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Abstract

Receiver Operating Characteristic (ROC)
curves provide a powerful tool for visualiz-
ing and comparing classification results. Re-
gression Error Characteristic (REC) curves
generalize ROC curves to regression. REC
curves plot the error tolerance on the x-
axis versus the percentage of points predicted
within the tolerance on the y-axis. The re-
sulting curve estimates the cumulative distri-
bution function of the error. The REC curve
visually presents commonly-used statistics.
The area-over-the-curve (AOC) is a biased
estimate of the expected error. The R2 value
can be estimated using the ratio of the AOC
for a given model to the AOC for the null
model. Users can quickly assess the relative
merits of many regression functions by ex-
amining the relative position of their REC
curves. The shape of the curve reveals addi-
tional information that can be used to guide
modeling.

1. Introduction

Receiver Operating Characteristic (ROC) curves have
proven to be a valuable way to evaluate the quality
of a discriminant function for classification problems
(Egan, 1975; Swets et al., 2000; Fawcett, 2003). ROC
curves address many of the limitations of comparing
algorithms based on a single misclassification cost mea-
sure (Provost et al., 1998). An ROC curve character-
izes the performance of a binary classification model
across all possible trade-offs between the false negative
and false positive classification rates. An ROC graph
allows the performance of multiple classification func-
tions to be visualized and compared simultaneously.
ROC curves can be used to evaluate both expected
accuracy and variance information. ROC curves are
consistent for a given problem even if the distribution

of positive and negative instances is highly skewed.
The area under the ROC curve (AUC) represents the
expected performance as a single scalar. The AUC has
a known statistical meaning: it is equivalent to the
Wilcoxon test of ranks. Fundamentals of interpreting
ROC curves are easily grasped. ROC curves are ef-
fective tools for visualizing results for non-experts as
well as experts and help them make more valid con-
clusions. For example, a non-expert can see that two
functions have similar ROC curves and can conclude
that there is no significant difference between the func-
tions even though one may have a larger classification
cost. Currently ROC curves are limited to classifica-
tion problems.

The goal of this paper is to devise a methodology for
regression problems with similar benefits to those of
ROC curves. Our solution, the Regression Error Char-
acteristic (REC) curve, plots the error tolerance on the
x-axis versus the percentage of points predicted within
the tolerance on the y-axis. The resulting curve esti-
mates the cumulative distribution function (CDF) of
the error. The error here is defined as the difference
between the predicted value f(x) and actual value y of
response for any point (x, y). It could be the squared
residual (y − f(x))2 or absolute deviation |y − f(x)|
depending on the error metric employed. Figure 1
provides an example of REC curves generated for in-
dustrial data. See Section 3 for more details.

REC curves behave much like ROC curves.

• REC curves facilitate visual comparison of regres-
sion functions with each other and the null model.

• The curve area provides a valid measure of the ex-
pected performance of the regression model. The
REC curve estimates CDF of the error. The area
over the curve (AOC) is a biased estimate of the
expected error.

• The REC curve is largely qualitatively invariant
to choices of error metrics and scaling of the resid-
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Figure 1. REC curve comparing results of five models with
the null (mean) model on real-world data.

ual. Scaling the response does not change the
graph other than the labeling of the x-axis. Using
various error metrics, such as the absolute devia-
tion or squared error, does change the REC curve,
but the relative position of curves does not change
qualitatively. A function that dominates another
using the squared error will also dominate the al-
ternative using the absolute deviation.

• REC curves provide an effective strategy for pre-
senting results to non-experts. One can readily
see when regression functions are alike and when
they are quite different. In our industrial consult-
ing practice, REC curves provide a much more
compelling presentation of regression results than
alternatives such as tables of mean squared errors.

• The information represented in REC curves can
be used to guide the modeling process based on
the goals of the modeler. For example, good
choices of ε for the ε-insensitive loss function in
the SVM regression can be found using the curves.

This paper is organized as follows. We begin with a
brief review of ROC curves. In Section 3, we define
what an REC curve is and give an example of how
it is interpreted based on real world data. We exam-
ine the area-over-the-curve statistic in Section 4 and
show how it provides a biased estimate of the expecta-
tion of the error. In the next two sections, we explore
the properties of REC curves and their potential use
by investigating curves for synthetic data with known
characteristics. We conclude with a summary and fu-
ture work in the last section.
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Figure 2. Sample ROC curves: A = almost perfect model.
E = null model.

2. Review of ROC

We briefly review the properties of ROC curves. Read-
ers should consult (Fawcett, 2003) for an excellent tu-
torial on ROC graphs. For two-class discrimination
problems, the ROC curve for a discriminant function
is constructed by varying the threshold or probability
used to discriminate between classes for that function.
The resulting pairs of false positive rates and true pos-
itive rates are plotted on the x and y axes respectively
with lines interpolating between them.

Figure 2 illustrates ROC curves plotted for several
classification models. A classifier performs well if the
ROC curve climbs rapidly towards the upper left-hand
corner. Function A in Figure 2 is an almost perfect
classifier. The expected performance of a classifier can
be characterized by the area under the ROC curve
(AUC). The AUC for a perfect classifier is 1. Ran-
dom guessing would yield the diagonal line (labelled
as E) with the AUC equal to 0.5. No valid classifier
should have an AUC below 0.5. A classifier is said to
dominate an alternative classifier if the corresponding
curve is always above that for the alternative. In Fig-
ure 2, function B dominates functions C and D, and
thus would be preferable. Function B is better than
functions C and D for any choice of the cost function.
Correspondingly, the AUC for function B is larger than
for functions C and D. Function D does not dominate
function C, but it has a higher AUC and is preferable
overall. However, function C may be preferable if a
low false positive rate is desirable. Note that error
bars can also be included in ROC curves to indicate
variance information. We save presentation of ROC
and REC curves with error bars for future work.

Our goal is to develop a curve that analogously char-
acterizes the quality of regression models and main-



tains the benefits of ROC curves. In regression, the
analogous concept to classification error is the resid-
ual y − f(x). Like error rates in classification, exist-
ing measures of residuals such as mean squared error,
mean absolute deviation, R2 and Q2, provide only a
single snapshot of the performance of the regression
model. In addition, performance metrics based on
the absolute or squared residuals may produce differ-
ent rankings of regression functions. Scatter plots of
the predicted value versus the actual value allow users
to visualize function performance across the range of
data, but they are not practical for visualizing the per-
formance of multiple functions simultaneously.

Typically, we prefer a regression function that fits most
data within a desirable error tolerance. As in ROC
curves, the graph should characterize the quality of
the regression model for different levels of error toler-
ance. The best function depends on the goals of the
modeler. We might want to choose a model that fits
almost all data with a loose tolerance versus another
model with a tight tolerance that suffers catastrophic
failures on a few points. Ideally, a single statistic such
as AUC should exist to provide a measure of expected
performance with well-understood statistical meaning.
Preferably this statistic should correspond to an easily
assessed geometric quantity such as an area.

3. Definition of REC Curves

Regression Error Characteristic (REC) curves meet
these goals. REC curves plot the error tolerance on
the x-axis and the accuracy of a regression function
on the y-axis. Accuracy is defined as the percentage
of points that are fit within the tolerance. If we have
zero tolerance, only those points that the function fits
exactly would be considered accurate. If we choose
a tolerance that exceeds the maximum error observed
for the model on all of the data, then all points would
be considered accurate. Thus there is a clear trade-off
between the error tolerance and the accuracy of the
regression function. The concept of error tolerance is
appealing because most regression data are inherently
inaccurate, e.g. due to experimental and measurement
errors.

REC curves were initially motivated by the ε-
insensitive loss function used in SVM regression meth-
ods (Vapnik, 1995). The ε-insensitive loss (max{0, |y−
f(x)| − ε}) has proven to be very robust, but there
is no a priori way to pick ε. The REC curve based
on absolute error metric considers an ε-insensitive loss
for all possible values of ε – much the same as ROC
curves plot the results for all possible misclassifica-
tion costs. Further justification for this evaluation ap-

proach comes from statistics. The REC curve is an
estimate of the CDF of the error. This enables us to
estimate the expected errors of various models.

The basic idea of the ε-insensitive loss function is that
residuals must be greater than a tolerance ε before
they are considered as errors. Suppose we have a set of
m data points, (x1, y1), . . . , (xm, ym), where xi ∈ Rn

are the independent variables and y ∈ R is the depen-
dent or response variable. We define the accuracy at
tolerance ε as:

acc(ε) :=
|{(x, y) : loss(f(xi), yi) ≤ ε, i = 1, · · · ,m}|

m
.

When using the squared error metric, the loss is de-
fined as loss(f(x), y) = (f(x) − y)2. When the ab-
solute deviation is adopted, the loss is defined as
loss(f(x), y) = |f(x) − y|. The REC curve is con-
structed by plotting ε versus acc(ε). The following
algorithm is used to plot an REC curve. Percentile
plots can also be used to draw REC curves, which is
not discussed in this article.

REC Plot Algorithm
Input: εi = loss(f(xi), yi), i = 1, . . . , m. We assume
that the errors εi are sorted in ascending order and
the “plot” command interpolates between the plotted
points with a line.
1. εprev := 0, correct := 0;
2. for i = 1 to m
3. if εi > εprev then
4. plot(εprev, correct/m)
5. εprev := εi

6. end
7. correct := correct + 1
8. end
9. plot(εm, correct/m)

As ε increases, the accuracy increases. The acc(ε)
eventually goes to 1 when ε becomes large enough.
A practical problem is how to select the range of ε
when drawing the REC plots for multiple models. The
range is problem-specific even if the data are normal-
ized. The range of ε adjusts the appearance of REC
curves when we draw curves for different models in one
box. For a very wrong model, to achieve accuracy 1,
we have to use large ε. If the range is selected too
large, the REC figure becomes difficult to read since
the curves corresponding to better models will clus-
ter in the upper left-hand corner. These are precisely
the curves of interest since the corresponding models
perform well.

To overcome this difficulty we scale the REC curve us-
ing a null model. In this paper the null model is a con-
stant function with the constant equal to the mean of



the response of the training data, f(x) = ȳ. This mean
model is the best constant model assuming Gaussian
noise. If the noise follows a Laplacian distribution, a
constant model equal to the median of the response
of the training data may be preferable. In this paper
we only show results for the null model based on the
mean. However different null models can be defined if
priori knowledge on the noise model is accessible for
a problem at hand, and then REC curves can be ex-
tended to scale with different null models.

Reasonable regression approaches produce regression
models that are better than the null model. An REC
graph looks like a rectangle box that contains several
monotonically increasing curves (REC curves) each
corresponding to a regression model. The x-axis of
the box usually starts with 0 since ε ≥ 0. We define
the other end of the x-axis as the largest value of the
errors, εi, obtained by the mean model on the sample
data, denoted by ε̂. If on the sample data, a given
model achieves accuracy of 1 for ε ≤ ε̂, then the full
REC curve is plotted within the box for that model.
If the smallest value of ε where the model achieves
accuracy 1 is greater than ε̂, then the corresponding
REC curve is truncated at ε̂. Hence it is possible that
an REC curve may not reach accuracy 1 if the model
performs worse than the mean model at high errors,
which is a sign of a poor model. Since we focus on the
analysis of good curves, we always plot from 0 to ε̂.

Figure 1 illustrates the REC curves plotted for five
different models and the null model for a proprietary
industrial problem. The numbers in the legend give
AOC values for each model. We present the results
based on 50 random partitions of data into 90% train-
ing and 10% test. The results for the 50 trials are av-
eraged by the simple strategy of including the results
for every test point from every trial in the REC curve.
This method is commonly used in ROC curves. How-
ever any alternative method like error bars for present-
ing cross-validated results developed for ROC curves
could also be used. See (Fawcett, 2003) for a survey.
The models were constructed using classic regression
SVM trained with different values of ε (Vapnik, 1995),
linear partial least squares (PLS) (Wold, 1966), and
kernel partial least squares (KPLS) (Rosipal & Trejo,
2001)1. All methods produced reasonable results that
outperformed the null model. The results show that
the SVM1 model performs better than the rest. The
KPLS and the SVM2 models perform very similarly.

1The results were obtained using the AnalyzeTM soft-
ware created by Mark Embrechts at Rensselaer Polytechnic
Institute and distributed at www.drugmining.com. Results
are for REC demonstration only so modeling details are
not provided.

Their MSEs are not identical but there is no real dif-
ference in their performance. In this case, SVM1 was
hand tuned based on testing information in order to
estimate the best possible performance. Model param-
eters for SVM2 were selected using cross-validation.
The KPLS parameter (number of latent variables) was
selected by a fixed policy (Rosipal & Trejo, 2001). One
could use this picture to argue with the manager that
SVM2 and KPLS are doing almost as well as the best
possible model SVM1. SVM3 illustrates what happens
if a poor choice of the SVM parameters is made. Other
experiments illustrated that KPLS was faster and less
sensitive to tuning. Based on the REC curves, one
might conclude that KPLS is a preferable method on
these datasets.

4. Area Over the REC Curve

In ROC curves the area under the ROC curve pro-
vides an estimate of the expected accuracy. Corre-
spondingly the area over the REC curve (AOC) is a
measure of the expected error for a regression model.
If we think of the error as a random variable, the
REC curve is an estimate of the cumulative distri-
bution function of this variable. We now show that
calculating the expected value based on this estimate
of the error probability function is equivalent to evalu-
ating the area over the curve. We also show how AOC
can be used to estimate other common sample or test
statistics for regression models.

4.1. Area Calculates Expected Error

For a given model, the error calculated using the
squared error or absolute deviation, can be regarded as
a random variable ε ≥ 0. The cumulative distribution
of this random variable is defined as the probability of
ε ≤ ε. Denote the CDF of the variable ε as P (ε) and
the corresponding probability density function as p(ε).
The REC curve represents the empirical CDF of ε with
the probability P estimated by the frequency P̂ for εi

based on the training data. Assume the errors εi ob-
served on the m training points are sorted in ascending
order. Then εm is the maximum observed error, and
the frequency P̂ (εi) = i/m. By the Glivenko-Cantelli
lemma, P̂ (ε) converges to P (ε) uniformly over all val-
ues of ε (DeGroot, 1986). We give a rough sketch of
the argument about AOC assuming the full REC curve
can be plotted in the figure, in other words, εm ≤ ε̂.

The expectation of ε is defined as E(ε) =
∫

εp(ε)dε.
For any maximum observed error εm > 0, we can break
the integral into two parts:

E(ε) =
∫ εm

0
εp(ε)dε +

∫∞
εm

εp(ε)dε. (1)



The sample max εm converges to infinity or the maxi-
mum value of ε if it exists, so the second term con-
verges to 0 as the sample size m → ∞. Define
∆εi = εi − εi−1 and ωi ∈ (εi−1, εi). Assume ∆εi → 0
as m → ∞. The expected value of ε is equal to the
Riemann integral

E(ε) = lim
m→∞

m∑

i=1

ωip(ωi)∆εi. (2)

By the Mean Value Theorem, we can always choose
ωi ∈ (εi−1, εi) such that

p(ωi) =
P (εi)− P (εi−1)

εi − εi−1
.

The above equation can thus be rewritten as

E(ε) = lim
m→∞

m∑

i=1

ωi
P (εi)− P (εi−1)

εi − εi−1
∆εi

= lim
m→∞

m∑

i=1

ωi(P (εi)− P (εi−1)).
(3)

The probability distribution P at ε is unknown, but we
can approximate this quantity based on the finite sam-
ple. The infinite series (3) can be truncated at m equal
to the sample size. But this approximation underes-
timates E(ε) since it does not estimate the portion of
integral (1) corresponding to ε > εm for the finite sam-
ple. We use the empirical distribution P̂ estimated on
the sample data to approximate P and take ωi = εi,

E(ε) ≈
m∑

i=1

εi(P̂ (εi)− P̂ (εi−1))

= εmP̂ (εm) +
m−1∑

i=1

(εi − εi+1)P̂ (εi)− ε1P̂ (ε0)

= εmP̂ (εm)−
(

m−1∑

i=1

(εi+1 − εi)P̂ (εi) + ε1P̂ (ε0)

)

where ε0 = 0. The first term computes the area of the
entire region in the box corresponding to this REC
curve since P̂ (εm) = 1. This is shown in Figure 3 as
the area in the left shadowed rectangle. The terms
in the parentheses evaluate the area under the curve.2

Therefore E(ε) can be approximated by the area over
the curve (AOC) within the box as shown in Figure 3.
This analysis assumes that the entire REC curve can
be plotted. If a model has εm > ε̂, the REC curve will
be truncated. The area observed in the plot does not
correspond to the full area over the curve. However

2We actually calculate the area under the curve by the
trapezoidal rule. The same analysis holds but is slightly
more complicated for that case.

the AOC statistic can always be calculated using the
sample εi even though they may not be plotted in the
figure. Note AOC is a biased estimate since it always
underestimates the actual expectation due to the drop
of the second term of the integral (1). For good models
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Figure 3. A REC curve with εm ≤ ε̂. The area over the
curve (AOC) estimates the E(ε).

(better than the mean model in our illustration), the
AOC is a reasonable estimate of the expected error.
As the amount of data tends to infinity, AOC con-
verges to the expectation of ε. Therefore we include
AOC information in REC plots. In all REC figures,
the numbers in the legend represent the AOC values
corresponding to each model.

Table 1. Comparison of AOC estimates and Mean esti-
mates of the expected error E(ε).

SE AD

Model AOC MSE AOC MAD

SVM1 0.0875 0.0888 0.2209 0.2215
PLS 0.0991 0.1004 0.2452 0.2463
MEAN 0.3548 0.3570 0.4690 0.4704

Certainly there are other more common estimates of
E(ε). For example, the sample mean, 1

m

∑m
i=1 εi, also

estimates the expected error. If ε is calculated using
the absolute deviation (AD), then the AOC is close to
the mean absolute deviation (MAD). If ε is based on
the squared error (SE), the AOC approaches the mean
squared error (MSE). Table 1 illustrates the difference
between AOC and mean estimates of the SE and AD
on the industrial data presented in Figure 1. We can
clearly see that the AOC estimate is biased because
it always produces a lower estimate of the expected
error than the MSE or MAD. The REC curve offers
an alternative error estimate that can be visualized
directly and that has potential of providing additional
information.



4.2. Estimating Other Statistics

More statistics can be represented by REC curve
graphs. For REC curves with the SE, the AOC for the
mean model is an estimate of the variance of the re-
sponse y since it evaluates the expectation E[(y− ȳ)2].
Once we have an estimate of the response variance, we
can estimate other commonly-used statistics such as
Q2 and R2. Widely used in chemometrics, Q2 is the
ratio of the MSE over the sample response variance,
so Q2 can also be estimated using AOC by

Q2 =
∑m

i=1(yi − f(xi))2∑m
i=1(yi − ȳ)2

≈ AOCmodel

AOCmean
. (4)

This yields an estimate of R2 as well because R2 is
often defined as 1−Q2. One could also evaluate equiv-
alent statistics defined based on the AD.

The significance of difference between two REC curves
can be assessed by examining the maximum deviation
between the two curves across all values of ε. This cor-
responds to the Kolmogorov-Smirnov (KS) two-sample
test (DeGroot, 1986) for judging the hypothesis that
the error ε generated by two models f and g follows
the same distribution. The KS-test requires no as-
sumptions about the underlying CDF of ε. Since REC
curves represent the sample CDF P̂ (ε), the statistics
used in the KS-test such as D+ = supε(P̂f (ε)− P̂g(ε)),
D− = supε(P̂g(ε) − P̂f (ε)) and D = max{D+, D−},
can be estimated and visualized by the maximum ver-
tical distance between the two REC curves correspond-
ing respectively to the models f and g.

Hence the REC curve facilitates the visualization of
all these statistics simultaneously for many regression
functions in a single graph. To deliver the same in-
formation, one would have to examine large tables of
results and do mental calculations. Moreover, REC
curves have the benefit of providing additional infor-
mation besides all individual statistics.

5. Noise and Loss Models

We explore the relationship between the noise model
and error metrics by investigating REC curves on syn-
thetic data with known noise distribution. The goals
here are to examine if the model evaluation based on
REC curves is sensitive to choices of error metrics, and
if REC curves can help identify characteristics of re-
gression models. We draw the REC curves based on
both SE and AD to illustrate the effect of error metrics
on the appearance of REC curves.

All experiments were conducted using 200 points ran-
domly generated in a 20-dimensional space from a uni-
form distribution on [−1, 1]20. The first 10 dimensions

were used to construct y and the remaining 10 dimen-
sions are just noise. The goal was to examine how REC
curves vary when y is disturbed by additive noise. The
response y is constructed via y = 0.5

∑10
i=1 xi+ξ where

ξ is the additive noise. Several noise models were con-
sidered: Gaussian, Laplacian, and Weibull (DeGroot,
1986). To save space, Weibull noise data will be an-
alyzed in the next section not here. Intuitively, the
distribution of the residual depends on the regression
model f and the noise variable ξ. Figures 4 illustrates
REC curves produced for the data with Gaussian and
Laplacian additive noise of mean 0 and standard de-
viation 0.8. Each plot considers four functions: the
true model 0.5

∑10
i=1 xi, the mean (null) model, a ran-

dom model
∑10

i=1 wixi where wi are randomly gener-
ated from [0, 1], and a biased model 0.5

∑10
i=1 xi + 1.5.

The AOC values corresponding to each curve are also
presented beside the curves or in the legends.
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Figure 4. REC curves with Gaussian noise (above) and
Laplacian noise (below). Left: AD, right: SE.

As expected, the true model dominates the other mod-
els. Similar to ROC curves, an REC curve dominates
another if it is always above the other. The mean
model dominates the random model indicating that
the random model is poor. Analogous to the ROC
curve, a random model can provide the bottom line
for comparison although we use the mean model ȳ as
the worst case in comparison rather than a random
guess. The biased model initially performs the worst,
but once the error tolerance is large enough, it out-
performs the mean model. Laplacian noise generates
more outliers than Gaussian noise. When outliers are
present, the top of the REC curve will be flat and not
reach 1 until the error tolerance is high. This can be
observed in Figure 4(below) for Laplacian noise data.
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Figure 5. REC curves with Laplacian noise for trained models. Left: REC curves based on training data for LS and
SVM (ε = 1.8) models. Middle: Training REC curves including the new SVM model with ε = 0.8. Right: REC curves
generated based on test data for various models.

The curves for the biased model are of particular inter-
est. Note how quickly the curve for the biased model
climbs in the middle on contrary to the flat part at the
lower end. This characteristic nonconvex behavior of
the REC curve is caused by the position of the model
relative to data. For example, the regression model is
about in the middle of the data, but the data is far
from the regression function on both sides. This case
is rare in practice. More commonly, this kind of curve
results from a biased model for which the data largely
lies on one side of the regression model rather than
the other side. The biased model will exhibit poor
accuracy when the tolerance ε is small, but once ε ex-
ceeds the bias the accuracy rapidly increases. Hence
this characteristic shape in the REC curve indicates
that the model is likely biased. If the model should be
unbiased, this could be a sign of potential problems.
In SVMs, a bias can be introduced intentionally via
the ε-insensitive loss function. As observed in Figure
6, the REC curve for the SVM model (ε = 0.1) has a
slight nonconvexity at the low end.

The same conclusion would be drawn for each noise
model according to REC plots based on both AD and
SE. Hence the evaluation of regression models using
REC curves is qualitatively invariant to the choices of
error metrics. We prefer the AD-based REC curves
because the plots tend to be more spaced-out and are
convenient to distinguish the trend of different curves.
In the next section, we only show AD-based plots.

6. Potential Use of REC Curves

REC curves can help determine an appropriate ε value
for the ε-insensitive loss in SVMs. If the data is largely
distributed within a band of width ε about the true
model with only a few points lying outside, the ε-
insensitive loss is preferred in modeling. On this data,

a good regression model can fit the majority of data
within a relatively small tolerance ε. We expect a
sharp jump in the REC curve around the ε value used
in the insensitive loss. The curve becomes flat after it
hits that ε value. Hence we can see an abrupt bend in
the trend of the REC curve, especially in SVM training
REC curves as shown in Figure 5(middle).
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Figure 6. REC curves on Weibull noised data for trained
models. Left: training, right: test.

We examine how REC plots could assist in finding
a proper ε value using synthetic data with Laplacian
noise. Figure 5 presents REC curves for least squares
(LS) and SVM models trained using 50 points (left and
middle) and tested on 150 points (right). Initially the
LS model performed better than SVM with parame-
ter ε = 1.8. Inappropriate choices of ε in the insen-
sitive loss can hurt the performance of SVM. Figure
5(left) shows that the LS REC curve exhibits a dra-
matic change of slope at about ε = 0.8. To show this
we draw two straight lines roughly tangent to the lower
part of the curve (the line A) and the high end of the
curve (the line B), respectively. The two lines cross
at about ε = 0.8. The similar behavior can be also
observed on the REC curve for SVM (ε = 1.8). Based
on this information observed on training REC curves,



we trained a SVM with ε = 0.8 in the loss function.
The new curve for SVM (ε = 0.8) in Figure 5(middle)
shows a significant enhancement in the SVM training
accuracy. The generalization performance was also im-
proved for SVM (ε = 0.8) as shown in Figure 5(right).
The same trick was also applied to synthetic data gen-
erated with Weibull-distributed noise where the sign
of the noise was selected using a coin toss. The SVM
with ε = 0.1 shown in Figure 6 chosen in the above way
outperforms the LS model and the other SVM model.
We leave automating and validating this heuristic for
selecting the ε parameter in SVMs to future research.

Single statistics such as MSE and MAD may produce
different rankings when comparing two models. In this
case, the corresponding two REC curves must cross.
Let the best model selected by MSE differ from that
of MAD. Suppose the curves based on the AD do not
cross, in other words, curve 1 is always above curve 2.
Let r1 and r2 be the two vectors of absolute resid-
uals corresponding to the two models sorted in as-
cending order. Since curve 1 dominates curve 2, it
implies r1

i ≤ r2
i , 1 ≤ i ≤ m, which in turns implies

(r1
i )

2 ≤ (r2
i )

2. Thus REC curves based on the SE also
do not cross. In addition, we have

∑
r1

i ≤
∑

r2
i and∑

(r1
i )

2 ≤ ∑
(r2

i )
2, so the MAD and MSE provide the

same ranking. By contradiction, the curves must cross
if models are ranked differently by MSE and MAD.

If two REC curves cross, how should we rank the two
models? One solution is to evaluate the AOC val-
ues for the two models. If AOC values based on AD
and SE both show preferences for the same model, we
can trust this ranking. If the preferences are different,
then the MSE and MAD rankings will differ as well.
Thus the ranking has to rely on more information re-
vealed by REC visualization. Moreover, there may be
no significant difference in the curves. The maximum
vertical distance between two REC curves represents
the KS-test statistic used to assess the significance of
the difference between the two error distributions. We
leave investigation of the KS-test in REC curves to
future research.

7. Conclusions

We proposed a new technique for evaluation and com-
parison of regression models. REC curves depict the
trade-off between error tolerance versus the accuracy
of the functions. The REC curve is an estimate of
the error cumulative distribution function. Commonly
used measures of the distribution can be estimated us-
ing the geometry of the figure. For example the area
over the curve is a biased estimate of the expected er-
ror. Using REC curves, non-experts can quickly evalu-

ate the relative merits of regression functions without
consulting tables or other graphs. Experienced model-
ers can exploit the additional information contained in
the REC curve beyond simple statistics. These proper-
ties can be used to help diagnose problems with mod-
els and to guide model selection. For example, we use
REC curves to select values of the ε-insensitive loss
function in regression. REC curves can potentially
profit from the innovations and variations developed
for ROC curves. Different methods for averaging mod-
els and incorporating error bars to represent variance
can be used. The convex hull of the set of points in the
REC space may be useful for constructing ensembles
of regression functions.
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