
www.elsevier.com/locate/jss

The Journal of Systems and Software 79 (2006) 701–713
An agent based synchronization scheme
for multimedia applications

S.S. Manvi, P. Venkataram *

Protocol Engineering and Technology Unit, Department of Electrical Communication Engineering, Indian Institute of Science,

Bangalore 560 012, India

Received 27 October 2004; received in revised form 11 August 2005; accepted 12 August 2005
Available online 28 September 2005
Abstract

Synchronization of multimedia streams is one of the important issue in multimedia communications. In this paper, we propose an
adaptive synchronization agency for synchronization of streams by using an agent based approach. The synchronization agency
triggers one of the three synchronization mechanisms, point synchronization or real-time continuous or adaptive synchronization in
order to adapt to the run-time and life-time presentation requirements of an application. The scheme or agency employs static
and mobile agents for the following purpose: to estimate the network delays in real-time based on sustainable stream loss, to com-
pute the skew, to monitor the loss and estimate the playout times of the presentation units. We have experimentally evaluated the
scheme by using IBM Aglets and verified its functioning in terms of synchronization loss and mean buffering delays. The benefits of
this agent based scheme are: asynchronous and autonomous delay estimation, flexibility, adaptability, software re-usability and
maintainability.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Multimedia; Agents; Stream synchronization; Delay estimation; IBM Aglets; Playout
1. Introduction

Multimedia communication deals with transfer of
data over the network among multimedia systems.
These systems include multiple sources of various media
that are either spatially or temporally related to create
composite multimedia documents. Spatial composition
links various multimedia streams into a single entity.
Temporal composition creates multimedia presentations
by arranging the multimedia streams according to their
temporal relationship, and the relationship is either
loosely or tightly coupled (Little and Ghafoor, 1990;
Elisa and Elena, 1998).
0164-1212/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2005.08.010

* Corresponding author.
E-mail addresses: sunil@protocol.ece.iisc.ernet.in (S.S. Manvi),

pallapa@ece.iisc.ernet.in (P. Venkataram).
URL: http://pet.ece.iisc.ernet.in/pallapa (P. Venkataram).
Continuous media (stream) such as audio and video
are characterized by well defined temporal relationship
between subsequent presentation units to be played (a
presentation unit is a logical data unit that is perceivable
by the user). Generally, the process of maintaining the
temporal order of one or more media streams is called
multimedia synchronization. The problem of maintaining
continuity within a single stream is referred as intra-

stream or serial synchronization, whereas the problem
of maintaining continuity among the streams is called
as inter-stream or parallel synchronization. The intra-
stream and inter-stream synchronizations are necessary
for both live stream(s) as well as for stored media
stream(s) presentations (Blakowski and Steinmetz,
1996; Steinmetz and Klara, 1995). Human perceptions
about the streams synchronization and the presentation
requirements for different types of applications are
discussed in Steinmetz (1996).

mailto:sunil@protocol.ece.iisc.ernet.in
mailto:pallapa@ece.iisc.ernet.in
http://pet.ece.iisc.ernet.in/pallapa

702 S.S. Manvi, P. Venkataram / The Journal of Systems and Software 79 (2006) 701–713
The maintenance of temporal relationships within
a stream or among the multimedia streams usually
depends on the following parameters (Cosmos, 1990;
David, 1991):

(1) Network delays: The delays experienced by the
presentation units (PUs) in the network to reach
its receiver, which varies according to network
load.

(2) Network jitters: Delay variations of inter-arrival
of PUs at the receiver due to varying network load.

(3) End-system jitters: Delay variations in presenta-
tion at the receiver due to varying CPU load and
protocol processing delays.

(4) Clock skew: The clock time difference between the
sender and the receiver.

(5) Clock drift: Rate of change of clock skew because
of temperature differences or imperfections in crys-
tal clocks.

(6) Rate drift: Change in generation and presentation
rates due to server and receiver load variations.

(7) Network skew: Time difference in arrival of tem-
porally related PUs of streams., i.e., differential
delay among the streams.

(8) Presentation skew: Time interval in which the tem-
porally related PUs of the streams are presented.

Synchronization mechanisms are needed to cope-up
with these problems to ensure the temporal ordering
of streams and to maintain the presentation quality.

1.1. Some of the existing synchronization mechanisms

The synchronization mechanisms for stream playout
are broadly classified as point and continuous (real-time
or adaptive) synchronization (Dick and Van-Liere,
1992). Harmony (Kazutoshi et al., 1993) uses point as
well as real-time and adaptive synchronization playout
for hypermedia objects. MHEG and HYTIME represent
point and real-time synchronization which are used for
synchronizing the hypermedia documents (Newcomb
et al., 1991; Markey, 1991). The scheme proposed in
(Panagiotis et al., 1996) estimates the reference playout
points for the packets based on the observed packet de-
lays. Some of the schemes given in Aidong et al.
(2002), Ramanathan and Rangan (1993) and Feng and
Krishnaswami (1998) use buffering and feedback control
for multimedia transmission and synchronization.
Enforcing synchronization in playout scheduling to deal
with rate and delay variance of streams is proposed in
Thomas and Aidong (1999). The concord algorithm
(Shivkumar et al., 1995) defines a framework to deal with
synchronization of streams to reduce buffering delays.

Flow synchronization protocol ensures that informa-
tion in related flows is presented in temporal manner
and adapts to changes in flow delays (Julio et al.,
1994). Synchronization mechanisms based on presenta-
tion deadline approaches are discussed in Shahab et al.
(1996). The work given in Kouhei et al. (2001) proposes
adaptive playout control algorithms based on statistical
analysis of packet delays. An adaptive synchronization
protocol based on buffer level control mechanism is
proposed in Kurt and Tobais (1997). The work
given in Ramachandran et al. (1994) discusses about
adaptive playout mechanisms for packetized audio.
Multimedia synchronization for live video and audio
streams is achieved by bounded buffer allocation scheme
and applying forward re-synchronization policies such
as restricted blocking and blocking to overcome
synchrony anomalies (Chung-Ming and Ruey-Yang,
1996).

A stream synchronization protocol is proposed for
news-on-demand application that allows synchroniza-
tion recovery ensuring high quality presentation at recei-
ver (Louise et al., 1996). The works given in Miguel and
Paulo (1995) and Sangshin (1998) performs adaptive
synchronization that adapts to acceptable QoS (Quality
of Service) depending on CPU and network load varia-
tions. The research work in Ernst and Werner (1999)
proposes adaptive synchronization playback mechanism
that computes the buffer required to achieve both conti-
nuity within a single sub-stream and multiple sub-
streams. RTP (real transport protocol) uses real-time
control protocol (RTCP) to synchronize media streams
prior to decoding operations by computing jitters
(Schulzrinne et al., 1996). The work given in Zhuge
(2002) presents about realization of semantic intercon-
nectivity for multimedia data and their synchronization
for soft devices by forming clusters of semantic grid.
Synchronization schemes for VCR like operations is
given in Chian and Chung-Ming (2004). Imperceptible
and allowable ranges for inter-stream synchronization
are employed for synchronization between haptic media
and voice in collaborative virtual environments (Yutuka
et al., 2004). The work given in Wang and Lin (2000)
gives the use of agents in synchronization based on
bandwidth allocation.

All the works discussed so far deal with life-time syn-
chronization (i.e., same synchronization mechanism is
used from beginning to end of an application) require-
ments for an application. None of the above schemes
provide a flexible and adaptable mechanism of arbitrat-
ing among different types of synchronizations based on
the run-time synchronization (synchronization mecha-
nism changes depending on the semantic requirements
of data from beginning to end of an application)
requirements of an application. And also, existing
schemes lacks extensibility and flexibility that is needed
in current web-based systems to accelerate the commu-
nication software development.

S.S. Manvi, P. Venkataram / The Journal of Systems and Software 79 (2006) 701–713 703
1.2. Proposed work

In the proposed work, we have designed synchroniza-
tion techniques based on three types of synchroniza-
tions: point, real-time continuous and adaptive
synchronization. These techniques are developed by
using the agents to carry out continuous and smooth
playout of multimedia streams. Point synchronization
realizes that the start/completion time of PUs of the
streams is synchronized with a certain specified synchro-
nization point between the streams. In real-time contin-
uous synchronization, PUs of streams are synchronized
with real-time axis. In adaptive synchronization, presen-
tation time of units of streams are readjusted at regular
intervals with change in network delays to reduce the
losses.

We propose a synchronization agency framework
comprising of static and mobile agents that either arbi-
trates among the specified synchronization mechanisms
depending on the run-time synchronization require-
ments of an application or maintains a specified syn-
chronization mechanism throughout the life-time of an
application. The proposed synchronization method runs
at the receiver.

An example of run-time synchronization usage can be
observed in on-line Internet based education systems
where the lecture streams are distributed in different
servers (Manvi and Venkataram, 2003). In this educa-
tion systems, adaptive synchronization is used for regu-
lar viewing of lecture, real-time synchronization for
random viewing of important concepts of missed lecture
in the form of clips (whenever a user who has taken a
break from the real-time lecture in between due to some
reasons and rejoins the lecture), and point synchroniza-
tion for viewing a particular missed concept in detail.

1.3. Organization of the paper

The following section gives a brief background about
the agent technology. The proposed agent based syn-
chronization mechanisms are described in Section 3.
Experimental evaluation of the scheme is discussed in
Section 4. Some of the benefits of using agents for multi-
media synchronization are described in Section 5, finally
we conclude in Section 6.
2. Agents

Agents are the autonomous programs situated within
an environment, which sense the environment and acts
upon the environment by using its knowledge base to
achieve their goals. They have certain special properties
which make them different from the standard programs
such as mandatory and orthogonal properties. Manda-
tory properties of the agents are: autonomy, reactive,
proactive and temporally continuous. The orthogonal
properties are: communicative, mobile, learning and

believable (Manvi and Venkataram, 2004). Agents can
be classified based on properties they posses: local or

user interface agents, network agents, distributed AI
(Artificial Intelligence) agents and mobile agents.

Mobile agent is an itinerant agent dispatched from
the source computer which contains program, data
and execution state information, and migrates from
one host to another host in the heterogeneous network,
and executes at a remote host until it achieves its
goals (Wong et al., 1999; Chess et al., 1995). Mobile
code should be platform independent, so that, it can exe-
cute at any remote host in the heterogeneous network
environment. Agent can update its information base
while interacting with other agents during its travel.
Inter-agent communication can be achieved by message
passing or common knowledge base (black board archi-
tecture principle).

Some of the Java based agent platforms are (Mene-
laos et al., 1999): Aglets, Grasshopper, Concordia, Voy-
ager and Odyssey. We have used IBM Aglets Work
Bench (AWB) for experimental evaluation of proposed
synchronization agency. The term aglet stands for
‘‘agent + applet’’. An aglet is a roaming applet that
can move from one computer to another to achieve its
goals (Danny and Mitsuru, 1998). Aglets class library
provides a rich set of application program interfaces
that facilitates the encoding of complex agent behavior.
Agent services available in AWB for the developer are:
persistence, security, communication messaging, collab-
oration and web enabled agents.

Agent based schemes comprising of static or mobile
agents offer several advantages as compared to tradi-
tional approaches: reduces latency, reduces network
traffic, encapsulates protocols, flexibility, adaptability,
software re-usability and maintainability (Danny and
Mitsuru, 1999; Nicholas, 2001). However, some prob-
lems have to be resolved in agent systems implementa-
tion: creation of a standardized agent platform for
Internet, security to agents from hosts and vice versa.
3. Proposed synchronization technique

The proposed synchronization technique uses three
synchronization mechanisms point, real-time and adap-
tive synchronizations based on the run-time and life-
time application requirements, and uses sequence
numbers to identify the PUs to be synchronized.

Point synchronization realizes that the start/comple-
tion time of PUs is synchronized with a certain specified
point on the real-time axis: using this mechanism, presen-
tation of multimedia streams is started simultaneously

C

C: Client

Network

S1....Si : Stream Servers

S2

S3

Si

S1

Fig. 1. Playout system model.

704 S.S. Manvi, P. Venkataram / The Journal of Systems and Software 79 (2006) 701–713
(start point synchronization) and also the presentation of
subsequent PU is made in synchronized manner when-
ever they are available. This kind of mechanism is suit-
able for applications like slide shows and cricket
highlights display.

Real-time continuous synchronization is realized by
presenting the PU of a stream synchronized with the
real-time axis or PU of another stream. For example,
the motion video with contents of 400 s should be pre-
sented for exactly 400 s or a motion video should be pre-
sented synchronized with its audio. If presentation of
certain information of the stream lags behind normal
presentation rate due to an unexpected heavy load on
network/workstation, the mechanism skips over certain
portions of presentation such as frames of video and
catches up to correct position of the multimedia stream.
This mechanism is suitable for entertainment applica-
tions if the estimated network delays does not change
for the life-time of an application. It can also be used
for applications which show random portions of de-
tailed multimedia documents: watching several sets of
movie trailers before making a decision to purchase a
movie CD (Compact Disc) or to view a movie on
Internet.

Real-time continuous synchronization has some defi-
ciencies, because loss of certain presentation informa-
tion is semantically very serious for application fields
such as education and also does not offer good QoS
for entertainment applications. To overcome this prob-
lem, adaptive synchronization mechanism is proposed
to maintain the semantics of multimedia information
and also ensure better QoS by reducing media losses.
In this case, presentation time of units of media streams
are readjusted at regular intervals with change in net-
work delays and become synchronized with one another.

In this section, we discuss the synchronization mech-
anisms by considering a playout system model.

3.1. Playout system model

In this section, we describe a client server based play-
out system in which servers and clients are distributed
throughout the Internet (see Fig. 1). Generally, playout
system handles multimedia streams S1 to Si which needs
to be synchronized for playout at client c. The character-
istics of the playout system model are as follows:

• The PU of the streams are chosen as a unit perceiv-
able by the human beings, for example, a frame is a
perceivable PU of a video stream.

• The PUs of each stream are labeled with sequence
numbers, and they are presented in same sequence.

• The network delay of a PU of each stream varies
stochastically.

• PUs of each stream will not arrive in order at client c

(since UDP transport protocol is used).
• Clock differences exist among the servers and client
distributed in the network.

• Rate of clock drifts is zero since all the crystal oscil-
lators are assumed to be stable.

The synchronization agency is run at the client which
is described in the following subsection.

3.2. Synchronization agency framework

The proposed synchronization agency framework at
the client comprises of set of static and mobile agents
to perform multimedia streams synchronization. All
the hosts connected to the network consists of an agent
platform (IBM AWB in our experiment) to support the
static and mobile agents.

The proposed synchronization agency framework at
the client comprises of the following components (see
Fig. 2): user interface agent, synchronization agent,
mobile agents, and synchronization database. The
functions of each of these components are given below.

• User interface agent: It is a static agent (aglet) which
collects the application information such as applica-
tion identification number (appid), stream servers
address, required synchronization type (syntype)
and the synchronization parameters (synpar). The
synchronization parameters include sustainable and
desired presentation rates, maximum allowed skew,
and acceptable loss. It sets syntype value based on
the life/run-time presentation requirements of an
application. The value of syntype will be dynamically
set for run-time presentation requirements whereas it
will be set only once for life-time presentation
requirements. The syntype values 0, 1 and 2 indicate
point, real-time and adaptive synchronization, res-
pectively. It creates a synchronization agent and a
synchronization profile.

• Synchronization agent: This static agent (aglet) per-
forms three types of synchronizations based on the

USER INTERFACE AGENT
(AGLET)

SYNCHRONIZATION AGENT
(AGLET)

MOBILE AGENTS (AGLETS)

presenta
tion table
(seq no,
time)

synchro
nization

monitoring
loss

mobile
agent creation

start time, etc)

(invoke play

device
interface

appid, syntype, synpar

monitor

Invoke playout

Static information Dynamic info

application ID

generation period
presentation period
sustainable losses

server adressess
no. streams

interval length

estimated delays

 synchronization type

clock differences
observed losses/stream

skew of streams
server start time

(creates synchronization agent)

allowed skew
playout start time

profile

speaker

(skew, playout
estimation
playout

out devices)

Fig. 2. Synchronization agency framework.

S.S. Manvi, P. Venkataram / The Journal of Systems and Software 79 (2006) 701–713 705
application presentation requirements. To identify
the presentation requirements, it uses a variable syn-

type (0 = point, 1 = real-time and 2 = adaptive). It
creates a mobile agent for each stream to estimate
the clock difference and the network delays on the
path which runs from the server to client. It computes
skew, stream data transfer start time and the playout
start time. Reference playout times of all the PUs of
each stream is computed in case of real-time continu-
ous synchronization. In case of adaptive synchroniza-
tion, it periodically recomputes the playout times of
all the PUs of each stream based on the recently esti-
mated network delays and the monitored losses of
each stream. Synchronization agent updates the syn-
chronization profile and the presentation table with
newly estimated parameters and the playout times
respectively. Skew compensation mechanisms are
used by the agent to provide continuous playout of
the streams.

• Mobile agents: These agents (aglets) estimate the
clock differences and the network delays among the
servers and the client and updates the synchroniza-
tion profile. They are also used to inform the servers
about the start time of data transfer. They can be pro-
grammed to monitor the bandwidth, loss and delay
parameters at the intermediate nodes and perform
parameter negotiation at the servers, intermediate
nodes and the client to facilitate better quality
presentation.

• Presentation table: This table maintains the reference
playout times of PUs of the streams (sequence num-
ber and playout time) as computed by the synchroni-
zation agent.

• Synchronization profile: This profile is a knowledge
base of the synchronization agency. It stores the ses-
sion information (static and dynamic) and facilitates
sharing of information among agents. The static
information is set by the user agent whereas dynamic
information is updated by either mobile agents or
synchronization agent. The static information stored
are: application identification number, stream servers
address, generation period, presentation period, sus-
tainable losses, maximum allowed presentation skew
and the length of interval (in terms of PUs) to reesti-
mate the playout times. The dynamic information
stored are: clock differences between the client and
servers, estimated delays to servers from the client,
skew between the streams, data transfer start time
of the streams, synchronization type and the moni-
tored losses of each stream.

The scheme does not require time-stamping of PUs
since the presentation timing of a PU is computed by
the agency itself. Network delays are estimated in real-
time independent of PU arrivals enhancing the adaptive
capabilities of the synchronization. Mobile agents
encapsulate protocol for network delay estimation, thus
estimation policy can be changed by just changing the
code within it, facilitating flexible delay estimation. A
delay estimator mobile agent can be extended to per-
form aggregate tasks such as bandwidth monitoring
and allocation and QoS negotiation and renegotiation,

706 S.S. Manvi, P. Venkataram / The Journal of Systems and Software 79 (2006) 701–713
etc. However, some overheads are associated with this
scheme, such as, maintenance of synchronization profile
and an agent platform.

3.3. Streams synchronization

Now we discuss how the synchronization agent com-
putes the clock difference, network delay, skew, server
data transfer start time, and the playout start time at
the client side by considering a session with i number
of streams. A mobile agent will be created for each
stream by the client. Mobile agent of the respective
stream makes specified round trips to stream server to
estimate the network delays.

3.3.1. Clock difference computation

The clock difference between two hosts is computed
as given in Wenyu and Schulzrinne (1999) Eq. (1)
(assuming symmetric path delay assumption)

Di;c ¼ ððT 3i;z � T 1i;zÞ=2Þ � ðT 2i;z � T 1i;zÞ þ d ð1Þ

where Di,c = clock difference between ith stream server
and the client c, T1i,z = time at which mobile agent be-
gins onward journey to stream server i during zth trip,
T2i,z = time at which mobile agent reaches ith stream
server during zth trip, T3i,z = time at which mobile
agent returns to client from ith stream server after com-
pleting the zth trip. If Di,c is negative, then client c is lag-
ging, otherwise, client c is leading with respect to server
i. Here we consider that a mobile agent of the stream in
every trip does note the clock difference as well, and
z 2 {1,2, . . . ,Z} where Z = maximum number of trips.
The estimated clock difference may not be accurate
because of symmetric path delays assumption, hence
we include an estimation error d in Eq. (1) (d � 150 ms
as observed in our experiment).

3.3.2. Delay estimation

In each trip, a mobile agent of stream i records the
one way delay (assuming the symmetric paths) as given
in Eq. (2)

di;z ¼ T 3i;z � T 1i;z=2 ð2Þ

where, d i,z = one way delay incurred by mobile agent of
ith stream during zth trip. The delays recorded in the
mobile agent memory are used to construct Cumulative
Distribution Function (CDF) of delay, F(Æ). Mobile
agent of ith stream computes the delay Di,t in time inter-
val t (t = 0 before stream transfer starts) after comple-
tion of Z trips, such that the losses are within the
acceptable loss of each stream as given in Eq. (3).

F ðdi;z < Di;tÞP 100�ALi ð3Þ
where, ALi is the percentage of acceptable losses for
stream i.
3.3.3. Skew computation

Skew (ski,t) of ith stream with reference to other
streams is defined as inter-arrival time difference among
the PUs of different streams in time interval t (t = 0
before stream transfer starts). It is computed as given
in Eq. (4)

ski;t ¼ maxðDi;t; 8iÞ � Di;t ð4Þ
3.3.4. Stream start time computation

Stream start time, sstarti, is defined as the time at
which streams start flowing into the network. It is
computed as given in Eq. (5).

sstarti ¼ cstartþ Di;c þ h if Di;c
6 0

cstart� Di;c þ h otherwise

�
ð5Þ

where cstart = tcur + � + max(Dit,"i) for t = 0, and,
cstart = time at which the client plans to ask the servers
to start the stream transfer, tcur = current clock time at
client once all the mobile agents return after Z trips,
h = PU generation period at the source, � = time to
compute the playout time at the receiver (set � = h).

3.3.5. Playout start time computation
The playout start times, spti, is defined as the time at

which the playout of the ith stream commences. It is
computed as given in Eq. (6) for the time interval t = 0

spti ¼
sstarti þ Di;c þ Di;t þ hþ ski;t if Di;t < max

8i
Di;t

sstarti þ Di;c þ Di;t þ h otherwise

(

ð6Þ
3.4. Point Synchronization

Algorithm 1 describes the point synchronization
mechanism used by the synchronization agent.

Algorithm 1 (Point synchronization).
{To describe the mechanism consider a session with sm

streams}

Begin

(1) User interface agent creates the synchronization
agent and updates the synchronization profile with
session information.

(2) For s = 1 to sm do
Begin

• Synchronization agent creates a mobile agent

for stream s for estimation of clock difference
and network delays.

• Mobile agent of stream s makes Z round trips to
stream server s and records the clock difference
and the one way delay between the server s and
the client (Eqs. (1), (2)), computes the delay (Eq.
(3)), and updates the synchronization profile.
Endfor s;

S.S. Manvi, P. Venkataram / The Journal of Systems and Software 79 (2006) 701–713 707
(3) For k = 1 to sm do
Begin

• Synchronization agent computes the skew for

the stream k and updates the synchronization
profile (Eq. (4)).

• Synchronization agent computes the stream k
start time and sends a mobile agent to server
k to convey start time information, and updates
the synchronization profile (Eq. (5)).

• Synchronization agent computes playout start
time of the stream k and updates the presenta-
tion table (Eq. (6)).
Endfor k;
(4) For s = 1 to sm do {Synchronization agent begins

playout of the stream s};
(5) Stop;
End.

In point synchronization, if the PUs to be presented
do not arrive within the duration of skew tolerance (al-
lowed skew values may be approximately 100–200 ms),
synchronization agent uses skew compensation mecha-
nisms. These mechanisms are: restricted blocking (dis-
play the last frame to deal with the losses and delayed
frames) and blocking (do not play anything) for video
and audio streams respectively. The late arrived PUs
of each stream will be skipped.

3.5. Real-time synchronization

This mechanism uses the similar steps as discussed in
point synchronization mechanism to compute the start-
ing playout time of the streams. In addition to this, syn-
chronization agent computes the reference playout times
for all the contents of the streams as given in Eq. (7) (at
t = 0).

refpti;j ¼

sstarti þ Di;c þ Di;t þ hþ ski;t þ n � ðj� 1Þ

if Di;t < max
8i

Di;t

sstarti þ Di;c þ Di;t þ hþ n � ðj� 1Þ

otherwise

8>>>>>><
>>>>>>:

ð7Þ
where refpti,j = reference playout point of jth PU of ith
stream, n = h is the presentation period of a PU. Algo-
rithm 2 describes the real-time synchronization
mechanism.

Algorithm 2 (Real-time synchronization).
{To describe the mechanism consider a session with sm

streams}

Begin

(1) User interface agent creates the synchronization
agent and updates the synchronization profile with
session information.
(2) Perform operations as given in steps 2 and 3 of
Algorithm 1.

(3) For s = 1 to sm do {Synchronization agent com-
putes the reference playout time of all the PUs of
the stream s (Eq. (7))}.

(4) For s = 1 to sm do {Synchronization agent begins
playout of the stream s}.

(5) Stop.

End.

Synchronization agent displays the media units that
arrive within the estimated playout time. Skew compen-
sation mechanisms are used by the synchronization
agent to overcome the playout gap problems caused
due to losses or late arrivals.

3.6. Adaptive synchronization

This mechanism uses similar steps of point synchroni-
zation to compute the stream playout start times. Syn-
chronization agent sends a mobile agent of each
stream periodically (at regular time intervals) for Z/2
trips to estimate the network delays over the path from
client to server. These estimated delays and the observed
PU losses are used to readjust the reference playout
times of the PUs. The gaps created due to readjustment
of reference playout times are compensated by using
skew compensation mechanisms. The reference playout
times are computed for every k presentation units (k is
the length of time interval for delay adaptation).

For the first k presentation units, i.e., for the first time
interval t = 1, Eq. (8) is used in computing the playout
time, puplayi,j,t, for the jth PU of a stream i, where
j 2 {1, . . . ,k}.
puplayi;j;t¼

sstartiþDi;cþDi;t�1þhþski;t�1þn�ðj�1Þ

if Di;t�1<max
8i

Di;t�1

sstartiþDi;cþDi;t�1þhþn�ðj�1Þ

otherwise

8>>>>>>><
>>>>>>>:

ð8Þ
For the successive time intervals, t 2 {2, . . . ,T},

where T = dN/ke = number of intervals and N = num-
ber of PUs in each stream, the PU sequence number
ranges are k + 1 to 2k for t = 2, 2k + 1 to 3k for t = 3,
and so on. The playout start time of a PU in the current
interval (t) depends on the time of the last displayed PU
and the observed losses in the previous interval (t � 1).
The observed losses of a stream i in the previous interval
as computed by the synchronization agent is given as
obli,t�1 = (npuli,t�1/k) * 100.0, where, obli,t�1 = percent-
age of observed losses of a stream i in the t � 1 interval
(previous interval), npuli,t�1 = number of PUs lost in a
stream i in the previous interval.

708 S.S. Manvi, P. Venkataram / The Journal of Systems and Software 79 (2006) 701–713
PU sequence numbers in interval t ranges from
(t � 1) * k + 1 to t * k. If obli,t�1 > ALi (observed losses
are greater than the acceptable loss), the start time of the
stream i for the interval t is computed by using,
puplayi,(t�1)*k,(t�1) (the time at which the last PU
(((t � 1) * k)th) of a stream i of the interval t � 1 is dis-
played). The playout times for all the PUs in interval t is
computed as given in Eq. (9)

puplayi;j;t ¼ puplayi;ðt�1Þ�k;t�1 þ ðDi;t � Di;t�1Þ
þ ðski;t � ski;t�1Þ þ n � ðjmodk � 1Þ ð9Þ

where j 2 {((t � 1) * k + 1), . . ., (t * k)}. If observed
losses of a stream i are within the ALi in the previous
interval, the playout times of PUs of successive interval
are computed by using the previous interval playout
ending time as given in Eq. (10)

puplayi;j;t ¼ puplayi;ðt�1Þ�k;t�1 þ n � ðjmodk � 1Þ ð10Þ

The detailed description of the adaptive synchroniza-
tion mechanism is given in Algorithm 3.

Algorithm 3 (Adaptive synchronization).
{To describe the mechanism consider a session with sm

streams, T time intervals, k PUs in each time interval}

Begin

(1) User interface agent creates a synchronization
agent and updates the synchronization profile with
session information.

(2) Perform the operations as given in steps 2 and 3 of
Algorithm 1.

(3) For t = 1 to T do
Begin
Fig. 3. Experimental network
• If t = 1, synchronization agent computes the
playout times of k PUs using Eq. (8).

• If losses in the interval t � 1 are greater than the
acceptable loss and t > 1 {synchronization
agent recomputes the playout times of k PUs
of all the streams in the interval t (Eq. (9))}.Else
{compute the playout times of k PUs in the
interval t (for t > 1) using Eq. (10)};

• For s = 1 to sm do
• Begin

– Synchronization agent starts playout of the
PUs of stream s in the time interval t.

– Synchronization agent monitors the losses of
stream s in time interval t and updates syn-
chronization profile.

– Synchronization agent sends a mobile agent
for Z/2 trips to estimate the network delays
between the stream server s and the client
and updates synchronization profile.

Endfor s;

Endfor t;
(4) Stop;
End.
4. Experimental evaluation

We experimentally evaluated the scheme by
implementing the synchronization agency by using
IBM aglets work bench (Version 2.0) on the hosts
distributed across PET-UNIT network which is an
in-house network (see Fig. 3). We considered applica-
tions with different presentation requirements, and
topology.

0

2

4

6

8

10

12

14

16

5 10 15 20 25 30 35 40 45 50

PU
 lo

ss
 (

%
)

Number of trips made by mobile agents

PU loss (%) .Vs. Number of trips made by mobile agents

stream 1
stream 2

Stream 1 or 2

Fig. 4. PUs loss (%) vs Number of trips made by mobile agents with
P = 0 (without injecting delay rise).

160

180

200

220

240

260

280

10 15 20 25 30 35 40 45 50

M
ea

n
bu

ff
er

in
g

de
la

y

Number of trips made by mobile agents

Mean buffering delay (ms) .Vs. Number of trips made by mobile agents

stream 1
stream 2

Fig. 5. Mean buffering delay for a PU vs Number of trips made by
mobile agents with P = 0 (without injecting delay rise).

S.S. Manvi, P. Venkataram / The Journal of Systems and Software 79 (2006) 701–713 709
percentage of network delay variations for experimen-
tal evaluation.

The multimedia data is distributed stream-wise
among the servers. We tested the designed scheme with
two servers (EOD and SEAL among the shown three
servers) and the multiple clients. Usefulness of the
scheme is tested for applications like slide show, movie
trailers and the Internet education. For Internet educa-
tion we used run-time synchronization: adaptive syn-
chronization for regular viewing of study material;
real-time synchronization for random viewing of study
material; point synchronization for viewing a particular
concept in detail. Movie trailers used real-time synchro-
nization as life-time synchronization requirement. Slide
show used point synchronization as life-time synchroni-
zation requirement.

4.1. Experimental procedure

We artificially injected delays for each arriving PU of
a stream to create a multi-hop environment and disorder
the PUs, since hosts in the experimental setup uses only
one hop. Several parameters used in the experimental
setup are as follows.

• Network delays injected for arriving PUs at the client
and the stream mobile agents are normally distrib-
uted with mean l and variance r2.

• The delays rise are injected at every regular intervals
(interval in terms of number of PUs) to create sharp
fluctuations in delays with probability P.

• Increase in mean of the PU delays due to P is x * l,
where x is the percentage rising factor.

• Increase in delay variance due to P is V * (l + x * l),
where V is the percentage rising factor.

• Applications specify: the number of PUs (N), sustain-
able losses, PU generation and presentation period,
and the skew tolerance in terms of PUs.

The performance parameters evaluated in the experi-
ment are as follows:

• Stream PU loss: It is defined as the percentage of PU
losses in a stream.

• Synchronization loss: It is defined as the percentage of
PU loss of either of the streams in a presentation
period.

• Mean buffering delay: It is defined as the mean wait-
ing time of presented PUs of a stream in the receiver.

The experimental procedure adopted is as follows:

(1) Evaluated the scheme with P = 0, to find out the
number of optimal trips Z by observing the PU
losses and mean buffering delays by applying point
synchronization.
(2) Real-time synchronization mechanism is evaluated
by injecting PU delay variations periodically.

(3) Adaptive synchronization mechanism is evaluated
in cases of network delay fluctuations.

(4) Run-time synchronization mechanism is evaluated
by creating network delay variations.

The inputs considered to discuss the experimental re-
sults are: N = 20,000; injected network delays (in milli-
seconds) of stream 1 and stream 2 are normally
distributed with l1 = 450, l2 = 350, r2

1 ¼ 100 and
r2

2 ¼ 100; P is varied from 0 to 1.0; size of interval for
considering delay rise (k) = 200 PUs, and the burst
length of PUs for which delay rise is affected is randomly
distributed between 1 and 200; x is randomly distributed
within range 10–100%; V is randomly distributed within
range 5–50%; h = n = 80 ms; and sustainable loss of
stream 1 and stream 2 are 10%.

4.2. Results

Optimal number of trips required by an mobile agent
for delay estimation are determined without injecting the
artificial delay rise to arriving PUs (see Figs. 4 and 5). We

0

1

2

3

4

5

6

7

8

9

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PU
 lo

ss
 (

%
)

Probability of delay rise, P

PU loss (%) .Vs. Probability of delay rise

stream 1
stream 2

Stream 1 or 2

Fig. 8. Presentation units loss (%) vs Probability of delay rise (P) for
adaptive synchronization.

360

380

400

420

 d
el

ay

Mean buffering delay (ms) .Vs. Probability of delay rise

stream 1
stream 2

710 S.S. Manvi, P. Venkataram / The Journal of Systems and Software 79 (2006) 701–713
observe that the synchronization losses and the mean
buffering delays almost remain stable for trips = 30
(the PU loss and buffering delay variations are not much
significant with trips ranging from 35 to 50 as compared
to when trips = 30). Hence, we initially fixed the mobile
agent trips to be 30 for real-time and adaptive
synchronization.

We observe (see Figs. 6 and 7) that the PU losses in-
crease with delay fluctuations and the mean buffering
delays of PU of the streams reduce with increase in
losses and the delay fluctuations. Huge losses occur
when P = 1.0, thus real-time synchronization mecha-
nism is not suitable when the loads are heavily fluctuat-
ing in the network.

In adaptive synchronization, we notice (see Figs. 8
and 9) that the synchronization losses are maintained
well within the desired limit (10%), and the mean buffer-
ing delays are slightly higher for both the streams as
compared to other plots (see Figs. 5 and 7). Due to con-
tinuous adaption to changes in delay rises, PUs will be
buffered for more time to avoid the PU loss. The mean
buffering delays reduce with increase in losses and
0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

PU
 lo

ss
 (

%
)

Probability of delay rise, P

PU loss (%) .Vs. Probability of delay rise

stream 1
stream 2

Stream 1 or 2

Fig. 6. Presentation units loss (%) vs Probability of delay rise (P) for
real-time synchronization.

100

120

140

160

180

200

220

240

260

0 0.2 0.4 0.6 0.8 1

M
ea

n
bu

ff
er

in
g

de
la

y

Probability of delay rise

Mean buffering delay (ms) .Vs. Probability of delay rise

stream 1
stream 2

Fig. 7. Mean buffering delay for a PU vs Probability of delay rise (P)
for real-time synchronization.

240

260

280

300

320

340

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
bu

ff
er

in
g

Probability of delay rise

Fig. 9. Mean buffering delay for a PU vs Probability of delay rise (P)
for adaptive synchronization.
P. Hence adaptive synchronization mechanism is suit-
able for applications that require high quality of service.

The PU loss and the mean buffering delays for the
run-time synchronization for an application is shown
in Figs. 10 and 11 which is run for 30 min, where point
synchronization is employed for 5 min in the session,
0

2

4

6

8

10

12

14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PU
 L

os
s

Probability of delay rise

PU loss (%) .Vs. Probability of delay rise (P)

Stream 1
Stream 2

Stream 1 or 2

Fig. 10. Presentation units loss (%) vs Probability of delay rise (P) for
run-time synchronization.

200

220

240

260

280

300

320

340

360

380

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
bu

ff
er

in
g

de
la

y

Probability of delay rise

Mean buffering delay (ms) .Vs. Probability of delay rise (P)

Stream 1
Stream 2

Fig. 11. Mean buffering delay for a PU vs Probability of delay rise (P)
for run-time synchronization.

S.S. Manvi, P. Venkataram / The Journal of Systems and Software 79 (2006) 701–713 711
real-time synchronization is used for 5 min in the
session, and the rest of the session is adaptively
synchronized.
5. Benefits of using agents

In this section we would like to highlight some of the
benefits we get by using agents for multimedia synchro-
nization purpose as compared to traditional methods.
Agent oriented programming facilitates CBSE which is
needed in today�s software development of web-based
systems (Griss and Pour, 2001). As observed from the
literature (Manvi and Venkataram, 2000; Ajay et al.,
2003; Manvi and Venkataram, 2005), mobile agents
are used in various ways to support multimedia commu-
nications: they go through the intermediate nodes to
gather the bandwidth and delay information; they can
identify the congested nodes in the network and suggest
different routes; they can intelligently vary the band-
width at the source depending on the network environ-
ment. We can encode all these functionality along with
the delay estimation within a single mobile agent and
improve the performance of multimedia communication
systems which justifies our use of mobile agents in delay
estimation.

We observe in our experiments that agent based syn-
chronization scheme offers flexibility, adaptability, re-
usability and maintainability. Even though it is difficult
to quantify these features, we explain below how they
are achieved by the synchronization agency:

Flexibility: Synchronization agent demonstrates its
flexibility in changing the synchronization scheme based
on the information received from application/user inter-
face agent and presents the PUs using appropriate skew
compensation techniques. It can also be programmed to
dynamically arbitrate among synchronization mecha-
nisms based on the network conditions learned by the
mobile agent. Mobile agents show flexibility in delay
estimation by applying different policies for estimation
(for example, delay estimation based on actual round
trip or artificial round trip times, agent can intelligently
over estimate when it encounters consecutive delay
rises).

Adaptability: Synchronization agent adapts the
presentation schedule as per the network dynamics
(delay variations captured by mobile agents) in case of
adaptive synchronization and uses appropriate skew
compensation techniques to maintain continuous
playout.

Re-usability: To demonstrate the software reuse, the
mobile agent components was reused with some slight
modifications to incorporate bandwidth estimation
along with delay estimation and used this bandwidth
estimation to dynamically allocate bandwidth using spa-
tial resolution (changing resolution of presentation unit)
techniques.

Maintainability: We can easily debug the agent com-
ponents and also replace the old agent components with
a new one without affecting the other components of the
agency. For example, if we develop a new scheme of de-
lay estimation in future with distributed time and delay
server agents, we can replace the mobile agent compo-
nent with this new component without affecting the
other components of the agency.
6. Concluding remarks

In this paper, we analyzed the synchronization prob-
lems in multimedia communications and proposed an
agent based synchronization frame work to handle three
synchronization mechanisms (point, real-time and adap-
tive) at application service level depending on the life/
run-time presentation requirements of the multimedia
applications. Adaptive synchronization mechanism ad-
justs playout times in accordance with changes in net-
work conditions and offers better quality presentation
by maintaining the sustainable losses. The scheme was
experimentally evaluated using IBM aglets work bench
in a wired network. The results were demonstrated in
terms of percentage PU loss and the mean buffering de-
lays. Agent based architectures provide flexible, adapt-
able and asynchronous mechanisms for multimedia
communications.

The proposed technique can also be used for synchro-
nization of multimedia streams in mobile ad-hoc net-
works that are used in university campuses, disaster
recovery operations with slight extensions to the agents
in the agency that covers mobility features and
resource scarcity of the nodes. In case of heterogeneous
environment, a proxy connected to wired network can
employ an agency on behalf of mobile users that pro-
vides continuous and smooth playout at the mobile
devices.

712 S.S. Manvi, P. Venkataram / The Journal of Systems and Software 79 (2006) 701–713
References

Aidong, Z., Yuqing, S., Markus, M., 2002. Netmedia: streaming
multimedia presentations in distributed environments. IEEE
Multimedia, 56–73.

Ajay, S., Venkataram, P., Manvi, S.S., 2003. QoS routing scheme by
using mobile agents. In: Proceedings of the Indian International
Conference on Artificial Intelligence (IICAI), Hyderabad, India.

Blakowski, G., Steinmetz, R., 1996. Media synchronization survey:
reference model, specification, and case studies. IEEE JSAC
(Journal Selected Areas in Communications) 14 (1), 5–35.

Chess, D., Harrison, C., Kershenbaum, A., 1995. Mobile agents: are
they a good idea? IBM Research Division, T.J. Watson Research
Center, Yorktown Heights, New York, Technical report.

Chian, W., Chung-Ming, H., 2004. Synchronization schemes for
controlling VCR like Interactions in interactive multimedia on
demand. Computer Journal 47 (2), 140–152.

Chung-Ming, H., Ruey-Yang, L., 1996. Achieving multimedia syn-
chronization between live video and live audio streams using QoS
controls. Computer Communications Journal 19, 456–467.

Cosmos, N., 1990. An architecture for real time multimedia commu-
nication systems. IEEE JSAC 8, 391–400.

Danny, B.L., Mitsuru, O., 1998. Programming and Deploying Java
Mobile Agents with Aglets, Pearson Technology Group Publishers.

Danny, B.L., Mitsuru, O., 1999. Seven good reasons for mobile agents.
Communications of ACM 42, 88–89.

David, L.M., 1991. Internet time synchronization: network time
protocol. IEEE Transactions on Communications 39, 1482–1493.

Dick, C.A.B., Van-Liere, R., 1992. In: Herrtwich, R. (Ed.), Multi-
media Synchronization and Unix, LNCS 614. Springer-Verlag.

Elisa, B., Elena, F., 1998. Temporal synchronization models for
multimedia data. IEEE Transactions Knowledge and Data Engi-
neering 10, 612–631.

Ernst, B., Werner, G., 1999. Synchronized delivery and playout of
distributed stored multimedia streams. Multimedia Systems Jour-
nal 7, 70–90.

Feng, W., Krishnaswami, B., 1998. Proactive buffer management for
streamed delivery of stored video. In: Proceedings of the ACM
Multimedia Conference, New York, pp. 285–290.

Griss, M.L., Pour, G., 2001. Accelerating development with agent
components. IEEE Computer 34 (5), 37–43.

Julio, E., Craig, P., Debra, D., 1994. Flow synchronization protocol.
IEEE/ACM Transactions Networking 2, 111–121.

Kazutoshi, F., Shinji, S., Toshio, M., Shojiro, N., Hideo, M., 1993.
The synchronization mechanisms of multimedia information in the
distributed hypermedia system harmony. In: Proceedings of the
International Conference on Multimedia Modeling, Singapore,
pp. 275–289.

Kouhei, F., Shingo, A., Masayuki, M., 2001. Statistical analysis of
packet delays in the Internet and its application to playout control
for streaming applications. IEICE Transactions Communications
E84-B, 1504–1512.

Kurt, R., Tobais, H., 1997. An adaptive protocol for synchronizing
media streams. Multimedia Systems Journal 5, 324–336.

Little, T.D.C., Ghafoor, A., 1990. Synchronization and storage models
for multimedia objects. IEEE JSAC 8 (3), 413–427.

Louise, L., Lian, L., Renaud, B., Nicolas, G., 1996. Synchronization of
multimedia data for a multimedia news on demand application.
IEEE JSAC 14, 264–277.

Manvi, S.S., Venkataram, P., 2000. QoS management by mobile
agents in multimedia communication, In: Proceedings of the
Database and Expert Systems, Workshop on Agent-Based Intel-
ligent Systems, Greenwich, UK, pp. 407–411.

Manvi, S.S., Venkataram, P., 2003. A multimedia synchronization
model for on-line Internet based education systems. Journal of
Computer Science and Informatics 33 (2), 31–42.
Manvi, S.S., Venkataram, P., 2004. Applications of agent technology
in communications: a review. Computer Communications Journal
27 (15), 1493–1508.

Manvi, S.S., Venkataram, P., 2005. An agent based adaptive band-
width allocation scheme for multimedia applications. Journal of
Systems and Software 75, 305–318.

Markey, B.D., 1991. Emerging hypermedia standards: hypermedia
market place prepares for HyTime and MHEG. In: Proceedings of
the USENIX Conference, pp. 59–74.

Menelaos, K.P., Fotis, G.C., Iakovos, S.V., Gennaro, M., 1999.
Mobile agent standards and available platforms. Computer Net-
works Journal 31, 1999–2016.

Miguel, C., Paulo, P., 1995. Low level multimedia synchronization
algorithms on broadband networks. In: Proceedings of the ACM
Multimedia Conference, California, USA, pp. 423–434.

Newcomb, S., Kipp, N., Newton, V., 1991. The HyTime hypermedia/
time-based document structuring language. Communications of
ACM 34, 67–83.

Nicholas, R.J., 2001. An agent-based approach for building complex
software systems. Communications of ACM 44, 35–41.

Panagiotis, N.Z., Myung, J.L., Tarek, N.S., 1996. A synchronization
algorithm for distributed multimedia environment. Multimedia
Systems Journal 4, 1–11.

Ramachandran, R., Jim, K., Don, T., Schulzrine, H., 1994. Adaptive
playout mechanisms for packetized audio applications in wide area
networks. In: Proceedings of the IEEE Infocom, Canada, pp. 680–
688.

Ramanathan, S., Rangan, P.V., 1993. Feedback techniques for intra-
media continuity and inter-media synchronization in distributed
multimedia systems. The Computer Journal 36, 19–31.

Sangshin, Y., 1998. Realization of the synchronization controller for
multimedia applications. In: Proceedings of the IEEE Globecom,
pp. 798–803.

Schulzrinne, H., Frederick, R., Jacobson, V., 1996, RTP: a transport
protocol for real time applications, RFC 1889.

Shahab, B., Farrukh, K.M., Miae, W., et al., 1996. Quality-based
evaluation of multimedia synchronization protocols for distributed
multimedia information systems. IEEE JSAC 14, 1389–1403.

Shivkumar, N., Sreenan, C.J., Narendra, B., Agrawal, P., 1995. The
concord algorithm for synchronization of networked multimedia
streams. In: Proceedings of the IEEE ICMCS.

Steinmetz, R., 1996. Human perception of jitter and media synchro-
nization. IEEE JSAC 14, 61–72.

Steinmetz, R., Klara, N., 1995. Multimedia Computing Communica-
tions and Applications. Prentice Hall, Englewood Cliffs, NJ.

Thomas, V.J., Aidong, Z., 1999. Dynamic playout scheduling algo-
rithms for continuous multimedia streams. Multimedia Systems
Journal 7, 312–325.

Wang, Lin, 2000. Cooperating intelligent mobile agents mechanism for
distributed multimedia synchronization. In: Proceedings of the
International Conference on Multimedia and Expo (ICME).

Wenyu, J., Schulzrinne, H., 1999. QoS measurement of Internet real-
time multimedia services, Technical report CUCS-015–99, Colum-
bia University.

Wong, D., Paciorek, N., Moore, D., 1999. Java based mobile agents.
Communications of ACM 42, 41–48.

Yutuka, I., Takeshi, K., Shuji, T., 2004. Inter-stream synchronization
between haptic media and voice in collaborative environments. In:
Proceedings of the 12th ACM Conference on Multimedia, New
York, USA, pp. 604–611.

Zhuge, H., 2002. Clustering soft-devices in semantic grid. IEEE
Computing in Science and Engineering 4 (6), 60–62.

S.S. Manvi received M.E Degree in Electronics from U.V.C.E, Ban-
galore university, India in 1993, Ph.D. in Electrical Communication
Engineering from Indian Institute of Science, Bangalore, India in 2004.

S.S. Manvi, P. Venkataram / The Journal of Systems and Software 79 (2006) 701–713 713
He is working as Professor and Head of Electronics and Communi-
cation Engineering Department, Basaveshwar Engineering College,
Bagalkot, India. He is a programme committee member for interna-
tional conferences, IICAI 2003, ICHMI 2004, IICAI 2005. He has
coauthored a book on ‘‘Communication Protocol Engineering’’ pub-
lished by Prentice Hall of India in 2004. His areas of interest include
multimedia communications and networking, applications of mobile
agents, mobile ad-hoc networks and protocol engineering. He has
several national and international publications in referred conferences/
journals. He is a Fellow of IETE, India and a member of IEEE, USA.

P. Venkataram received M.Sc. degree in Mathematics from Sri.
Venkateswara University, Tirupathi, India, in 1973 and Ph.D. degree
in Information sciences from University of Sheffield, UK, in 1986. He
is currently Professor of Electrical Communication Engineering
Department, Indian Institute of Science, Bangalore, India. His areas of
research include wireless networks, computational intelligence in
communication networks, protocol engineering and multimedia sys-
tems. He has visited several universities in India and abroad as visiting
scientist and professor. He has authored a book on ‘‘Communication
Protocol Engineering’’ published by Prentice Hall of India in 2004. He
has more than 150 paper publications in referred conferences/journals,
chapters in two books and edited a book. He has served in various
capacities in many IEEE and ICCC conferences and workshops. He is
a fellow of IEE, UK, a fellow of IETE, India, and a senior member of
IEEE computer society, USA.

	An agent based synchronization scheme for multimedia applications
	Introduction
	Some of the existing synchronization mechanisms
	Proposed work
	Organization of the paper

	Agents
	Proposed synchronization technique
	Playout system model
	Synchronization agency framework
	Streams synchronization
	Clock difference computation
	Delay estimation
	Skew computation
	Stream start time computation
	Playout start time computation

	Point Synchronization
	Real-time synchronization
	Adaptive synchronization

	Experimental evaluation
	Experimental procedure
	Results

	Benefits of using agents
	Concluding remarks
	References

