
Hierarchical Learning in Stochastic Domains: Preliminary Results

Leslie Pack Kaelbling
Computer Science Department

Box 1910
Brown University

Providence, RI, USA 02912-1910
lpk@cs.brown.edu

Abstract

This paper presents the HDG learning algorithm,
which uses a hierarchical decomposition of the
state space to make learning to achieve goals
more efficient with a small penalty in path qual-
ity. Special care must be taken when performing
hierarchical planning and learning in stochastic
domains, because macro-operators cannot be ex-
ecuted ballistically. The HDG algorithm, which
is a descendent of Watkins’ Q-learning algorithm,
is described here and preliminary empirical re-
sults are presented.

1 INTRODUCTION

Reinforcement learning is a general tool for deriving strate-
gies that optimize a fixed reinforcement function in a
stochastic environment. A crucial problem in reinforce-
ment learning is temporal credit assignment: how to choose
actions based on good results that happen after (perhaps
long after) the action is taken. This problem is solved
well in the general case by temporal difference meth-
ods, such as Watkins’ Q learning [Barto et al., 1989,
Watkins, 1989] and Sutton’s TD algorithm [Sutton, 1988].

In much of the work on reinforcement learning, however,
researchers have studied a restriction of the problem to
cases of “goals of achievement.” Rather than having an
arbitrary mapping of states of the world to reinforcements
for the agent, there is a single “goal” situation at which the
agent must arrive as soon as possible. Goals of achieve-
ment can be modeled in the general reinforcement-learning
framework by having the goal situation generate a posi-
tive reinforcement and all other situations a zero reinforce-
ment. Because there is a discounting factor built into the
temporal-difference methods, actions that lead to the goal
sooner rather than later will be preferred.

Domains with goals of achievement can be learned more
efficiently by methods that are tailored to this special case.
In previous work [Kaelbling, 1993b], we discussed the DG
learning algorithm, which is analogous to Q learning, but

directly suited to goals of achievement. In the basic single-
goal case, DG learning is somewhat more effective than
Q learning. The real importance of DG learning is shown
when we consider the case of goals of achievement that
change over time; the common scenario of a taskable de-
livery robot is an instance of this sort of problem. A simple
extension to DG learning allows a large amount of between-
task transfer, making it greatly preferable to Q learning for
this sort of problem, without requiring any complex mech-
anisms.

Unfortunately, the DG learning algorithm is expensive,both
in terms of the number of learning instances required to
achieve good performance and in computational time and
space per instance. In this paper, we consider learning to
achieve goals in a two-level hierarchy. The new algorithm,
HDG, is more efficient than DG in both time and space; pre-
liminary empirical results show that it learns more quickly
initially,but has a somewhat sub-optimal asymptotic perfor-
mance. As state spaces become huge, we can use multiple
levels of hierarchy to achieve great performance improve-
ments that will, in general, offset a degree of sub-optimality
in performance.

In the following sections we present background material
on Q and DG learning, discuss the nature of our hierar-
chies, define the HDG learning algorithm, and give some
preliminary experimental results. We conclude by compar-
ing this to related work and by considering directions for
future work.

2 Q AND DG LEARNING

We assume that a learning agent is embedded in an envi-
ronment in such a way that it can discriminate the set S of
distinct world situations and can take the set A of actions
on the world. The world is modeled as a Markov process,
making stochastic transitions based on its current situation
and the actions taken by the agent. We let T (s; a; s0) be the
probability that the world will make a transition to situations0 given that it was in situation s and the agent executed ac-
tion a. In addition, for each situation s and action a, r(s; a)
is the reinforcement value of taking action a in situation s.

In general, this value is a scalar random variable; it must
have a stationary distribution, but the same situation-action
pair may have different results on different trials.

2.1 Q Learning

The general reinforcement-learning problem is typically
stated as finding a policy that maximizes expected dis-
counted future reinforcement. A policy � is a mapping
from S to A. The expected discounted future reinforce-
ment of a policy � in a situation s is defined as1Xt=0

ter(t) ;
where er(t) is the expected value of the reinforcement ob-
tained at step t, given that the agent started in situation s
and executed policy �. The variable is the discounting
factor; it controls the degree to which rewards in the distant
future affect the total value of a policy and is usually just
slightly less than 1.

Given definitions of the transition probabilities and the ex-
pected reinforcements, it is possible to solve for the opti-
mal policy, using methods from dynamic programming. A
more interesting case occurs when we wish simultaneously
to learn the dynamics of the world and to construct the pol-
icy. Watkins’ Q learning algorithm gives us an elegant and
efficient method for doing this.

Let Q�(s; a) be the expected discounted reinforcement for
taking action a in situation s and continuing thereafter with
the optimal policy. It can be recursively defined byQ�(s; a) = er(s; a) + Xs02S T (s; a; s0) maxa02AQ�(s0; a0) :
Because we do not know T and er initially, we construct
incremental estimates of theQ values on line. Starting withQ(s; a) at any value (but typically 0), every time an action
is taken, we update the Q values as follows:Q(s; a) := (1 � �)Q(s; a) + �(r + maxa02AQ(s0; a0)) ;
where r is the actual reinforcement value received for taking
action a in situation s, s0 is the next situation, and � is a
learning rate (between 0 and 1).

Given the Q values, there is a policy defined by taking,
in any situation s, the action a that maximizes Q(s; a).
Watkins showed [Watkins, 1989] that, given some assump-
tions, including that every situation-action pair is tried in-
finitely often on an infinite run, the Q values will converge
to the true Q� values, and hence the induced policy will
converge to the optimal one.

Of course, in any practical situation, as the learned Q
values converge to the true Q� values, we will have
to use the policy to control action. But in doing so,
we are in danger of violating the requirement that every
situation-action pair be tried infinitely often. This is an
instance of the exploration versus exploitation trade-off; it

has been treated extensively elsewhere [Kaelbling, 1993a,
Thrun, 1992]. In the interest of simplicity in this paper,
we generate actions probabilistically based on the Q values
using a Boltzmann distribution. Given a situation s, we
choose action a with probabilityeQ(a;s)=TPa2A eQ(a;s)=T :
This serves to choose actions whose values are much better
than the others with much greater likelihood. The temper-
ature parameter T controls the amount of exploration (the
degree to which actions other than the one with the best Q
value are taken).

2.2 DG Learning

The DG learning method applies only to domains in which
the aim of the agent is to arrive at some goal situation in the
least number of steps. We still assume that the world makes
stochastic transitions, but the goal is explicitly named and
there is no reinforcement function. The aim of DG learning,
at its simplest, is to arrive at the policy that minimizes
the expected number of steps to the goal. The method is
applicable without change to the case where the goal varies
on line: now a policy is a mapping from S � S to A,
specifying an action to take based on the current situation
and the goal situation.

We define DG�(s; a; g) to be the expected number of steps
required to get to situation g from situation s by starting
with action a and continuing with the optimal policy. It is
conveniently described recursively asDG�(s; a; g) = 0
if s = g andDG�(s; a; g) = 1 +Xs02S T (s; a; s0) mina02ADG�(s0; a0; g)
otherwise.

Rather than learning T then calculating DG, we estimate
DG directly on line. Starting withDG(s; a; g) at any value
(but typically 0), every time an action is taken, we update
the DG values as follows:DG(s; a; g) := (1 � �)DG(s; a; g)+ �(1 + mina02ADG(s0; a0; g)) ;
where � is the learning rate and s0 is the next situation.

A policy can be directly constructed from the DG values
by choosing, for every current situation s and goal situationg, the action a that minimizes DG(s; a; g). Although no
theoretical results have yet been developed with respect to
this learning procedure, we conjecture that it can be shown
to converge under restrictions similar to those for the Q-
learning result.

The trade-off between exploration and exploitation is im-
portant in DG learning as well; we use the Boltzmann distri-
bution to construct action probabilities, though interval es-
timation techniques [Kaelbling, 1993a] could be employed
for more careful exploration.

2.3 Updating all Goals in DG Learning

A very simple kind of extra learning step can be directly
added to DG learning. Whenever an action a is taken as
a step from situation s to a goal g, we update the value
of DG(s; a; g) by looking ahead one step at the value ofDG(s0; a0; g) for the maximizing a0. This look-ahead pro-
cess hinges on the relationship between s, a, and s0; the
goal is relevant only for bookkeeping purposes.

We define all-goals updating mode for DG learning to up-
date DG(s; a; g0) for all g0 2 S, independent of what goal
was being sought when the action was taken. This updat-
ing mode requires an amount of work linear in the size of
the set of situations; if this cost is prohibitive, a random or
systematically-chosen subset of goals could be updated on
each iteration.

The work that is done in updating all goals will not speed
learning or performance for the particular goal that is being
achieved; but it will result in an extremely efficient trans-
fer of knowledge to the achievement of other goals. Singh
[Singh, 1992c] has also addressed this issue, but in a more
complex network architecture and for a different class of
goals. We have found that DG learning with all-goals up-
dating performs very well, learning to achieve changing
goals with an order of magnitude less data than is required
by conventional Q learning [Kaelbling, 1993b].

2.4 Computational Complexity of DG Learning

We are interested in three complexity measures of the learn-
ing algorithms: execution time without learning, execution
time with learning, and space. Each step, without learning,
requires finding the action with the maximum DG value
for the given start and goal situations; assuming that array
indexing is constant time, this requires O(jAj) time, whereA is the set of possible basic actions. If we perform all-
goals updating, it requires an additionalO(jSjjAj) time per
instance. The DG values require O(jSj2jAj) space.

3 LANDMARK NETWORKS

When we plan a route for driving a long distance, we don’t
even attempt to find the optimal path; rather, we take advan-
tage of an existing path hierarchy. We plan a route from our
current location to the nearest freeway on-ramp, plan a se-
ries of legs on freeway segments, then plan a route from the
freeway off-ramp to our destination. The hierarchical DG
learning algorithm presented in this paper will use a related
hierarchical structure known as a landmark network.

Given a set,S, of situations,a landmark network is specified
by the tuple hL;NL;N i, where L � S is a distinguished
set of landmark situations,NL : S ! L is a mapping from
each situation to its nearest landmark, and N : L ! 2L is
a mapping from each landmark to a set of neighbor land-
marks. For such a structure to make sense, we need a dis-
tance metric on S; the most useful one would be expected

0 1 2

43

5 6 7

8

9

1110

Figure 1: Landmark network constructed on a discrete
space

number of steps needed to get from situation to situation us-
ing the optimal strategy. We will not have that information
available to us initially, however, so any approximation that
allows us to partition S into subsets that contain situations
relatively near each other will do. At the end of the paper,
we speculate on how to learn a good landmark structure.

The N function defines a connectivity graph among the
landmarks; it provides an abstract level at which to plan
paths. From a landmark, l, we can choose to move toward
any landmark in N (l). If the graph is highly connected,
then there are lots of alternatives and the routes will be
very efficient. But high connectivity increases the branch-
ing factor of our search, potentially making planning and
learning less efficient.

A landmark network can be constructed for any space of
situations, but navigation in cartesian space is a good illus-
trative example because we have a great deal of intuitive
experience with such spaces. One way to construct plau-
sible landmark networks in cartesian space is to use the
Delaunay triangulation [Preparata and Shamos, 1985]. The
landmark situations can be distributed in any way over the
space. Then, a Voronoi diagram is constructed on those
landmarks, partitioning the space into regions of situations
that share the same closest landmark. Finally, any two land-
marks whose Voronoi regions touch are connected. Even
in discrete spaces that do not satisfy the triangle inequality,
it is possible to perform an analogous partition. Figure 1
shows a landmark network constructed in this way on a
discrete space. Each square in the grid is a situation; the
ones with circles are landmarks. The light rectilinear lines
indicate the neighborhood boundaries, and the heavy lines
indicate the neighbor relation among landmarks.

4 HDG LEARNING ALGORITHM

Given a landmark network, we can modify the DG learning
algorithm to work in the hierarchical space; we will call this
algorithm HDG for hierarchical distance to goal learning.
We first describe the internal structures of the algorithm
and how they can be used to select actions, then provide a
method for learning them.

4.1 Acting hierarchically

In a deterministic domain, it is easy to construct hierarchi-
cal navigation algorithms. First you move to the nearest
landmark, then you move along the edges in the landmark
network until you’re at the landmark nearest the goal, then
you move to the goal. In stochastic domains, it is more
difficult, because there is no nominal path between land-
marks that can be followed ballistically (using the previous
analogy, it is possible to mistakenly drive off the freeway
at any moment). Therefore, rather than using landmarks as
way-points, we use them as locations to aim for, reducing
the number of possible goals for DG learning. This kind of
navigation more closely resembles the navigation done in
sailing or flying rather than navigation on freeways.

The basic operation of the HDG algorithm is as follows:
given a current situation s and a goal situation g,

1. Find nearest landmark to s, NL(s), and nearest land-
mark to g, NL(g).

2. If NL(s) = NL(g), then execute the best local action
for getting from s to g.

3. Otherwise, let li be the second landmark on the shortest
path from NL(s) to NL(g).

4. Choose the best local action for getting from s to li
and execute it.

In order to support this algorithm we need two data struc-
tures. At the low level, we need to store DG values
from every situation s to every other situation s0 such thatNL(s) = NL(s0). These values will allow us to choose
the best actions to take in final phase of getting to the goal
once in the correct region (step 2 above). In addition, we
need DG values from every situation s to every landmark inN (NL(s)); that is, to every landmark that is a neighbor of
the nearest landmark (step 4 above). At the next level of ab-
straction, we need to be able to find shortest paths between
landmarks. We define Γ(l1; l2; l3) to be the shortest distance
from landmark l1 to l3 on a path between landmarks that
starts by going to landmark l2, where l2 is a neighbor of l1.
Let D(l1; l2) = mina DG(l1; a; l2)
for any l2 2 N (l1). Then,

Γ(l1; l2; l3) = D(l1; l2) + minli Γ(l2; li; l3)
and step 3 above can be accomplished by finding the li 2N (NL(s)) that minimizes

Γ(NL(s); li; NL(g)) :

Figure 2: Policy for achieving goal in bottom center of the
space.

We can rewrite the algorithm more precisely as:� If NL(s) = NL(g), then execute the basic action a
that minimizes DG(s; a; g).� Otherwise, let li be the landmark that minimizes
Γ(NL(s); li; NL(g)) and execute the basic action a
that minimizes DG(s; a; li).

This algorithm results in a behavior of aiming toward the
next appropriate landmark; it is rarely the case that the
agent actually goes through the landmark situations, though,
because as soon as a new region is entered, the landmark
toward which it is aiming is changed. Figure 2 shows the
policy derived from the hierarchical action algorithm for the
goal indicated by a dark circle in the middle of the bottom
row. The squares highlighted in grey indicate situations
in which this policy disagrees with the optimal low-level
policy. In the upper left corner, the error arises because
the shortest path via landmarks includes the landmark in
the middle at the far left; rather than aiming straight for the
goal, the policy is aiming for that next landmark, resulting
in a perturbation of the path to the left. Similarly, in the
situation just above the goal situation, the policy is aiming
at the landmark in the next region, rather than straight at the
goal. The policy for this goal has more of these deviations
than those for other goals. This may be an artifact of the
simplicity of the domain. Note that these policies are not
explicitly stored, but are computed as needed by the method
given above.

4.2 Learning

The DG values are learned just as they are in the basic DG
algorithm. We perform all-goals updating, but notice that
the space of target goals is much smaller; it encompasses
only the other situations in the same partition as well as the
neighboring landmarks.

The Γ values are defined as a function of the DG values.
It is difficult to learning them using a standard incremental
technique, however, because the landmarks are so rarely
actually encountered. Instead, we simply periodically re-
compute the Γ values. We start by setting

Γ(l1; l2; l2) = D(l1; l2)
for all l2 2 N (l1) and setting

Γ(l1; l2; l1) = 0

for all l1; l2, then use a modified version of the Floyd-
Warshall all-sources shortest-paths algorithm [Cormen et
al., 1990] to compute the rest of the Γ values. Early in a
run, the DG values change very rapidly, so the Γ values
should be recomputed frequently; as the run progresses, the
frequency of recomputation can be decreased.

4.3 Computational Complexity

Let jLj be the number of landmarks, jDj be an upper bound
on the number of neighbors a landmark can have (the degree
of the landmark graph), and jP j be an upper bound on the
size of a neighborhood. To execute a single step, without
learning, we need timeO(1)+O(jDj)+O(jAj); it requires
constant time to look up the two nearest landmarks in a table,
then time on the order of the degree of the landmark graph
to find the best next landmark, then time on the order of the
number of primitive actions to select the best action. When
we add all-goals updating for the DG values, it requires
time O(jAj(jP j+ jDj)), because we have to find the best
action for every other situation in the same partition as well
as for every neighboring landmark. To compute Γ values at
constant-time intervals requires time O(jDjjLj3), so every
execution step takes time O(jDjjLj3 + jAj(jP j + jDj)).
The cost of computing Γ will tend to be the leading factor,
but its effect can be limited in two ways. In the following
work, the values are recomputed quite rarely, so the cost is
amortized over a large number of steps. If jLj gets quite
large, then it would be appropriate to construct a further
level of hierarchy to reduce this complexity; the final section
discusses possibilities for doing this.

It requires space O(jSj) to store a table for NL, spaceO(jDjjLj) to store a table for N , space O(jSjjAj(jP j +jDj)) to store the DG values, and space O(jDjjLj2) to
store the Γ values. So the total space complexity isO(jSjjAj(jP j+ jDj) + jDjjLj2).
Compared to the DG algorithm, we trade a factor of jP j+jDj for a factor of jSj in both time and space and incur
some extra overhead for the abstraction level. In general,jP j will be approximately equal to jSj=jLj, and we can

see the tension that arises about the number of landmarks.
The more landmarks, the more expense we incur at the
abstract level, but the smaller the partitions, and hence, the
smaller the DG array and the less work required to update
it. In addition, the more landmarks there are, the better the
paths will be. We can easily limit jDj to a small constant,
then consider how to choose jLj optimally. In order to
minimize space, we can choose jLj = jSj2=3jAj1=3, giving
space complexity of O(jSj4=3jAj). To minimize time, we
can choose jLj = jSj1=4jAj1=4, giving time complexity ofO(jSj3=4jAj).
5 PRELIMINARY EXPERIMENTAL

RESULTS

In this section we present some preliminary experimental
results comparing the DG and HDG learning algorithms.
We use the domain shown in figure 1 above. Each location
on the grid is a single situation, and the actions available
to the agent are to move north, south, east, and west. If
the agent tries to move through a boundary, it stays where
it was. The domain is stochastic, with the agent landing
in the nominal square (that is, the square to the north if
the north action is taken) with probability .2; it lands in
each of the squares neighboring the nominal square with
probability .2, as well. This error distribution was chosen
arbitrarily; informal testing with other error distributions
seemed to yield similar results.

The domain has dynamic goals; as soon as the agent reaches
the current goal, the goal is moved to a new location cho-
sen uniformly at random. Both algorithms were tested on
runs of length 20,000. For both of them, parameter values� (learning rate) of 0.4 and T (temperature) of 0.1 were
determined through experimentation to be best. The algo-
rithms were compared with these parameter settings on 10
runs of length 20,000. The averaged learning curves for
each algorithm are shown together in figure 3. The HDG
algorithm performs better earlier in the run, but has lower
asymptotic performance. This lower performance is due,
in part, to the fact that paths are constrained by the land-
mark network. It may also be due to the fact that there is
experimentation taking place at two levels in the HG algo-
rithm; the Boltzmann distribution is used both to choose the
best next landmark and to choose the best low-level action.
Once the domain is well learned, this extra experimentation
contributes to slightly degraded performance. We expect
that in larger domains with multiple levels of hierarchy, the
difference between the early performance of DG and HDG
will be considerably greater.

Both algorithms were implemented quite naively and
straightforwardly. In the HDG algorithm, the Γ values
are recomputed every 1000 ticks. The HDG algorithm runs
over 3 times as fast as the DG algorithm.

The HDG algorithm was also tested on randomly-generated
landmark networks; the results did not vary widely, which
suggests that the method is relatively insensitive to the de-

20 40 60 80 100

0.2

0.4

0.6

0.8

bucket of 200 ticks

g

hg

goals per tick

Figure 3: Learning curves of DG and HDG algorithms on
stochastic grid world; average of 10 runs of length 20,000

tails of the landmark network.

6 RELATED WORK

The most closely related work, using hierarchies in the
context of reinforcement learning, is that of Singh [Singh,
1992a, Singh, 1992b]. Singh addresses the slightly dif-
ferent learning problem of sequential tasks, in which each
of a sequence of subgoals must be achieved in turn. This
task structure induces a natural temporal abstraction hier-
archy consisting of macro operations. This domain has the
especially nice property that planning at higher levels of ab-
straction does not result in sub-optimal solutions. Singh’s
algorithm learns forward models (transition probabilities
and expected reinforcements) at different levels of abstrac-
tion, then uses Sutton’s Dyna [Sutton, 1990] technique (also
used by Whitehead and Ballard [Whitehead and Ballard,
1989]) of simulating experience using the models. He finds
that learning is much more efficient when updates are per-
formed using models at a higher level of abstraction. The
HDG method applies to a different class of tasks, in which
the goal varies over time and is a particular low level situa-
tion. In addition, the DG and HDG methods learn without
constructing forward models, with the all-goals updating
on the DG values and the Floyd-Warshall computation of
the Γ values performing the similar function of propagation
information throughout the entire policy.

In his thesis, Lin [Lin, 1993] explores a model of hierar-
chical learning in which the system first learns elementary
“skills” from pre-specified reinforcement functions, then
learns how to compose them in order to maximize rein-
forcement at some higher level of abstraction. This work
assumes that the environment is deterministic and that it is
possible to “reset” the agent by instantaneously moving it to
another part of the state space. This work is difficult to com-
pare to standard Q learning, because some initial training
on the basic skills must take place. Lin argues, plausibly,
that such training is done in a variety of biological agents,
and might be necessary for artificial agents, as well.

Finally, Dayan and Hinton [Dayan and Hinton, 1993] have
developed feudal reinforcement learning. It has a strict hi-
erarchy of “managers,” each of whom can dictate subgoals

to managers below them. At every level, the actions are
executed until they terminate, and control is given away
to the lower level as in a subroutine call. This method
works very well in the deterministic domain in which it
was tested. However, in stochastic domains, giving control
away may mean that an entirely inappropriate low-level
behavior is taking place. In addition, as Lin points out, it
can be difficult to find termination conditions for low-level
actions. The feudal learning method is more generally ap-
plicable than HDG, in that it does not rely on having goals of
achievement; however, the general reinforcement function
is not allowed to change dynamically. The feudal learn-
ing algorithm, as it stands, has potential difficulty with the
higher levels of abstraction being non-Markovian;however,
the authors conjecture that there are techniques available to
address this problem.

7 FUTURE WORK

Much remains to be done in the exploration of this hierar-
chical approach to learning to achieve goals, both on the
experimental and theoretical levels.

Experimentally, the most convicing validation of the
method will be to apply it to a real-world domain. Two do-
mains from different levels of robotics suggest themselves.
One would be an extension of the pole-balancing domain,
in which the posture of the pole is specified explicitly as a
goal; we could ask the system to keep the pole leaning to
the left, or to stay on the right third of its track. A more
useful problem would be realistic navigation in an outdoor
or hallway environment in which exact locations cannot be
sensed reliably.

There has been some recent work on approximation algo-
rithms for shortest path problems in cartesian space [Klein
and Sairam, 1992]. It may be possible to use these or related
results to show that, in certain kinds of domains, the optimal
paths in the hierarchical models are within a constant factor
in length of the optimal paths in the lowest-level model.

We have only explored a single level of hierarchy in this
paper. It is clear how to continue this process: a set of
level 2 landmarks can be chosen, inducing a clustering on
the level 1 landmarks. Rather than having to learn Γ values
for every pair of level 1 landmarks, the algorithm can learn
them only within neighborhoods, as is done currently with
DG values. Multiple levels of hierarchy will have to be
introduced as state spaces get extremely large.

Finally, we have a bootstrapping problem surrounding the
partitioning of the space; getting a useful partition presup-
poses much of the knowledge required to generate a good
strategy. As the DG values are learned, the algorithm can
revise its partition of the space and the neighborhood rela-
tion. In addition, it might be possible to move landmarks
dynamically or to add and delete them. One suggestion,
due to Chris Watkins, would be to notice landmarks that
are rarely chosen as next steps and delete them, adding new
landmarks in more useful places.

In order to make learning to achieve goals more practical,
we must understand how to do it hierarchically. This paper
has presented an initial practical step in that direction.

Acknowledgements

This work was supported in part by a National Sci-
ence Foundation National Young Investigator Award IRI-
9257592 and in part by ONR Contract N00014-91-4052,
ARPA Order 8225.

References

[Barto et al., 1989] Barto, A. G.; Sutton, R. S.; and
Watkins, C. J. C. H. 1989. Learning and sequen-
tial decision making. Technical Report 89-95, Depart-
ment of Computer and Information Science, University
of Massachusetts, Amherst, Massachusetts. Also pub-
lished in Learning and Computational Neuroscience:
Foundations of Adaptive Networks, Michael Gabriel and
John Moore, editors. The MIT Press, Cambridge, Mas-
sachusetts, 1991.

[Cormen et al., 1990] Cormen, Thomas H.; Leiserson,
Charles E.; and Rivest, Ronals L. 1990. Introduction to
Algorithms. The MIT Press / McGraw Hill, Cambridge,
Massachusetts.

[Dayan and Hinton, 1993] Dayan, Peter and Hinton, Ge-
offrey E. 1993. Feudal reinforcement learning. In Ad-
vances in Neural Information Processing Systems 5, San
Mateo, California. Morgan Kaufmann.

[Kaelbling, 1993a] Kaelbling, Leslie Pack 1993a. Learn-
ing in Embedded Systems. The MIT Press, Cambridge,
Massachusetts. Also available as a PhD Thesis from
Stanford University, 1990.

[Kaelbling, 1993b] Kaelbling, Leslie Pack 1993b. Learn-
ing to achieve goals. In Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence,
Chambéry, France. Morgan Kaufmann.

[Klein and Sairam, 1992] Klein, Philip N. and Sairam, S.
1992. Parallel and dynamic approximation schemes for
planar shortest paths. Technical Report 92-61, Com-
puter Science Department, Brown University, Provi-
dence, Rhode Island.

[Lin, 1993] Lin, Long-Ji 1993. Reinforcement Learning
for Robots Using Neural Networks. Ph.D. Dissertation,
Carnegie Mellon University, Pittsburgh, Pennsylvania.

[Preparata and Shamos, 1985] Preparata, Franco P. and
Shamos, Michael Ian 1985. Computational Geometry:
An Introduction. Springer-Verlag, New York.

[Singh, 1992a] Singh, Satinder Pal 1992a. Reinforcement
learning with a hierarchy of abstract models. In Pro-
ceedings of the Tenth National Conference on Artificial
Intelligence, San Jose, California. AAAI Press. 202–
207.

[Singh, 1992b] Singh, Satinder Pal 1992b. Scaling rein-
forcement learning algorithms by learning variable tem-
poral resolution models. In Proceedings of the Ninth
International Conference on Machine Learning, Ab-
erdeen, Scotland. Morgan Kaufmann. 406–415.

[Singh, 1992c] Singh, Satinder Pal 1992c. Transfer of
learning by composing solutions of elemental sequen-
tial tasks. Machine Learning 8(3):323–340.

[Sutton, 1988] Sutton, Richard S. 1988. Learning to pre-
dict by the method of temporal differences. Machine
Learning 3(1):9–44.

[Sutton, 1990] Sutton, Richard S. 1990. Integrated archi-
tectures for learning, planning, and reacting based on ap-
proximating dynamic programming. In Proceedings of
the Seventh International Conference on Machine Learn-
ing, Austin, Texas. Morgan Kaufmann.

[Thrun, 1992] Thrun, Sebastian B. 1992. The role of ex-
ploration in learning control. In White, David A. and
Sofge, Donald A., editors 1992, Handbook of Intelligent
Control: Neural, Fuzzy, and Adaptive Approaches. Van
Nostrand Reinhold, New York.

[Watkins, 1989] Watkins, C. J. C. H. 1989. Learning from
Delayed Rewards. Ph.D. Dissertation, King’s College,
Cambridge.

[Whitehead and Ballard, 1989] Whitehead, Steven D. and
Ballard, Dana H. 1989. A role for anticipation in re-
active systems that learn. In Proceedings of the Sixth
International Workshop on Machine Learning, Ithaca,
New York. Morgan Kaufmann. 354–357.

