session?
• Has the block not been received yet?
• Is the block for a file that is still incomplete?
• Is the block for a group that is still incomplete (a

group is complete when k distinct blocks are
received)?

If a block does not pass these tests, it is ignored.
Otherwise, it is written immediately to disk. It is not
stored in memory because its neighboring blocks are not
sent contiguously, and even if they were, they might not
arrive that way or at all. The receiver keeps track of how
many blocks have been received so far for each group and
what the block index values are. The index values are

needed by the FEC decode routine. When the new block
is written to disk, it is placed in its rightful group within
the file (i.e., the group beginning at location
k*blocksize*group). But, it is placed in the next available
block position within the group, which may not be its
final location within the file. Once the receiver receives k
blocks for a group, the entire group of blocks is read back
into memory, the FEC decode operation is performed on
them if necessary, and the decoded group of blocks is
written back out to disk (beginning at the same location)
with all blocks placed in their proper place. Consequently,
the Fcast disk storage requirements are equal to the file
size of the transmitted file(s).

In order to write each block to disk as it is received,
disk throughput at the receiver is required to be at least
that of the transmission rate. At ISDN rates, this should
not be a problem, but at higher rates supporting such
random writes may be difficult. Also, decoding requires k
blocks must be read, then decoded, and then the k
decoded blocks must be written to disk. If this is to be
done while blocks are being received disk throughput
must be about 2k times faster than the receive rate. Often
this may not be the case, so decoding should be done at a
lower priority than writing received blocks. If no time is
available for decoding, it should be deferred until after all
necessary blocks have been received.

7 Dynamic session data

For the dynamic session data, we employ ECSRM
[11]. The ECSRM protocol combines NACK suppression
with erasure correction. In Multicast PowerPoint,
dynamic session data consists of the current slide, its
annotations, and the anticipated next slide. Fcast is
inappropriate because a data carousel of dynamically
changing data is extremely awkward to manage, and
because Fcast is targeted towards file transfers, where
ECSRM works in-memory to support small objects like
annotations. Furthermore, Fcast relies on the data being
static so that it can order transmission across groups.

In the remainder of this section, we present ECSRM
and related work.

7.1 ECSRM

Our implementation of ECSRM allows a window of
persistence to be dynamically set. Each packet is assigned
a sequence number. A low water mark is then updated
during the session, indicating the lowest sequence number
that may be requested for retransmission. Each packet’s
header updates the low water mark.

ECSRM uses suppression of NACKs to avoid
implosion. NACKs are scheduled when a gap is detected
in the sequence numbers of the received packets. If a host
has a NACK scheduled and receives the same NACK
from another host before the timer expires, it will

suppress its NACK. That is, the NACK is not sent, but the
timer is reset as if it had been sent. The original delay
before sending a NACK is set as a random value in the
range [MinD, MaxD], where MinD and MaxD are tunable
parameters. Subsequent timer delays are increased using
exponential random back-off. That is, the i’ th time a
receiver sets its timer for the receipt of a particular packet,
it will set the timer in the range 2i-1[MinD, MaxD].

One of our design goals is to work well with slow
modems, so rate control is a concern. Unlike SRM,
described below, we only allow the sender to issue
repairs. If repairs were issued from other receivers, then
the application would risk generating uncontrolled spikes
in bandwidth usage, which might cause problems for
modem connections. Consequently, ECSRM performs
rate control on all traffic from the sender, on original
traffic as well as retransmissions. NACKs may still create
spikes in bandwidth usage, but NACKs are small and
suppression is employed, so a small slice of bandwidth
reserved for NACKs should suffice to solve this problem.

ECSRM does not respond to a NACK by re-sending a
lost packet, as would other suppression schemes. Instead
ECSRM responds by sending an erasure-correcting
packet. As with Fcast, packets are assigned to EC groups
of size k, where k is a parameter set by the application for
the session. However, because ECSRM deals with
dynamic data, it cannot transmit one packet from each
group in turn. Instead, packets are assigned to the most
recent group as they are generated. When the current
group is filled with k original packets, a new group is
started. An (n,k) erasure correcting code is then applied to
generate as many as n packets for each group, as needed
only, where the first k are the original packets. The k
original packets may be sent immediately without waiting
for the group to fill, or performing any encoding. If a
receiver obtains all k packets from a group they may be
immediately used without any decoding.

Receivers keep track of the number of lost packets per
EC group. NACK messages specify the number of
packets lost from a particular EC group. In order to
compactly represent burst errors, NACK ranges are sent
of the form {1stGroup, 1stCount, LastGroup, LastCount}.
This indicates that 1stCount packets were lost from group
1stGroup, LastCount packets were lost from group
LastGroup, and all packets were lost from any group g,
such that 1stGroup < g < LastGroup. The basic idea
behind suppression is that a receiver suppresses its NACK
if it hears a NACK from another receiver that specifies
the same EC group and a lost packet count at least as
high. However, in practice suppression is based on
ranges, so a range is suppressed only when another range
is heard that is a superset of the original range.

NACKing based on group losses rather than individual
loss provides a reduction in both NACK traffic and in
responses to NACK traffic. NACK traffic is reduced
because NACK suppression is based on the number of

losses per group rather than on individual packets. The
traffic in response to NACKs is reduced because an
erasure-correcting packet can replace any given lost
packet from a group.

Whenever a NACK is sent, it incurs header overhead
from IP, UDP and the SRM protocol, amounting to at
least 40 bytes. With 32 bits used to represent a group and
8 bits a count, a NACK range uses 10 bytes. Therefore, a
receiver makes more efficient use of bandwidth if it sends
multiple NACK ranges at a time. At any time there may
be a number of NACK ranges waiting for their timer to
expire. When the first timer expires, additional NACKs
are included (“piggy-backed”) in the packet, even though
their timers haven’t expired. This affords further
suppression and increased timeliness at low cost in terms
of bandwidth.

When the sender receives a NACK range from which it
can infer that count packets were lost from group g, count
FEC packets are normally sent in response. However,
some re-send suppression is needed to prevent duplicate
NACKs from generating too many responses. With SRM,
NACKs are ignored for a certain interval after a NACK is
received. With ECSRM, each group retains a record of
the time at which the last k packets were sent from the
group (including EC packets). When a NACK for count
packets is received, the last count time values are
inspected. For each of them that is within the suppression
threshold, count is decremented by one. For example, if a
NACK for 3 packets was received, and 3 EC packets sent,
and then a NACK for 5 packets is received within the
threshold period, then the count would be suppressed
down to 2, and only 2 EC packets would be sent. For each
FEC group, a counter is kept of the last FEC packet sent.
When all n packets have been sent, the counter wraps
around and starts over with the first packet.

The above assumes that the group of packets being
NACKed is full (contains k packets). However, that may
not be the case. For example, suppose the sender starts a
session, sends one packet, and then does not transmit any
more data for a long time. Receivers who have lost the
one packet may then detect the loss via the sender’s
heartbeat packets and NACK a loss of one packet from a
group. In this example, the group is not yet full; it
contains only one packet. In the case where a NACK is
received and the EC group is not yet full, ECSRM will
wait for a short time, in the hope that the group will fill. If
it does not fill after that time, then original packets are
resent. Naturally, re-sending originals should be avoided.
To this end, the EC group size, k, is kept relatively small.
ECSRM allows the value to be set as a parameter of the
session, and the choice of k will depend on the
application.

Our implementation of ECSRM allows packets of
differing size to be sent in a single session. This implies
that a decoded packet may not have the same length as the
received packets used to produce it. In order to deal with

this, we include a field in the header indicating the packet
size. When encoding, the payload and the length are
encoded, but the header is not, as the header must be able
to be processed without any decoding (the header is
needed to do the decoding). For Multicast PowerPoint,
we attempt to keep all packets the same size. However,
when fragmenting a slide, the last packet for the slide may
be small. Such packets, along with annotation packets, are
the only packets of a differing size.

ECSRM optionally allows EC packets to be sent when
the channel is idle. When the session is initialized, a rate
limit must be specified. When the full rate is not utilized,
then extra EC packets may be sent, even though no
NACKs have requested them. When the channel is idle,
the sender cycles through the cached (sliding-window
persistent) FEC groups and sends the next EC packet for
each group. There are two benefits to this approach. First,
it may replenish lost packets that have not yet been
NACKed, further suppressing NACKs. Second, it allows
receivers with no multicast back channel for NACKs to
have losses corrected (e.g., UUNET multicasts to modem
dial-up customers, but does not allow them to multicast),
given enough idle channel time in the session. In the latter
case, ECSRM operates very much like an Fcast with a
dynamically changing carousel.

The scalability benefits from ECSRM are most
apparent with a large receiver set experiencing low-level
uncorrelated loss. Consider 1,000,000 members, and a
random, independent, loss of 0.01%. The chance of all
nodes receiving a given packet is 0.99991,000,000 < 10-43. So it
is a virtual certainty that each packet will be lost by some
receiver. Without any erasure correction, each packet
must be sent at least twice, cutting the effective
bandwidth in half. Also, a NACK would need to be sent
for each packet. Suppose, now, that ECSRM is used with
a group size, k, of 7. A single EC packet can correct the
loss of any single packet in the group, and correct the
kind of low-rate loss described above. This means a loss
of only 1/8 of effective bandwidth, compared to a loss of
½ of effective bandwidth without erasure correction.
Furthermore, the NACK traffic would be reduced by a
factor of 7, as a NACK for a single packet from each
group will suppress all other NACKs for a lost packet in
the group. In contrast, a NACK is needed for each packet
without erasure correction. Of course, re-sends and
NACKs may also be lost, but for the purpose of simple
comparison we ignore that loss here.

The above example considers independent loss. With
correlated loss, using erasure correction does not provide
any benefit over just re-sending original packets.
However, it does not use any more network resources
(only CPU overhead for decode). Furthermore, for losses
to be totally correlated implies that the loss occurs very
near the sender. Such loss must reduce any scheme to
retransmission of the same number of packets. At any
rate, as the receiver set scales, the number of links and

sub-networks involved must increase, so some measure of
independence is to be expected.

7.2 Other work related to ECSRM

SRM [10] uses suppression of NACKs and
suppression of re-sends to avoid implosion. Any host with
the data required by a NACK may re-send the packet. A
goal in SRM is to increase the probability that a host close
to the point of loss is most likely to perform the re-send.
However, (1) this feature is only probabilistic, not
guaranteed, (2) the node nearest the point of loss may not
really be suitable – it may be under-powered or on a slow
or congested link, (3) we assume that applications using
NACK suppression can afford to trade off time for
scalability – so fast re-sends are not so critical, and (4) in
the case of live telepresentations, continued connectivity
to the sender is critical. Additional fault tolerance from
this feature is not important. Additionally, SRM lacks
control over the rate of incoming data to a given receiver,
due to its distributed nature. At a given time several nodes
may be sending NACKs, several may be re-sending data,
and the sender may be sending new data. This may lead to
an aggregate traffic level that is higher than some nodes
can handle.

Integration of FEC and reliability was first proposed
by Metzner [19]. Another approach that combines NACK
suppression with FEC is Protocol NP [20]. Protocol NP
proceeds in rounds. In each round the sender sends its
data, polls receivers for the number of missing packets,
and then sends that number of EC packets. It can carry on
with sending new data from the next round, but will
interrupt this to send EC packets requested from previous
rounds. Receivers perform NACK suppression. Like
ECSRM, a receiver does not NACK a particular packet,
but rather indicates how many packets from a particular
EC group have been missed.

0

10

20

30

40

50

60

5 10 15 20 25
Tim e

P
ac

ke
ts

 R
ec

ei
ve

d

SRM

ECSRM

Figure 8. Minimum and maximum data packets received by
receivers for SRM and ECSRM (k=16). Simulation results for

112 receivers and loss rates from 2% to 28.3%

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20Tim e

N
A

C
K

s
re

ce
iv

ed

SRM

ECSRM

Figure 9. Minimum and maximum NACKs received by
receivers for SRM and ECSRM (k=16). Simulation results for

112 receivers and loss rates from 2% to 28.3%

Floyd et al. include simulation results for SRM
performance [10]. The performance gains yielded by
integrated FEC with NACK suppression are described in
detail by Nonnenmacher et. al. [20]. They show how
adding FEC produces performance gains, and how
integration of FEC into the protocol results in even more
dramatic gains. Figure 8 and Figure 9 show simulation
results for SRM and ECSRM with 112 receivers, k=16,
and receiver loss rates from 2% to 28.3%. Traffic
observed at each receiver was recorded, and the minimum
and maximum plotted in these graphs. Figure 8 shows
data packet traffic and Figure 9 shows NACK traffic.
Note that ECSRM generates much less traffic, and
completes much sooner. For more details about this
particular simulation and related simulations, see [16].

8 Conclusion

We have presented a scalable multicast architecture for
live telepresentations, as exemplified by Multicast
PowerPoint. Our approach splits the telepresentation into
its underlying components: the slide master; individual
slides; real-time annotations; and control information for
advancing the presentation and triggering graphic effects.
These objects are considered logical channels of
information. In addition, we provide a logical channel for
the full presentation – a combination of the slide master
and the original slide set. The full presentation is often
useful to receivers because it may be pre-fetched to
reduce bandwidth requirements during the session, or it

may be requested during or after the session by late
joiners. The logical channels are mapped, either
separately or in combination, to multiple multicast
addresses, which may be individually selected by
receivers. Receivers benefit by this approach because they
are able to tailor their needs based on their bandwidth
capabilities and on when they join the telepresentation.

Our design supports different levels of object
persistence: no persistence, sliding-window persistence,
and session persistence. Different levels of persistence
require different transmission strategies. Non-persistent
data, such as control information, is transmitted using
unreliable IP multicast. We have designed ECSRM to
support sliding-window persistence. ECSRM combines
NACK suppression with erasure correction, improving on
the scaling properties and rate control of other protocols.
Thus, dynamic session data, such as the currently-viewed
slide, its annotations, and the next anticipated slide, are
handled by ECSRM. Session persistent data, such as the
slide master, slide content and the full presentation, are
handled by Fcast, which uses erasure correction in a data
carousel. The combined use of ECSRM and Fcast allows
Multicast PowerPoint to support extremely large
heterogeneous receiver sets, yet still accommodate late
session joiners.

The most obvious question raised by Multicast
PowerPoint is whether two protocols are, in fact, needed.
One approach would be to use only ECSRM. Use of
ECSRM for session-persistent data may marginally
improve best-case throughput (Fcast performs well
already in the worst case), but would introduce back-
traffic and reduce scalability. A more attractive option
would be to use only Fcast, so that no back-traffic is
required and scalability is enhanced. However, it is not
clear how to adapt Fcast to dynamic data, and even if it
could be thus adapted, its performance would need to be
studied to understand in what scenarios it could replace
ECSRM. Devising dynamic schemes for Fcast and
evaluating their performance appears to be a fruitful area
of future research.

There are a number of other interesting areas to
explore. We would like to divide up slides into smaller
components: text, graphics, etc. Then, even if part of a
slide has been lost, the remainder could still be rendered
quickly. Additionally, we would like to examine layered
transmission, where data is split up across a number of
multicast addresses. Multiple layers have been used, for
example, in video applications [18]. The idea is that if the
number of addresses subscribed to by the receiver
increases, then the overall data quality increases. Joining
and leaving layers allows receivers to throttle the received
data rate, and therefore may be used for multicast
congestion control, which is an important open research
question. Layering has already been shown to be very
effective for an Fcast type scenario [27].

A future direction for ECSRM is to dynamically adjust
suppression times based on the observation of NACK

traffic. This could be accomplished independently by
receivers or via a polling and key matching method.
Statistics also could be collected from the receivers,
similar to RTCP.

At present, our prototype requires all parties to have
PowerPoint. In the future, we would like to transmit the
slides as HTML so that any browser may be a receiver.
We plan to release our prototype on the Internet in the
near future.

Acknowledgments

This work was supported in part by the Air Force
Office of Scientific Research under grant AFOSR
F49620-97-1-0267 and a Microsoft Graduate Fellowship.
Thanks to Jim Gray, Paul Sivilotti, and the reviewers for
their helpful comments.

References

[1] N. Alon, M. Luby, A Linear Time Erasure-Resilient Code
With Nearly Optimal Recovery. IEEE Transactions on
Information Theory, 42:6 (Nov 1996) 1732-1736.

[2] S. Achera, M. Franklin, S. Zdonik, Dissemination-Based
Data Delivery Using Broadcast Disks. IEEE Personal
Communications, (Dec 1995), 50-60.

[3] K. Birman, A. Schiper, P. Stephenson, Lightweight Causal
and Atomic Group Multicast. ACM Transactions on
Computer Systems, 9:3 (Aug 1991), 272-314.

[4] J.C. Bolot, H, Crepin, A. Vega Garcia, Analysis of Audio
Packet Loss in the Internet. Proceedings of 5th

International Workshop on Network and Operating System
Support for Digital Audio and Video, (Apr 1995) 163-174,
Durham, New Hampshire.

[5] J.C. Bolot, T. Turletti, I. Wakeman, Scalable Feedback
Control for Multicast Video Distribution in the Internet.
Proceedings of ACM SIGCOMM’94, (Oct 1994) 58-67
London, England.

[6] J. M. Chang, N. F. Maxemchuck, Reliable Broadcast
Protocols. ACM Transactions on Computing Systems, 2:3
(Aug 1984) 251-273.

[7] D.D. Clark, D.L. Tennenhouse, Architectural
Considerations for a New Generation of Protocols.
Proceedings of ACM SIGCOMM ’90, (Sept 1990) 201-208
Philadelphia, PA.

[8] J. Crowcroft, K. Paliwoda, A Multicast Transport Protocol.
Proceedings of ACM SIGCOMM ’88, (1988) 247-256,
Stanford, CA.

[9] H. Erikson, MBONE: The Multicast Backbone.
Communications of the ACM, 37:8 (Aug 1994) 54-60.

[10] S. Floyd, V. Jacobson, C. Liu, S. McCanne, L. Zhang, A
Reliable Multicast Framework for Light-weight Sessions

and Application Level Framing. ACM SIGCOMM ‘95,
(Aug 1995) 342-356 Cambridge, MA.

[11] J. Gemmell, Scalable Reliable Multicast Using Erasure-
Correcting Re-sends. Technical Report, MSR-TR-97-20,
Microsoft Research, Redmond, WA (June 1997).

[12] J. Gemmell, J. Liebeherr, D. Bassett, An API for Scalable
Reliable Multicast. International Conference on Computer
Communications and Networks, (Sept 1997) 60-64 Las
Vegas, NV.

[13] M. Handley, J. Crowcroft, Network Text Editor (NTE): A
Scalable Shared Text Editor for the Mbone. Proceedings of
ACM SIGCOMM’97, (Aug 1997) 197-208 Canne, France.

[14] H.W. Holbrook, S.K. Singhal, D.R. Cheriton, D.R. Log-
based Receiver-Reliable Multicast for Distributed
Interactive Simulation. Proceedings of SIGCOMM '95,
(Aug 1995) 328-341 Cambridge, MA.

[15] S.K. Kasera, J. Kurose, D. Towsley Scalable, Reliable
Multicast Using Multiple Multicast Groups. Proceedings
of ACM SIGMETRICS ’97, (1997) 64-74 Seattle, WA.

[16] R. Kermode, Smart Network Caches: Localized Content
and Application Negotiated Recovery Mechanisms for
Multicast Media Distribution, PhD Dissertation, MIT,
1998.

[17] R. Malpani, L.A. Rowe Floor Control for Large-Scale
MBONE Seminars. Proceedings of The Fifth Annual ACM
International Multimedia Conference, (Nov 1997) 155-163
Seattle, WA.

[18] S. McCanne, M. Vetterli, V. Jacobson, Low-complexity
Video Coding for Receiver-driven Layered Multicast.
IEEE Journal on Selected Areas in Communications, 16:6
(Aug 1997) 983-1001.

[19] J. Metzner, An Improved Broadcast Retransmission
Protocol. IEEE Transactions on Communications, 32:6
(Jun 1984) 679-683.

[20] J. Nonnenmacher, E. Biersack, J. Towsley Parity-Based
Loss Recovery for Reliable Multicast Transmission.
Technical Report, TR-97-17, Department of Computer
Science, University of Massachusetts, Mar 1997.

[21] S. Paul, K.K. Sabnani, J.C.-H. Lin, S. Bhattacharyya
Reliable Multicast Transport Protocol (RMTP). IEEE
Journal on Selected Areas in Communications, 15:3 (Apr
1997) 407-421.

[22] S. Ramakrishnan, B.N. Jain, A Negative
Acknowledgement With Periodic Polling Protocol for
Multicast over LANs. Proceedings of IEEE Infocom ’87,
(Mar/Apr 1987) 502-511.

[23] L. Rizzo, L. Vicisano, A Reliable Multicast Data
Distribution protocol based on software FEC techniques.
Proceedings of the Fourth IEEE Workshop on the
Architecture and Implementation of High Performance
Communication Systems, HPCS’97, (June 1997)
Chalkidiki, Greece.

[24] L. Rizzo, Effective Erasure Codes for Reliable Computer
Communication Protocols. Computer Communication
Review, 27:2 (Apr 1997a) 24-36.

[25] E. Schooler, J. Gemmell, Using Multicast FEC to Solve
the Midnight Madness Problem. Technical Report MSR-
TR-97-25, Microsoft Research, Redmond, WA (Sept
1997).

[26] R. Talpade, M.H. Ammar, Single Connection Emulation:
An Architecture for Providing a Reliable Multicast
Transport Service. Proceedings of the 15th IEEE
International Conference on Distributed Computing
Systems, (June 1995) 144-151 Vancouver, Canada.

[27] L. Vicisano, J. Crowcroft, One to Many Reliable Bulk-
Data Transfer in the Mbone. Proceedings of the Third
International Workshop on High Performance Protocol
Architectures, HIPPARCH ’97, (June 1997) Uppsala,
Sweden.

[28] B. Whetten, T. Montgomery, S. Kaplan, A High
Performance Totally Ordered Multicast Protocol.
Proceedings of the International Workshop on Theory and
Practice in Distributed Systems, (Sept 1994) Springer-
Verlag, 33-57.

[29] R. Yavatkar, J. Griffioen, M. Sudan, A Reliable
Dissemination Protocol for Interactive Collaborative
Applications. ACM Multimedia 95, (Nov 1995) 333-343
San Francisco, CA.

