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Abstract

This paper discusses theoretical and experimen-
tal aspects of gradient-based approaches to the
direct optimization of policy performance in con-
trolled POMDPs. We introduceGPOMDP, a
REINFORCE-like algorithm for estimating an
approximation to the gradient of the average re-
ward as a function of the parameters of a stochas-
tic policy. The algorithm’s chief advantages are
that it requires only a single sample path of the
underlying Markov chain, it uses only one free
parameters € [0,1), which has a natural in-
terpretation in terms of bias-variance trade-off,
and it requires no knowledge of the underlying
state. We prove convergence 6POMDP and
show how the gradient estimates produced by
GPOMDP can be used in a conjugate-gradient
procedure to find local optima of the average re-

scheduling (Zhang & Dietterich, 1995), and dynamic chan-
nel allocation (Singh & Bertsekas, 1997).

While there are many algorithms for training approxi-
mate value functions (see (Bertsekas & Tsitsiklis, 1996;
Sutton & Barto, 1998) for comprehensive treatments),
with varying degrees of convergence guarantees, all these
algorithms—and indeed the approximate value function
approach itself—suffer from a fundamental limitation: the
error they seek to minimize does not guarantee good per-
formance from the resulting policy. More precisely, there
exist infinite horizon Markov Decision Processesi(Ps)

with the following properties. For akk > 0 there is an
approximate value functiol with

max V(i) —V*(i)| =€, (1)

where themax is over all states and V*(i) is the true
value of statei under the optimal policy. However, the

ward. greedy policy based on this approximate value function has
expected discounted reward
1. Introduction o 20e
n=n" - (2)

) o _ 1—a’
“Reinforcement learning” is used to describe the general

problem of training an agent to choose its actions so as tavheren* is the expected discounted reward of the optimal
increase its long-term average reward. The structure of theolicy anda € [0, 1) is the discount factor (Bertsekas &

environment is typically not known explicitly, so the agent Tsitsiklis, 1996; Singh, 1994). Thus, even accurate ap-
is forced to learn by interaction with the environment. proximations to the optimal value function can generate

In value-function based approachesto reinforcemenHearnbad greedy policies i is close tol.

ing the agent tries to learn the value of each state, or poBecause Equation (2) also defines therst expected dis-
sibly each state-action pair. It then chooses the actiom wit counted reward of any greedy policy derived from an ap-
the highest value according to its value function. If theproximate value function satisfying (1), it has sometimes
value function is exact then this approach is known to leacbeen used as motivation for using approximate value
to the optimal policy under quite general conditions (Sut-function techniques. However, there are two objections to
ton & Barto, 1998; Bertsekas & Tsitsiklis, 1996). How- this. The first is that most existing algorithms for train-
ever, for many real-world problems it is intractable to rep-ing approximate value functions do not minimize the maxi-
resent the value function exactly and the agent insteasl triemum norm betweei andV *, but typically some, norm.

to select a good approximation to the value function fromSecondly, even if these algorithms did minimize the max-
a restricted class (for example, a neural-network or radialimum norm directly, the smallest achievable ereowill
basis-function class). This approach has yielded some rdse so large in many problems of practical interest that the
markable empirical successes in learning to play games, irsound (2) will be useless. Put another way, if we can
cluding checkers (Samuel, 1959), backgammon (Tesaur@hoose & to makee arbitrarily small in (1), then we are
1992; Tesauro, 1994), and chess (Baxter et al., 1999ajot really in an approximate value function setting in the
Successes outside of the games domain include job-shdijsst place.



The fact that the class of approximate value functions doethis problem inCONJPOMDP by using gradient estimates
not contain a value function with small approximation errorto bracket the maximum, rather than value estimates.

does not preclude it from containing a value function whoseF. . S
. inally, we present the results of an experiment which il-
greedy policy approaches or even equals the performance

of the optimal policy. All that matters for the performance ust_rates the key ideas of the_ paper. All proofs have been
. . : . omitted due to space constraints.

of the greedy policy is the relative ordering the approxienat

value function assigns to the successor states in each state1 Related Work

This motivates an alternative approach: instead of seekina]' at or

to minimize (1) or art, variant, one should minimize some The gradient approach to reinforcement learning was pi-
form of relative error between state values (Baird, 1993/oneered by Williams (Williams, 1992), who introduced
Bertsekas, 1997; Weaver & Baxter, 1999). While this ideathe REINFORCE algorithm for estimating the gradient in

is promising, the approach we take in this paper is everepisodictasks, for which there is an identified recurrent
more direct: search for a policy maximizing the expectedstatei*, and the algorithm returns a gradient estimate each
discounted reward directly. time i* is entered. Williams showed that the expected
We can view the average reward (2) as a funcijéf) of value of this estimate is the gradien_t Qiregtion, in the case
# € RE, whered are the parameters 6f. Provided the that the number of steps between V|5|t3"t(_)s a constant.
dependence of on 4 is differentiable, we can compute Othgr_formulae for the performance gradlent of a Markov
V() and then take a small step in the gradient directionP€cision Process.that.rely on the existence of a recurrent
in order to increase the average reward. Under general aState have been given in (Glynn, 1986; Cao & Chen, 1997;
sumptions, such an approach will converge to a local max&2a0 & Wan, 1998; Fu & Hu, 199,4)' and feOMDPs in
imum of the average rewargd In general, yreedypolicy _(Jaakkola e_t gl._, 1995_). W|Illams _algo_nthm was general-
based or¥/ (4) will give a non-differentiable;(4). Thus, ized to the infinite-horizon setting in (K|_mura et al., 1997_)
in this paper we consider stochastic policies that generat@nd to more general reward structures in (Marbach & Tsit-

distributions over actions rather than a deterministimact ~ SIKliS, 1998). The “VAPS” algorithm described in (Baird
& Moore, 1999) showed how the algorithms in (Marbach

We cast our results and algorithms in the formal frame-g Tsitsiklis, 1998) could be interpreted as combining both
work of Partially Observable Markov Decision Processesyalue-function and policy-gradient approaches. VAPS also
(POMDPs). The advantage of this framework is that it relies on the existence of recurrent states to guarantee con
models uncertainty both in the state-transitions of an igensergence. VAPS can be viewed broadly under the banner of
and in the observations the agent receives. The first contriactor-Critic” algorithms (Barto et al., 1983), which have
bution of this paper isPOMDP, an algorithm for comput-  more recently been investigated in (Singh et al., 1995; Sut-

ing an approximationyjs7(6), to the true gradientn(#),  ton et al., 2000; Konda & Tsitsiklis, 2000).
from a single sample path of ROMDP. The algorithm . . ) .
requires storage of onlgK real numbers—wheréd is Policy-gradient algorithms for which convergence results

the number of parameters in the policy—and needs ndrave been proved all rely on the existence of an identifi-
knowledge of the underlying state. The accuracy of thedble recurrent state, and the variance of these algorithms
approximationVj7() is controlled by a parametet ¢ is related to the time between visits to the recurrent state.
[0,1) (a discount factor) and, in particular, the accuracy is”\Ithough the assumptions we make in this paper about the
controlled by the relationship betweghand the mixing POMDP ensure that every state is recurrent, we would ex-
time of the Markov chain underlying tHeOMDP (loosely pect that as the size of the state space increases, there will
speaking the mixing time is the time needed to approaclk?,e,a correspond_ipg increase in the expected time_ between
stationarity from an arbitrary starting state);n(6) has visits to the.u_jentlfled recurrent state. Furthermore, itinet .
the property thatims_,; Vs5(6) = Vn(6). However, the between visits depends on the_p_arameters qf _the policy,
trade-off preventing the setting gfarbitrarily close tol is and states that are frequently visited for the initial value
that the variance of the algorithm’s estimates increasg as ©f the parameters may become very rare as performance

approaches. We prove convergence with probability 1 of IMProves. In addition, in an arbitralyOMDP it may be
GPOMDP. difficult to estimate the underlying states, and therefore t

determine when the gradient estimate should be updated.
The second contribution of this paperd®NJPOMDP, &  Thus, a key advantage 6POMDP is that its running time
conjugate-gradient based optimization procedure that utiis not bounded by the requirement to visit recurrent states.
lizes the estimates generated BYPOMDP. The key |nstead, itis bounded by the “mixing” time of tiMDP
difficulty in performing greedy stochastic optimization is (loosely, the time needed to approach stationarity), wisich

knowing when to terminate a line search, since noisy estialways shorter than recurrence time and often substantiall
mates make it very difficult to locate a maximum. We solvegg,



Approximate algorithms for computing the gradient werep;;(6) = E,_,;Ey~u(6,4)pij (). Throughout, we as-
also given in (Marbach & Tsitsiklis, 1998; Marbach, 1998), sume that these Markov chains satisfy the following as-
one that sought to solve the aforementioned recurrencsumption:

problem by demanding only recurrence to one of a set OfAssumption 1. EachP(#) has a unique stationary distri-
recurrent states, and another that abandoned recurredce ag, ;tion 7(8) = [7(0,1),...,7(8,n)] satisfying thebal-

used discounting, which is closer in spirit to our algorithm o equations’ (§) P(§) = = () (throughoutr’ denotes

the transpose of). The magnitudes of the rewards(i)|,
2. The Mathematical Framework are uniformly bounded b§2 < oc for all statesi.

Our setting is that of an agent taking actions in an environQur goal is to find & € RX maximizing thelong-term
ment according to a parameterized policy. The agent seeksyerage reward

to adjust its parameters in order to maximize the long-term

average reward. We pursue a local approach: get the agent 1

to compute the gradient of the average reward with respect n(8) = Th_f)noo TEG
to its parameters, and then adjust the parameters in the gra-

dlentd|rgct|on. Formal!y, the most natural setting for.st.h| where E; denotes the expectation over all sequences
problem is that of Partially Observable Markov DeC|S|oni0_Z-]7_._’ with transitions generated according f(6).

Processes arOMDPs. For ease of exposition we consider ynqer our assumptions(d) is independent of the starting
finite POMDPSs. General results in the continuous case Ca@tatez'o and is equal to:

be found in (Baxter & Bartlett, 1999).

Zr(it)] :

t=1

Specifically, assume that there a,zretatesS ={1,...,n} (0) = Zw(é),z‘)r(z‘) — 7'(O)r, 3)
of the world (including the agent’s state$y,controlsl/ =

{1,...,N} and M observationsy = {1,...,M}. For

each staté € S there is a corresponding rewarti). Each  wherer = [r(1),...,r(n)]’ (Bertsekas, 1995).

u € U determines a stochastic matriX(u) = [p;;(u)]
wherep;; (u) is the probability of making a transition from
statei to statej give controlu. For each statee S, an ob-
servationy € ) is generated independently according to a
probability distributionv (i) over observations iy. We de-
note the probability of observatianby v, (i). A random-
ized policyis simply a functionu mapping observations
y € ) into probability distributions over the controlé.
That is, for each observatian p(y) is a distribution over
the controls irl{. Denote the probability underof control

u given observation by 1., (y). In general, to perform op-
timally, the policy has to be a function of the entire history
of observations, but this can be achieved by concatenatin
observations and treating the vector of observations as in-

put to the policy. One could also consider policies that have3. Gradient Ascent on 7(0)
memory, such as parameterized finite automata, but that i
the subject of some of our ongoing research and is beyon
the scope of the present paper.

i=1

In contrast to the average reward, many approximate value-
function based algorithms such d¥)(\) seek to op-
timize with respect to the expectatiscountedreward,
where the latter is defined by, (0) := 3, m;Jo(0,1) =

> miEg [Y 2, afr(iy)]io = i] (herea € [0,1) is the dis-
count factor). In this case the discounted value of state
J.(6,1), does depend on the starting state A curious

fact about the present setting is that optimizing the long-
term average reward is the same as optimizing expected
discounted reward, sincg, () = n(#)/(1 — «) (Singh

et al., 1994, Fact 7). So without loss of generality we can
%onsider just average reward.

he approach taken to optimization 9ff) in this paper
Is gradient ascentThat is, repeatedly computeén(6) with
respect to the parametéhsand then take a step in the uphill
To each randomized policy(-) and observation distri- direction:f < 6 + yV(#), for some suitable step-size
bution v(-), there corresponds a Markov chain in which . .
state transitions are generated by first selecting an obse'rA- straightforward calculation shows that
vationy in statei according to the distributiom(i), then
selecting a controt: according to the distributiom(y),

and then generating a transition to sta@ccording to the  \ynere.7 is the square matrix with each row equal to the
probability p;; (u). To parameterize these chains we pa-gationary distributionr’ (Baxter & Bartlett, 1999). Note
r_ametenze the policies, so that now be(i?mes a func- o (4) should be read d§ equations, one for each of the
tion 4(,y) of a set of parameter$ € R™ as well as partial derivative$)/96,;. For POMDPs with a sufficiently
the observatiory. The Markov chain corresponding 10 g humber of states (and known transition probabilities
6 has state transition matri®(d) = [p;;(0)] given by 54 ghservation probabilities), (4) could be solved exactl

Vn=Vr'r=naVP[[-P+er] 'r (4)



to yield the precise gradientdirection. This may be aninter (gi,...,¢,): |l¢ — plli = Y1y lai — pi|. Let p’(i) de-
esting avenue for further investigation sinre@MDPs are  note the distribution over the states of the Markov chain
generally intractable even for small numbers of states (Paat time ¢, starting from state. Defined(t) by d(t) :=
padimitriou & Tsitsiklis, 1987). However, in general the max; jes ||pf(i) — p'(j)|l:. Note thatd(t) is a function
transition and observation probabilities will be unknown, of the parameteré via the transition matrix”(6), and
and the state-space too large for the matrix inversion in theince the state distribution convergesit@) for eaché,
right-hand-side of (4) to be feasible. Thus, for many prob-d(¢) must converge to zero. Finally, define tméxing time
lems of practical interest, (4) will be intractable and we 7*(6) of the Markov chain by:

will need to find some other way of computing the gradi-

ent. One approximate technique for doing this is presented 7°(0) := min {t5 d(t) < 671} : (8)

in the next section. Theorem 4. There exists a universal constaff =

C(B, R,n) suchthat for all3 € [0,1) andfd € R,

. . _ . IVn(0) — Van(@)|| < Cr*(0)(1 - B), 9)
In this section, we show that the gradient can be split into
two components, one of which becomes negligible as a diswhereB and R are the bounds oV /1| and the rewards
count factor? approaches. respectivelyp is the number of states in the Markov chain,
and the nornj| - || is the usual two-norm.

4. Approximating the Gradient Vn(6)

Recall the definition of the discounted value of state
i, Js(0,i). Here € [0,1) is the discount factor. Theorem 4 shows that providad (1 — 3) is large com-

Write Js(0) = [J5(0.1),..., Js(8,n))" or simply J5 = pared with the mixing time™* (), Vs7(8) will be a good
[/5(1), ..., Js(n)]" when the dependence 6nis obvious.  approximation tovy(6). Of course, in general the mixing
Theorem 2. Forall § € RE andp € [0,1), time 7*(6) will be unknown, but the purpose of Theorem

4 is not so much to provide a prescription for choosihg

V= (1-p)Vr'Js + ' VPJs. (5)  but to enhance our understanding of the rdlelays in the

accuracy of the approximatiovsn ().
We shall see in the next section that the second term in (5)
E:rz;:n be estl_mated from a single sample path oﬁhMDP. 5. Estimating Vﬁn(e)
e following theorem shows that the first term in (5) be-
comes negligible a§ approaches. Notice that this is not Having shown tha¥j;7(#) can be made a sufficiently accu-
immediate from Theorem 2, sinck can become arbitrar- rate approximation tg(6) by choosing the discount factor

ily large in the limits — 1. £ judiciously in relation to the mixing time of the under-
Theorem 3. Forall § ¢ RX, lying Markov chain, we now describ@POMDP, an algo-
rithm for estimatingVjzn(#) from a single sample path of
Vn = lim Vs, (6) thePOMDP. To understand the algorithm, recall that the
p=t POMDP iterates as follows: at time stéghe environment
where is in some state which we denote iy An observationy,
is generated according to the distributiefi;). The agent
Vs = 'V PJg. (7)  generates a contral; according to the distribution given

by its policy u(0,y:). Finally, the environment makes a

Theorem 3 shows thaT;n is a good approximation to the transition to a new statg 41 ac_cordi_ng to th_e probability
gradient ag3 approaches, but it turns out that values of i, (ur). GPOMDP is described in Algorithm 1. Note
 very close tol lead to large variance in the estimates of that the update faf\; is recursively computing the average

Vsn that we describe in the next section (that is, the esB;t{fdrn P/¥R (AW SBRSABE B! A R ARGRH
timates produced bPOMDP). However, the following  ning timet approaches infinity. For this we need one more
theorem shows thdt — 8 need not be too small, provided assumption:

the Markov chain corresponding #(6) has a shorimix- . e Aua (6, .

ing time From any initial state, the c(iis?tribution over states \SUMPption 5. The derivatives; “get existfor allu €

of a Markov chain converges to the stationary distribution > ¥ € Y andf € R" . The ratios

provided Assumption 1 about the existence and uniqueness 11 (6,9)

of the stationary distribution is satisfied (Lancaster & Tis B -‘
menetsky, 1985 Second Edition, Theorem 15.8.1, p. 552). [ (0, y) J

. . .. . y=1...M;u=1...N;k=1...K
To precisely quantify mixing time, ldtp — ¢||: denote the

usualf, distance on distributions = (p1,...,pn),q¢ = are uniformly bounded big < oc for all § € R¥,



Algorithm 1 The GPOMDP algorithm.
1: Given:

° Parameterized class of randomized policies

{n(,

: § € R¥ } satisfying Assumption 5.

e Partially observable Markov decision process

which when controlled by the randomized poli-

ciespu(f,-) corresponds to a parameterized class

of Markov chains satisfying Assumption 1.
e 3€[0,1).
e Arbitrary (unknown) starting statg.

e Observation sequengg, y1, . . . generated by the
POMDP with controlsug, u1, ... generated ran-
domly according tqu(6, ;).

e Bounded reward sequence(ig),
whereig, i1, ...
of the Markov decision process.

T(i]),...,

N

Setzg = 0 andAg = 0 (20, Ag € RX).
for each observatiog,, controlu;, and subsequent re-
wardr(i;+1) do

w

Vi, (0
4 oz =B+ 7;:,(; yf;)
5 A=A+ til [r(ie41) 2041 — O]
6: end for

This assumption should not be surprising sice/u ap-
pears in the update a@f in GPOMDP. Sinceu appears in

the denominator, we require that if the probability goes tolO:
zero for somd, then so too must the gradient (and at atll:

least the same rate).

Theorem 6. Under Assumptions 1 and 5, Algorithm 1
starting from any initial state, will generate a sequence
Ag,Aq,..., Ay, ... satisfying

Ve w.p.l

lim A, = (10)
t—o00

is the (hidden) sequence of states

estimates ofV7(#) produced byGPOMDP at timet, we
should sef as close td) as possible.

6. Stochastic Gradient Ascent Algorithms

One technique for optimizin@OMDPs usingGPOMDP
would be to repeatedly compute,(6) (the estimate pro-
duced byGPOMDP after? iterations with policy parame-
tersd), and then update the parametergby- 6 +~A(6)

for a suitable step-size. However, since the number of it-
erationsT’ needed to ensure low variance in the estimates
Ar can be quite large, we would like to make more effi-
cient usage of the estimates by searching for a maximum
in the directionAr. CONJPOMDP, described in Al-

Algorithm2 CONJPOMDP(GRAD, 0, sg, €) — R¥
1: Given:

e GRAD: R¥ — R¥: an estimate of the gradient of the
objective function to be maximized.

e Starting parameters ¢ R™
e [nitial step sizesp > 0.
e Gradient resolution.

2: g =h = GRAD($)

3 while]|g||*> > e do
GSEARCH(GRAD, 6, h, 50, €)
A = GRAD(6)

v = (A g)- Algl?
h=A+~h

if h- A <0then

CRANDTAC

2: end while
13. returnd

gorithm 2, is a version of the Polak-Ribiere conjugate-
gradient algorithm (Fine, 1999, S5.5.2, for example) that
is designed to operate using only noisy (and possibly) bi-
ased estimates of the gradient of the objective function (fo
example, the estimateSy provided byGPOMDP). The
argument, to CONJPOMDP provides an initial step-size

Theorem 6 provides a characterization of the limiting be-for GSEARCH. When||GRAD(6)||? falls below the argu-

havior of GPOMDP. In fact, we also have a result char-
acterizing the finite time behavior @fPOMDP. Loosely

speaking, provided
() )

>0 (50

then [[A; — Vin(8)]l < € with high probability (see

(11)

mente, CONJPOMDP terminates.

The linesearch algorithmiSEARCH (Algorithm 3) uses
only gradient information to bracket the maximum, and
then uses quadratic interpolation to jump to the maxi-
mum. To bracket the maximum in the directiéh from
f, GSEARCH finds two pointsf; andé- in that direction
such thaGRAD(6;)-6* > 0 andGRAD(6,)-6* < 0. This

(Bartlett & Baxter, 2000) for a more precise statement).approach is far more robust than the use of function val-
Comparing (11) and (9), we can see the bias/variance tradetes. Even if the estimat€sR AD(6) are noisy, the variance

off inherent in the choice of: equation (9) tells us that to
reduce the bias in the estimaign(#) we must sepj close

of sign [GRAD(#,) - #*] is independent of the distance be-
tweenf; andf,. (In contrast, the variance of a comparison

to 1, while (11) indicates that to reduce the variance in theof function values at two points increases as the points get



Algorithm 3 GSEARCH(GRAD, 6y, 6*,s,¢) — RE

1:

Given:

e GRAD: R¥ — R¥: gradient estimate.

e Starting parameterg, € R”.

e Search directiof* € R* with GRAD(6o) - §* > 0.

e Initial step sizes > 0.
e Inner product resolution >= 0.

0 =60+ s0"

: A = GRAD(#)

if A-6" < 0then
Step back to bracket the maximum:
repeat
st =8pr=A-0",5=35/2
0 =00 + s6”
A = GRAD(#)
until A - 0" > —e
S =S

p-=A-0"

: else
Step forward to bracket the maximum:

repeat
s =8p-=A-0",5=2s
0 = 6o+ s6”
A = GRAD(#)

until A - 0" < ¢

Sy =S

p+=A0-0"

cendif
cifp_ > 0andps < 0then

S_pyp—S4p_
P+—P-—

s =

. else

s,+s+

S = 5

cendif
. returnfg + s8”

Origin Destination State Probabilitiels
State | Action A B C

A al 0.0 0.8 0.2

A a2 0.0 0.2 0.8

B al 0.8 0.0 0.2

B a2 0.2 0.0 0.8

C al 0.0 0.8 0.2

C a2 0.0 0.2 0.8

Table 1.Transition probabilities of the three-state MDP

is a choice of two actiona; anda,. Table 1 shows the
transition probabilities as a function of the states and ac-
tions. Each stater has an associated two-dimensional
feature vectorg(z) = (¢1(x), d2(z)), with values of
(12/18,6/18),(6/18,12/18),(5/18,5/18) for each ofA,

B and C' respectively. The reward i$ in stateC' and0

for the other two states. Clearly, the optimal policy is to
always select the action that leads to stateith the high-

est probability, which from Table 1 means always selecting
actiona,. This rather odd choice of feature vectors for
the states ensures that a value function linear in those fea-
tures and trained usin@D (1)—while observing the opti-
mal policy—will implement a suboptimal one-step greedy
lookahead policy itself (Weaver & Baxter, 1999). Thus,
in contrast to the gradient based approach, for this system,
TD(1) training a linear value function is guaranteed to pro-
duce a worse policy if it starts out observing the optimal
policy.

7.1 Training a Controller

Our goal is to learn a stochastic controller for this sys-
tem that implements an optimal (or near-optimal) policy.
Given a parameter vectdt = (6;,6-,65,6,), we gen-
erate a policy as follows. For any state let s, (z) :=
01¢)1 (37) + 92@2(%), and Sg(&?) = 03¢] (ZE) + 04@2(37)

The probability of choosing actioay in stater is given by

es1(@)

closer together.) The disadvantage is that it is not possiblia, (¥) = 5w, With the probability of choosing

to detect extreme overshooting of the maximum using Onlyactiona2 given byl — p,, (z). The ratio Via, (2)
gradient estimates. However, with careful control of the ' Hag
line search we did not find this to be a problem.

CONJPOMDP operates by iteratively choosing “uphill”
directions and then searching for a local maximum in the fia, (7)
chosen direction. In the rest of the paper, we assume thagy;,, (x) es1(%)
the GRAD argument taCONJPOMDP is GPOMDP. =

7. Experiments

Due to space constraints we only have room to consider ong,
experiment, and we have chosen a “toy” problem so thatA
we can illustrate all the key ideas from the rest of the pa
per. Experiments closer to “reality” are discussed in (Bax-

ter et al., 1999b).

Consider a three-statedDP, in each state of which there policy.

S needed

by AlgorithmsGPOMDP are given by,

Vita, (z) _ ()
T oesi(a) 4 oes2

(z) [¢1 (T)a ¢2 (T)/ 7(151 (T)/ 7(152 (T)]

Lo (T) - es1(z) +652($) [_¢1 (33),—@2(33),(7)1 (ﬂj),(f)g(ﬂj)]

Note that these controllers satisfy assumption 5.

7.2 Gradient Estimates

ith a parameter vectéof § = [1,1, -1, —1], estimates
7 of Vzn were generated usingPOMDP, for various
values ofl" andg € [0, 1). To measure the progress fr

10ther initial values of the parameter vector were choseh wit
similar results. Note thaftl, 1, —1, —1] generates a suboptimal
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Markov chain. AT was generated by Algorithm 1. Note both 8. Conclusion
axes are log scales.

Gradient-based approached to reinforcement learning hold
towards the true gradientr, V) was calculated from (4)  much promise as a means to solve problems of partial ob-
and then for each value df the relative errorw servability and to avoid some of the pitfalls associatedhwit
was recorded. The relative errors are plotted in 1 and 2non-convergence of value-function methods. A third rea-
The first Figure shows how largkincreases the variance of son for preferring direct policy approaches is that it isoft
GPOMDP, while the second Figure shows a correspondingar easier to construct a reasonable class of parameterized
decrease in the final bias. Taken together they illustratgolicies than it is to construct a class of value functions; w
nicely the bias/variance trade-off in the choicesof often knowhowto act without being able to compute the

7.3 Training via Conjugate-Gradient Ascent valueof acting.

CONJPOMDP with GPOMDP as the GRAD” argument  In this paper we have analyzed one algorithm for comput-
was used to train the parameters of the controller describethg an approximation to the performance gradient. There
in the previous section. Following the low bias observed inshould be many possible generalizations to other approx-
the experiments of the previous section, the argurdesft  imate algorithms. We also showed how the approximate
GPOMDP was set ta). After a small amount of experi- gradients could be used robustly in greedy local search.
mentation, the argumenis ande of CONJPOMDP were  One weakness of our algorithm is the need to specify run-
set t0100 and0.0001 respectively. None of these values ning times and the discount fact®in advance. we are cur-
were critical, although the extremely large initial stépes  rently investigating automatic algorithms for finding thes
(sp) did considerably reduce the time required for the con-variables.

troller to converge to near-optimality. It is somewhat “folklore” in the Machine Learning com-

Figure 3 shows the average reway@) of the final con-  munity that gradient-based methods suffer from unaccept-
troller produced byCONJPOMDP, as a function of the to-  ably large variance. The reasons for this conclusion dle sti
tal number of simulation steps of the underlying Markov not clear and warrant further investigation. There are also
chain. The plots represent an average ax#r indepen- many avenues for further research. Particularly exciting
dent runs ofCONJPOMDP. Note that0.8 is the average is the generalization ciPOMDP to multi-agent settings,
reward of the optimal policy. The parameters of the con-and implications for learning in biological neural netwsrk
troller were (uniformly) randomly initialized in the range (Bartlett & Baxter, 1999).
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