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Abstract 

 
Although conventional Active Shape Model (ASM) 

and Active Appearance Model (AAM) based 
approaches have achieved some success, however, 
evidence suggests that the performance of a person-
specific face alignment which aligns the variation in 
appearance of a single person across pose, 
illumination, and expression is substantially better 
than the performance of generic face alignment which 
aligns the variation in appearance of many faces, 
including unseen faces not in the training set. This 
paper proposes a discriminative framework for generic 
face alignment. This technique is presented under the 
framework of conventional Active Shape Model (ASM) 
but has three improvements. First, random forest 
classifiers are trained to recognize local appearance 
around each landmark. This discriminative learning 
provides more robustness weight for the optimization 
fitting procedure. Second, to impose constrains, shape 
vectors are restricted to the vector space spanned by 
the training database. Third, data augment scheme is 
used for the benefit of a large training set. 
Experimental results show that this approach can 
achieve good performance on generic face alignment. 
 
1. Introduction 
 

Active Shape Model (ASM) [1] and Active 
Appearance Model (AAM) [2] are generative 
parametric models which are commonly used to align 
faces under various situations, such as pose, 
illumination, and expression changes. With the 
introduction of ASM and AAM by Cootes [1][2], face 
alignment becomes more popular in computer vision 
research area which allows rapidly location of the 
boundary of objects. By learning statistical distribution 
of shapes and textures from training database, a 
deformable shape model is built. The boundary of 
objects with similar shapes to those in the training set 
could be extracted by fitting this deformable model to 
images. Depending on the different tasks, ASM and 

AAM can be built in different ways. On one hand, we 
might construct a person specific ASM or AAM across 
pose, illumination, and expression. Such a person-
specific model might be useful for interactive user 
interface applications including head pose estimation, 
gaze estimation etc. On the other hand, we might 
construct ASM or AAM to align any face, including 
faces unseen in training set. Evidence suggests that the 
performance of a person-specific face alignment is 
substantially better than the performance of generic 
face alignment. As indicated in [3], Gross’s 
experimental results confirm that generic face 
alignment is far harder than person-specific face 
alignment and the performance degrades quickly when 
fitting to images which are unseen in the training set. 

 
(a) 

 
(b) 

Figure 1. (a) Local appearance model: leaning 
a classifier for each landmark (In our model, 
88 classifiers should be trained. We take left 
eye left corner point for example); (b) 
Parameter optimization: maximize the outputs 
of all 88 classifiers to get the best geometrical 
parameters a* and shape parameter b* 
 

To remedy the generalization problems, this paper 
proposes an improved generic face alignment method 
under the framework of conventional ASM, but has 
three main improvements: 
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Firstly, as illustrated in Figure.1 (a), learning a 
classifier for each landmark simplifies the problem. 
We propose a novel discriminative method of local 
appearance modeling which distinguished correct point 
from incorrect point and such classification score could 
be used to parameter optimization. In our face model, 
88 classifiers should be trained. 

Secondly, after initializing the shape parameters, 
our optimization method iteratively updates the 
parameter such that the 88 classifiers outputs achieve 
the maximal scores and get the best shape parameter b*  
and geometrical parameter a* as illustrated in Figure.1 
(b).  

Thirdly, data augment scheme is used to improve 
the performance of generic face alignment via 
augmenting ground truth data. Although this scheme 
does not improve the misplaced labels, it significantly 
improves face alignment performance. 

 
2. Face alignment framework overview 
 

The proposed face alignment framework consists of 
training and aligning procedures, as illustrated in 
Figure.2.  

 
Figure 2. Face alignment framework 

 
Training procedure is building a face deformable 

model via shape modeling and local appearance 
modeling. This procedure needs a great amount of 
hand labeled data. Aligning procedure consists of 
firstly face detection and eye localization and then 
parameter optimization based on the trained face 
deformable model.  

In face detection and eye localization procedure, the 
state-of-the-art techniques are adopted. For face 
detection, a boosted cascade detector proposed by 
Viola and Jones [5] is used. For Eye localization, a 
robust and precise eye location method was found in 
[4], and we adopt this method in this paper to precisely 
locate the eye position. Both the two methods are real-
time.  

The training of generic face deformable model 
based on the hand labeled 2D face data and the 
parameter optimization are the main work of this 
paper. In the following paragraphs, they will be 
presented and discussed in detail. 

 
3. Training face deformable model 
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labeled K points in the image lattice. As illustrated in 
Figure.3, we manually label 88 points for each face 
image. 

 
Figure 3. Manual labeled 88 points of training 

image 
 
Training face deformable model consists of three 

steps: manually labeling faces, shape modeling and 
local appearance modeling. Shape modeling is the 
same as the conventional ASM [1]. Local appearance 
modeling was proposed in this paper using a novel 
discriminative method. We will briefly summarize 
shape modeling and discuss local appearance modeling 
in detail. 

 
3.1. Shape modeling 
 

Shape modeling is the same as the conventional 
ASM. It is represented as a vector b in the low 
dimensional shape eigenspace spanned by k principal 
modes (major eigenvectors) learned from the training 
shapes. A new shape X could be linearly obtained from 
shape eigenspace: 

 X X Pb≈ +                                                       (1) 
where P is the matrix consisting of k principal modes 
of the covariance of {Xi}. 
 
3.2. Local appearance modeling 
 

In conventional ASM, the local appearance models, 
which describe local image feature around each 
landmark, are modeled as the first derivatives of the 
sampled profiles perpendicular to the landmark contour. 
However, this approach ignores the difference between 
landmarks and nearby backgrounds. This paper 
proposes to learn the local appearance classifier for 
each landmark. Several classification algorithms, such 
as SVM, or neural networks could have been chosen. 
Among those, Lepetit [7] has found random forest [6] 
to be eminently suitable because it is robust and fast, 
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while remaining reasonably easy to train.  
 
3.2.1. Random forest. In this section, we first describe 
them briefly in the context of our problem for the 
benefit of the unfamiliar reader. Figure.4 depicts a 
random forest. It consists of N decision trees. Each 
decision tree is trained by completely random approach. 
For each decision tree Tn, the samples are selected 
randomly from the training sample pool. It is a subset 
of all the training samples. After N trees are trained, 
the final decision combines all the outputs of T1 T2 
…TN  by considering the average of all N outputs. 

 
Figure 4. Random forest combines the outputs 

of all decision trees as a classifier fusion 
method. 

 
3.2.2. Samples collection. For each landmark, we train 
one random forest. As illustrated in Figure.1 (a), we 
take an example of left eye left corner point. All the 
samples are cropped from faces (the distance between 
left eye center and right eye center is normalized into 
60 pixels). Positive samples are the 32×32 image 
patches of all the training images with its center at the 
ground-truth landmark position. While negative 
samples are the 32×32 image patches of all the training 
images with its center inside 40×40 but outside 5×5 
region from the ground-truth landmark position. Here, 
we take left mouth corner for example the positive 
samples and the negative samples are collected as 
Figure.5 
 

 
Figure 5. Positive and negative samples 

 
3.2.3. Local appearance model. After training 88 
random forest classifiers for 88 landmarks as 
illustrated in Figure.6, we could get 88 outputs. Each 
output of random forest classifier indicates the 
confidence a sample belongs to. The larger it is, the 
more probable it is a positive sample.  

 
Figure 6. Learn a local appearance classifier 
for each landmark, in our face model, Totally 

train 88 random forest classifiers. 
 

The position with the largest confidence is chosen to 
be the candidate position for the next ASM parameter 
optimization procedure. 
 
4. Parameter optimization 
 

Face alignment aims to find the best fit of the 88 
points which defined in Figure.3. As illustrated in 
Figure.1 (b), this optimization procedure is to 
maximize the classification scores of all 88 random 
forest outputs. Finding the best shape parameter b* and 
geometrical parameter a*. The optimization procedure 
could be depicts as follows: 

We use the eye location result [4] to initialize the 
deformable model. This optimization problem could be 
solved by two step procedure. 

 Step1 Relocating all the landmarks using the local 
appearance models, we obtain a new candidate shape Y 
and the weight matrix W from 88 random forest 
outputs. 

Step2 After relocating all the landmarks using the 
local appearance models, we obtain a new candidate 
shape Y. In conventional ASM, The solution in shape 
eigenspace is derived by maximizing the likelihood: 

 

2,
min ( )                                        (2)aa b

Y T X Pb− +
 

Where a represents the scale rotation and 
geometrical translation based on four parameters: 
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And b has been introduced in formula (1) which 
represents parameter of shape eigenvectors. 

Along with the desired solution (2), two 
improvements are presented. First, it is essential to 
impose constraints on the formula (2). In our method, 
shape vector b is restricted to the vector space spanned 
by the database. Second, 88 facial points could be 
weighed by the outputs of random forest classifiers. 
We add the weight matrix W into the optimization. The 
optimization objective function is changed to (4): 
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After two step optimization procedure, the best 
shape parameter a* and b* are find. Face alignment 
result is ( )aT X Pb+ . 

 
5. Data augment 
 

To obtain a satisfactory performance, a large 
training data set is necessary. Obviously, manual 
labeling such large a training data set is time 
consuming and the quality of the labels is less than 
perfect. We use a data augment algorithm to augment 
the training set. First we manually label a subset of the 
training data and construct an original face deformable 
model. We then align the unlabeled images with the 
face model and modify the incorrect labeled points. 
After that, we construct another face deformable model 
with all labeled faces then align to the unlabeled and 
modify again until all the training data are labeled. It 
operates: (1) build ASM, (2) align unlabeled faces, 
(3)re-build ASM, (4) align unlabeled faces. Such data 
augment scheme enlarges our training data set which 
will significantly improve face alignment performance. 
 
6. Experiments 
 

In order to verify our algorithm, experiments have 
been conducted on a large data set consisting of 3,244 
images from four databases as illustrated in Figure.7. 
We collect and construct the THFaceID database 
including totally 534 male and female aging from 
young to old with various facial expressions. Yale 
database [8], FRGC database [9] and JAFFE database 
[10] are all public available. Yale database includes 
illumination changes and facial expression changes; 
FRGC database also includes facial expression and 
illumination changes under controlled and uncontrolled 
situations; JAFFE database includes expression 
changes. All the 3,244 images are manually labeled 88 
points as illustrated in Figure.3 by data augment 
procedure.  

 
Figure 7. Images examples of four databases 
THFaceID database (top line); Yale database (line 2); 

FRGC (line 3); JAFFE database (bottom line) 

 
We divided all the images into three test sets. Set A 

is our training set; Set B is the test set which has the 
same subjects but different images from JAFFE; Set C 
is another test set which has unseen subjects from 
training set. Table 1 lists the images partition. FRGC 
for training only; Yale 15 subjects, 7 images per one 
subjects, totally 105 images for training; 15 subjects, 4 
images per one subjects, totally 60 images for testing 
set B; JAFFE 10 subjects, 120 images for training and 
93 images for testing set B; THFaceID 120 subjects for 
training but the other 414 subjects which are unseen 
subjects of training set for testing set C. Set A is 
manually labeled for training and Set B and Set C is 
manually labeled for ground truth data. 
 

Table.1 Database description 
THFaceID Yale FRG JAFFE

Images 1796 165 1070 213
Subjects 534 15 535 10

Set A 120(554) 15(105) 535 10(120)
Set B 15(60)  10(93)
Set C 414(1242)   

 
Given a dataset with ground truth landmarks, 

proposed face alignment algorithm automatically 
detects faces and locates eye positions. The eye 
localization is used as the initialization for parameter 
optimization procedure. After initialization, the faces 
are aligned by the generic face deformable model 
trained before.  

The accuracy is measured by (5) calling the relative 
error e, which is the point to point error between the 
face alignment results Pa and manually labeled ground-
truth Pm when the distance of left and right eye de is 
normalized to 60 pixels.   

88

2
1

P /(88 )                         (5)e
i

e d
=

= ⋅∑ a m－P  

Accuracy testing results are shown in Figure.8. It 
illustrates the distribution of the relative error on Test 
Set B and Set C. The mean relative error on Test Set B 
is 3.60 pixels and the mean relative error on Test Set C 
is 4.86 pixels. (distance of two eyes is normalized to 60 
pixels). From the results, we could see the face 
alignment performance on unseen subjects is more 
difficult than on the seen subjects’ unseen images. 
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Figure 8. Accuracy performance tested on Set 
B and Set C 

The X-axis is the relative error and the Y-axis is the 
number percentage of alignment results which shows 
the distribution of relative error on Set B and Set C. 

 
Some results of face alignment under difficult 

illuminations, expressions and occlusions are shown in 
Figure.9. 

 
Figure 9. Some results of face alignment 

under difficult illuminations, expressions and 
occlusions 

 

7. Conclusion 
 

Generic face alignment on unseen subjects is a 
difficult task in face alignment research. In this paper, 
an improved generic face alignment method has been 
proposed. The main novelty is representing the local 
appearance via discriminative learning around each 
landmark. This discriminative learning provides more 
robustness weight for the parameter optimization 
procedure. Experimental results demonstrate its 
effectiveness on generic face alignment.  
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