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Abstract
This paper discusses theoretical and experimen-
tal aspects of gradient-based approaches to the
direct optimization of policy performance in con-
trolled POMDPs. We introduceGPOMDP, aREINFORCE-like algorithm for estimating an
approximation to the gradient of the average re-
ward as a function of the parameters of a stochas-
tic policy. The algorithm’s chief advantages are
that it requires only a single sample path of the
underlying Markov chain, it uses only one free
parameter� 2 [0; 1), which has a natural in-
terpretation in terms of bias-variance trade-off,
and it requires no knowledge of the underlying
state. We prove convergence ofGPOMDP and
show how the gradient estimates produced byGPOMDP can be used in a conjugate-gradient
procedure to find local optima of the average re-
ward.

1. Introduction

“Reinforcement learning” is used to describe the general
problem of training an agent to choose its actions so as to
increase its long-term average reward. The structure of the
environment is typically not known explicitly, so the agent
is forced to learn by interaction with the environment.

In value-function based approaches to reinforcement learn-
ing the agent tries to learn the value of each state, or pos-
sibly each state-action pair. It then chooses the action with
the highest value according to its value function. If the
value function is exact then this approach is known to lead
to the optimal policy under quite general conditions (Sut-
ton & Barto, 1998; Bertsekas & Tsitsiklis, 1996). How-
ever, for many real-world problems it is intractable to rep-
resent the value function exactly and the agent instead tries
to select a good approximation to the value function from
a restricted class (for example, a neural-network or radial-
basis-function class). This approach has yielded some re-
markable empirical successes in learning to play games, in-
cluding checkers (Samuel, 1959), backgammon (Tesauro,
1992; Tesauro, 1994), and chess (Baxter et al., 1999a).
Successes outside of the games domain include job-shop

scheduling (Zhang & Dietterich, 1995), and dynamic chan-
nel allocation (Singh & Bertsekas, 1997).

While there are many algorithms for training approxi-
mate value functions (see (Bertsekas & Tsitsiklis, 1996;
Sutton & Barto, 1998) for comprehensive treatments),
with varying degrees of convergence guarantees, all these
algorithms—and indeed the approximate value function
approach itself—suffer from a fundamental limitation: the
error they seek to minimize does not guarantee good per-
formance from the resulting policy. More precisely, there
exist infinite horizon Markov Decision Processes (MDPs)
with the following properties. For all� > 0 there is an
approximate value functionV withmaxi jV (i)� V �(i)j = �; (1)

where themax is over all statesi andV �(i) is the true
value of statei under the optimal policy. However, the
greedy policy based on this approximate value function has
expected discounted reward� = �� � 2��1� �; (2)

where�� is the expected discounted reward of the optimal
policy and� 2 [0; 1) is the discount factor (Bertsekas &
Tsitsiklis, 1996; Singh, 1994). Thus, even accurate ap-
proximations to the optimal value function can generate
bad greedy policies if� is close to1.

Because Equation (2) also defines theworst expected dis-
counted reward of any greedy policy derived from an ap-
proximate value function satisfying (1), it has sometimes
been used as amotivation for using approximate value
function techniques. However, there are two objections to
this. The first is that most existing algorithms for train-
ing approximate value functions do not minimize the maxi-
mum norm betweenV andV �, but typically somè2 norm.
Secondly, even if these algorithms did minimize the max-
imum norm directly, the smallest achievable error� will
be so large in many problems of practical interest that the
bound (2) will be useless. Put another way, if we can
choose aV to make� arbitrarily small in (1), then we are
not really in an approximate value function setting in the
first place.



The fact that the class of approximate value functions does
not contain a value function with small approximation error
does not preclude it from containing a value function whose
greedy policy approaches or even equals the performance
of the optimal policy. All that matters for the performance
of the greedy policy is the relative ordering the approximate
value function assigns to the successor states in each state.
This motivates an alternative approach: instead of seeking
to minimize (1) or aǹ 2 variant, one should minimize some
form of relative error between state values (Baird, 1993;
Bertsekas, 1997; Weaver & Baxter, 1999). While this idea
is promising, the approach we take in this paper is even
more direct: search for a policy maximizing the expected
discounted reward directly.

We can view the average reward (2) as a function�(�) of� 2 RK , where� are the parameters ofV . Provided the
dependence of� on � is differentiable, we can computer�(�) and then take a small step in the gradient direction
in order to increase the average reward. Under general as-
sumptions, such an approach will converge to a local max-
imum of the average reward�. In general, agreedypolicy
based onV (�) will give a non-differentiable�(�). Thus,
in this paper we consider stochastic policies that generate
distributions over actions rather than a deterministic action.

We cast our results and algorithms in the formal frame-
work of Partially Observable Markov Decision Processes
(POMDPs). The advantage of this framework is that it
models uncertainty both in the state-transitions of an agent
and in the observations the agent receives. The first contri-
bution of this paper isGPOMDP, an algorithm for comput-
ing an approximation,r��(�), to the true gradientr�(�),
from a single sample path of aPOMDP. The algorithm
requires storage of only2K real numbers—whereK is
the number of parameters in the policy—and needs no
knowledge of the underlying state. The accuracy of the
approximationr��(�) is controlled by a parameter� 2[0; 1) (a discount factor) and, in particular, the accuracy is
controlled by the relationship between� and the mixing
time of the Markov chain underlying thePOMDP (loosely
speaking the mixing time is the time needed to approach
stationarity from an arbitrary starting state).r��(�) has
the property thatlim�!1r��(�) = r�(�). However, the
trade-off preventing the setting of� arbitrarily close to1 is
that the variance of the algorithm’s estimates increase as�
approaches1. We prove convergence with probability 1 ofGPOMDP.

The second contribution of this paper isCONJPOMDP, a
conjugate-gradient based optimization procedure that uti-
lizes the estimates generated byGPOMDP. The key
difficulty in performing greedy stochastic optimization is
knowing when to terminate a line search, since noisy esti-
mates make it very difficult to locate a maximum. We solve

this problem inCONJPOMDP by using gradient estimates
to bracket the maximum, rather than value estimates.

Finally, we present the results of an experiment which il-
lustrates the key ideas of the paper. All proofs have been
omitted due to space constraints.

1.1 Related Work

The gradient approach to reinforcement learning was pi-
oneered by Williams (Williams, 1992), who introduced
theREINFORCE algorithm for estimating the gradient in
episodictasks, for which there is an identified recurrent
statei�, and the algorithm returns a gradient estimate each
time i� is entered. Williams showed that the expected
value of this estimate is the gradient direction, in the case
that the number of steps between visits toi� is a constant.
Other formulae for the performance gradient of a Markov
Decision Process that rely on the existence of a recurrent
state have been given in (Glynn, 1986; Cao & Chen, 1997;
Cao & Wan, 1998; Fu & Hu, 1994), and forPOMDPs in
(Jaakkola et al., 1995). Williams’ algorithm was general-
ized to the infinite-horizon setting in (Kimura et al., 1997)
and to more general reward structures in (Marbach & Tsit-
siklis, 1998). The “VAPS” algorithm described in (Baird
& Moore, 1999) showed how the algorithms in (Marbach
& Tsitsiklis, 1998) could be interpreted as combining both
value-function and policy-gradient approaches. VAPS also
relies on the existence of recurrent states to guarantee con-
vergence. VAPS can be viewed broadly under the banner of
“Actor-Critic” algorithms (Barto et al., 1983), which have
more recently been investigated in (Singh et al., 1995; Sut-
ton et al., 2000; Konda & Tsitsiklis, 2000).

Policy-gradient algorithms for which convergence results
have been proved all rely on the existence of an identifi-
able recurrent state, and the variance of these algorithms
is related to the time between visits to the recurrent state.
Although the assumptions we make in this paper about thePOMDP ensure that every state is recurrent, we would ex-
pect that as the size of the state space increases, there will
be a corresponding increase in the expected time between
visits to the identified recurrent state. Furthermore, the time
between visits depends on the parameters of the policy,
and states that are frequently visited for the initial value
of the parameters may become very rare as performance
improves. In addition, in an arbitraryPOMDP it may be
difficult to estimate the underlying states, and therefore to
determine when the gradient estimate should be updated.
Thus, a key advantage ofGPOMDP is that its running time
is not bounded by the requirement to visit recurrent states.
Instead, it is bounded by the “mixing” time of thePOMDP
(loosely, the time needed to approach stationarity), whichis
always shorter than recurrence time and often substantially
so.



Approximate algorithms for computing the gradient were
also given in (Marbach & Tsitsiklis, 1998; Marbach, 1998),
one that sought to solve the aforementioned recurrence
problem by demanding only recurrence to one of a set of
recurrent states, and another that abandoned recurrence and
used discounting, which is closer in spirit to our algorithm.

2. The Mathematical Framework

Our setting is that of an agent taking actions in an environ-
ment according to a parameterized policy. The agent seeks
to adjust its parameters in order to maximize the long-term
average reward. We pursue a local approach: get the agent
to compute the gradient of the average reward with respect
to its parameters, and then adjust the parameters in the gra-
dient direction. Formally, the most natural setting for this
problem is that of Partially Observable Markov Decision
Processes orPOMDPs. For ease of exposition we consider
finitePOMDPs. General results in the continuous case can
be found in (Baxter & Bartlett, 1999).

Specifically, assume that there aren statesS = f1; : : : ; ng
of the world (including the agent’s states),N controlsU =f1; : : : ; Ng andM observationsY = f1; : : : ;Mg. For
each statei 2 S there is a corresponding rewardr(i). Eachu 2 U determines a stochastic matrixP (u) = [pij(u)℄
wherepij(u) is the probability of making a transition from
statei to statej give controlu. For each statei 2 S, an ob-
servationy 2 Y is generated independently according to a
probability distribution�(i) over observations inY . We de-
note the probability of observationy by �y(i). A random-
ized policyis simply a function� mapping observationsy 2 Y into probability distributions over the controlsU .
That is, for each observationy, �(y) is a distribution over
the controls inU . Denote the probability under� of controlu given observationy by�u(y). In general, to perform op-
timally, the policy has to be a function of the entire history
of observations, but this can be achieved by concatenating
observations and treating the vector of observations as in-
put to the policy. One could also consider policies that have
memory, such as parameterized finite automata, but that is
the subject of some of our ongoing research and is beyond
the scope of the present paper.

To each randomized policy�(�) and observation distri-
bution �(�), there corresponds a Markov chain in which
state transitions are generated by first selecting an obser-
vation y in statei according to the distribution�(i), then
selecting a controlu according to the distribution�(y),
and then generating a transition to statej according to the
probability pij(u). To parameterize these chains we pa-
rameterize the policies, so that� now becomes a func-
tion �(�; y) of a set of parameters� 2 RK as well as
the observationy. The Markov chain corresponding to� has state transition matrixP (�) = [pij(�)℄ given by

pij(�) = Ey��(i)Eu��(�;y)pij(u): Throughout, we as-
sume that these Markov chains satisfy the following as-
sumption:

Assumption 1. EachP (�) has a unique stationary distri-
bution �(�) := [�(�; 1); : : : ; �(�; n)℄0 satisfying thebal-
ance equations�0(�)P (�) = �0(�) (throughout�0 denotes
the transpose of�). The magnitudes of the rewards,jr(i)j,
are uniformly bounded byR <1 for all statesi.
Our goal is to find a� 2 RK maximizing thelong-term
average reward:�(�) := limT!1 1T E� " TXt=1 r(it)# :
where E� denotes the expectation over all sequencesi0; i1; : : : ; with transitions generated according toP (�).
Under our assumptions,�(�) is independent of the starting
statei0 and is equal to:�(�) = nXi=1 �(�; i)r(i) = �0(�)r; (3)

wherer = [r(1); : : : ; r(n)℄0 (Bertsekas, 1995).

In contrast to the average reward, many approximate value-
function based algorithms such asTD(�) seek to op-
timize with respect to the expecteddiscountedreward,
where the latter is defined by��(�) := Pi �iJ�(�; i) =Pi �iE� [P1t=0 �tr(it)ji0 = i℄ (here� 2 [0; 1) is the dis-
count factor). In this case the discounted value of statei,J�(�; i), does depend on the starting statei. A curious
fact about the present setting is that optimizing the long-
term average reward is the same as optimizing expected
discounted reward, since��(�) = �(�)=(1 � �) (Singh
et al., 1994, Fact 7). So without loss of generality we can
consider just average reward.

3. Gradient Ascent on �(�)
The approach taken to optimization of�(�) in this paper
is gradient ascent. That is, repeatedly computer�(�) with
respect to the parameters�, and then take a step in the uphill
direction:�  � + r�(�), for some suitable step-size.

A straightforward calculation shows thatr� = r�0r = �0rP [I � P + e�0℄�1 r; (4)

wheree�0 is the square matrix with each row equal to the
stationary distribution�0 (Baxter & Bartlett, 1999). Note
that (4) should be read asK equations, one for each of the
partial derivatives�=��i. ForPOMDPs with a sufficiently
small number of states (and known transition probabilities
and observation probabilities), (4) could be solved exactly



to yield the precise gradient direction. This may be an inter-
esting avenue for further investigation sincePOMDPs are
generally intractable even for small numbers of states (Pa-
padimitriou & Tsitsiklis, 1987). However, in general the
transition and observation probabilities will be unknown,
and the state-space too large for the matrix inversion in the
right-hand-side of (4) to be feasible. Thus, for many prob-
lems of practical interest, (4) will be intractable and we
will need to find some other way of computing the gradi-
ent. One approximate technique for doing this is presented
in the next section.

4. Approximating the Gradientr�(�)
In this section, we show that the gradient can be split into
two components, one of which becomes negligible as a dis-
count factor� approaches1.

Recall the definition of the discounted value of statei, J�(�; i). Here � 2 [0; 1) is the discount factor.
Write J�(�) = [J�(�; 1); : : : ; J�(�; n)℄0 or simply J� =[J�(1); : : : ; J�(n)℄0 when the dependence on� is obvious.

Theorem 2. For all � 2 RK and� 2 [0; 1),r� = (1� �)r�0J� + ��0rPJ�: (5)

We shall see in the next section that the second term in (5)
can be estimated from a single sample path of thePOMDP.
The following theorem shows that the first term in (5) be-
comes negligible as� approaches1. Notice that this is not
immediate from Theorem 2, sinceJ� can become arbitrar-
ily large in the limit� ! 1.

Theorem 3. For all � 2 RK ,r� = lim�!1r��; (6)

where r�� := �0rPJ� : (7)

Theorem 3 shows thatr�� is a good approximation to the
gradient as� approaches1, but it turns out that values of� very close to1 lead to large variance in the estimates ofr�� that we describe in the next section (that is, the es-
timates produced byGPOMDP). However, the following
theorem shows that1 � � need not be too small, provided
the Markov chain corresponding toP (�) has a shortmix-
ing time. From any initial state, the distribution over states
of a Markov chain converges to the stationary distribution,
provided Assumption 1 about the existence and uniqueness
of the stationary distribution is satisfied (Lancaster & Tis-
menetsky, 1985 Second Edition, Theorem 15.8.1, p. 552).

To precisely quantify mixing time, letkp� qk1 denote the
usual`1 distance on distributionsp = (p1; : : : ; pn); q =

(q1; : : : ; qn): kq � pk1 = Pni=1 jqi � pij: Let pt(i) de-
note the distribution over the states of the Markov chain
at time t, starting from statei. Defined(t) by d(t) :=maxi;j2S kpt(i) � pt(j)k1: Note thatd(t) is a function
of the parameters� via the transition matrixP (�), and
since the state distribution converges to�(�) for each�,d(t) must converge to zero. Finally, define themixing time��(�) of the Markov chain by:��(�) := min�t : d(t) � e�1	 : (8)

Theorem 4. There exists a universal constantC =C(B;R; n) such that for all� 2 [0; 1) and� 2 Rk ,kr�(�) �r��(�)k � C��(�)(1� �); (9)

whereB andR are the bounds onjr�=�j and the rewards
respectively,n is the number of states in the Markov chain,
and the normk � k is the usual two-norm.

Theorem 4 shows that provided1=(1 � �) is large com-
pared with the mixing time��(�), r��(�) will be a good
approximation tor�(�). Of course, in general the mixing
time ��(�) will be unknown, but the purpose of Theorem
4 is not so much to provide a prescription for choosing�,
but to enhance our understanding of the role� plays in the
accuracy of the approximationr��(�).
5. Estimatingr��(�)
Having shown thatr��(�) can be made a sufficiently accu-
rate approximation to�(�) by choosing the discount factor� judiciously in relation to the mixing time of the under-
lying Markov chain, we now describeGPOMDP, an algo-
rithm for estimatingr��(�) from a single sample path of
thePOMDP. To understand the algorithm, recall that thePOMDP iterates as follows: at time stept the environment
is in some state which we denote byit. An observationyt
is generated according to the distribution�(it). The agent
generates a controlut according to the distribution given
by its policy �(�; yt). Finally, the environment makes a
transition to a new stateit+1 according to the probabilitypitit+1(ut). GPOMDP is described in Algorithm 1. Note
that the update for�t is recursively computing the average
of r(it)zt. We now show that the estimate�t producedbyGPOMDP at time stept converges tor��(�) as the run-
ning timet approaches infinity. For this we need one more
assumption:

Assumption 5. The derivatives,��u(�;y)��k exist for allu 2U , y 2 Y and� 2 RK . The ratios24�����u(�;y)��k ����u(�; y) 35y=1:::M ;u=1:::N ;k=1:::K
are uniformly bounded byB <1 for all � 2 RK .



Algorithm 1 TheGPOMDP algorithm.
1: Given:� Parameterized class of randomized policies��(�; �) : � 2 RK	 satisfying Assumption 5.� Partially observable Markov decision process

which when controlled by the randomized poli-
cies�(�; �) corresponds to a parameterized class
of Markov chains satisfying Assumption 1.� � 2 [0; 1).� Arbitrary (unknown) starting statei0.� Observation sequencey0; y1; : : : generated by thePOMDP with controlsu0; u1; : : : generated ran-
domly according to�(�; yt).� Bounded reward sequencer(i0); r(i1); : : : ,
wherei0; i1; : : : is the (hidden) sequence of states
of the Markov decision process.

2: Setz0 = 0 and�0 = 0 (z0;�0 2 RK ).
3: for each observationyt, controlut, and subsequent re-

wardr(it+1) do
4: zt+1 = �zt + r�ut (�;yt)�ut (�;yt)
5: �t+1 = �t + 1t+1 [r(it+1)zt+1 ��t℄
6: end for

This assumption should not be surprising sincer�=� ap-
pears in the update ofzt in GPOMDP. Since� appears in
the denominator, we require that if the probability goes to
zero for some�, then so too must the gradient (and at at
least the same rate).

Theorem 6. Under Assumptions 1 and 5, Algorithm 1
starting from any initial statei0 will generate a sequence�0;�1; : : : ;�t; : : : satisfyinglimt!1�t = r�� w.p.1: (10)

Theorem 6 provides a characterization of the limiting be-
havior ofGPOMDP. In fact, we also have a result char-
acterizing the finite time behavior ofGPOMDP. Loosely
speaking, providedt > 
� ��(�)�2(1� �)2� ; (11)

then k�t � r��(�)k1 < � with high probability (see
(Bartlett & Baxter, 2000) for a more precise statement).
Comparing (11) and (9), we can see the bias/variance trade-
off inherent in the choice of�: equation (9) tells us that to
reduce the bias in the estimater��(�) we must set� close
to 1, while (11) indicates that to reduce the variance in the

estimates ofr��(�) produced byGPOMDP at timet, we
should set� as close to0 as possible.

6. Stochastic Gradient Ascent Algorithms

One technique for optimizingPOMDPs usingGPOMDP
would be to repeatedly compute�T (�) (the estimate pro-
duced byGPOMDP afterT iterations with policy parame-
ters�), and then update the parameters by�  �+�T (�)
for a suitable step-size. However, since the number of it-
erationsT needed to ensure low variance in the estimates�T can be quite large, we would like to make more effi-
cient usage of the estimates by searching for a maximum
in the direction�T . CONJPOMDP, described in Al-

Algorithm 2 CONJPOMDP(GRAD; �; s0; �)! RK
1: Given:� GRAD: RK ! RK : an estimate of the gradient of the

objective function to be maximized.� Starting parameters� 2 RK� Initial step sizes0 > 0.� Gradient resolution�.
2: g = h = GRAD(�)
3: while kgk2 � � do
4: GSEARCH(GRAD; �; h; s0; �)
5: � = GRAD(�)
6:  = (�� g) ��=kgk2
7: h = �+ h
8: if h �� < 0 then
9: h = �

10: end if
11: g = �
12: end while
13: return�
gorithm 2, is a version of the Polak-Ribiere conjugate-
gradient algorithm (Fine, 1999, S5.5.2, for example) that
is designed to operate using only noisy (and possibly) bi-
ased estimates of the gradient of the objective function (for
example, the estimates�T provided byGPOMDP). The
arguments0 to CONJPOMDP provides an initial step-size
for GSEARCH. WhenkGRAD(�)k2 falls below the argu-
ment�, CONJPOMDP terminates.

The linesearch algorithmGSEARCH (Algorithm 3) uses
only gradient information to bracket the maximum, and
then uses quadratic interpolation to jump to the maxi-
mum. To bracket the maximum in the direction�� from�, GSEARCH finds two points�1 and�2 in that direction
such thatGRAD(�1) ��� > 0 andGRAD(�2) ��� < 0. This
approach is far more robust than the use of function val-
ues. Even if the estimatesGRAD(�) are noisy, the variance
of sign [GRAD(�1) � ��℄ is independent of the distance be-
tween�1 and�2. (In contrast, the variance of a comparison
of function values at two points increases as the points get



Algorithm 3 GSEARCH(GRAD; �0; ��; s; �)! RK
1: Given:� GRAD: RK ! RK : gradient estimate.� Starting parameters�0 2 RK .� Search direction�� 2 RK with GRAD(�0) � �� > 0.� Initial step sizes > 0.� Inner product resolution� >= 0.

2: � = �0 + s��
3: � = GRAD(�)
4: if � � �� < 0 then
5: Step back to bracket the maximum:
6: repeat
7: s+ = s, p+ = � � ��, s = s=2
8: � = �0 + s��
9: � = GRAD(�)

10: until � � �� > ��
11: s� = s
12: p� = � � ��
13: else
14: Step forward to bracket the maximum:
15: repeat
16: s� = s, p� = � � ��, s = 2s
17: � = �0 + s��
18: � = GRAD(�)
19: until � � �� < �
20: s+ = s
21: p+ = � � ��
22: end if
23: if p� > 0 andp+ < 0 then
24: s = s�p+�s+p�p+�p�
25: else
26: s = s�+s+2
27: end if
28: return�0 + s��
closer together.) The disadvantage is that it is not possible
to detect extreme overshooting of the maximum using only
gradient estimates. However, with careful control of the
line search we did not find this to be a problem.CONJPOMDP operates by iteratively choosing “uphill”
directions and then searching for a local maximum in the
chosen direction. In the rest of the paper, we assume that
theGRAD argument toCONJPOMDP isGPOMDP.

7. Experiments

Due to space constraints we only have room to consider one
experiment, and we have chosen a “toy” problem so that
we can illustrate all the key ideas from the rest of the pa-
per. Experiments closer to “reality” are discussed in (Bax-
ter et al., 1999b).

Consider a three-stateMDP, in each state of which there

Origin Destination State Probabilities
State Action A B CA a1 0.0 0.8 0.2A a2 0.0 0.2 0.8B a1 0.8 0.0 0.2B a2 0.2 0.0 0.8C a1 0.0 0.8 0.2C a2 0.0 0.2 0.8

Table 1.Transition probabilities of the three-state MDP

is a choice of two actionsa1 anda2. Table 1 shows the
transition probabilities as a function of the states and ac-
tions. Each statex has an associated two-dimensional
feature vector�(x) = (�1(x); �2(x)), with values of(12=18; 6=18); (6=18; 12=18); (5=18; 5=18) for each ofA,B andC respectively. The reward is1 in stateC and0
for the other two states. Clearly, the optimal policy is to
always select the action that leads to stateC with the high-
est probability, which from Table 1 means always selecting
action a2. This rather odd choice of feature vectors for
the states ensures that a value function linear in those fea-
tures and trained usingTD(1)—while observing the opti-
mal policy—will implement a suboptimal one-step greedy
lookahead policy itself (Weaver & Baxter, 1999). Thus,
in contrast to the gradient based approach, for this system,TD(1) training a linear value function is guaranteed to pro-
duce a worse policy if it starts out observing the optimal
policy.

7.1 Training a Controller
Our goal is to learn a stochastic controller for this sys-
tem that implements an optimal (or near-optimal) policy.
Given a parameter vector� = (�1; �2; �3; �4), we gen-
erate a policy as follows. For any statex, let s1(x) :=�1�1(x) + �2�2(x), and s2(x) := �3�1(x) + �4�2(x).
The probability of choosing actiona1 in statex is given by�a1(x) = es1(x)es1(x)+es2(x) , with the probability of choosing

actiona2 given by1� �a1(x). The ratios
r�ai (x)�ai (x) needed

by AlgorithmsGPOMDP are given by,r�a1(x)�a1(x) = es2(x)es1(x) + es2(x) [�1(x); �2(x);��1(x);��2(x)℄r�a2(x)�a2(x) = es1(x)es1(x) + es2(x) [��1(x);��2(x); �1(x); �2(x)℄ :
Note that these controllers satisfy assumption 5.

7.2 Gradient Estimates
With a parameter vector1 of � = [1; 1;�1;�1℄, estimates�T of r�� were generated usingGPOMDP, for various
values ofT and� 2 [0; 1). To measure the progress of�T

1Other initial values of the parameter vector were chosen with
similar results. Note that[1; 1;�1;�1℄ generates a suboptimal
policy.
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Figure 1.A plot of kr���T kkr�k for the three-state Markov chain,
for two values of the discount parameter�.
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Figure 2.Graph showing the final bias in the estimate�T (as
measured bykr���T kkr�k ) as a function of� for the three-state
Markov chain. �T was generated by Algorithm 1. Note both
axes are log scales.

towards the true gradientr�, r� was calculated from (4)
and then for each value ofT the relative errork�T�r�kkr�k
was recorded. The relative errors are plotted in 1 and 2.
The first Figure shows how large� increases the variance ofGPOMDP, while the second Figure shows a corresponding
decrease in the final bias. Taken together they illustrate
nicely the bias/variance trade-off in the choice of�.

7.3 Training via Conjugate-Gradient AscentCONJPOMDP with GPOMDP as the “GRAD” argument
was used to train the parameters of the controller described
in the previous section. Following the low bias observed in
the experiments of the previous section, the argument� ofGPOMDP was set to0. After a small amount of experi-
mentation, the argumentss0 and� of CONJPOMDP were
set to100 and0:0001 respectively. None of these values
were critical, although the extremely large initial step-size
(s0) did considerably reduce the time required for the con-
troller to converge to near-optimality.

Figure 3 shows the average reward�(�) of the final con-
troller produced byCONJPOMDP, as a function of the to-
tal number of simulation steps of the underlying Markov
chain. The plots represent an average over500 indepen-
dent runs ofCONJPOMDP. Note that0:8 is the average
reward of the optimal policy. The parameters of the con-
troller were (uniformly) randomly initialized in the range
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Figure 3.Performance of the 3-state Markov chain controller
trained byCONJPOMDP as a function of the total number of
iterations of the Markov chain.[�0:1; 0:1℄ before each call toCONJPOMDP. After each
call toCONJPOMDP, the average reward of the resulting
controller was computed exactly by calculating the station-
ary distribution for the controller.

8. Conclusion

Gradient-based approached to reinforcement learning hold
much promise as a means to solve problems of partial ob-
servability and to avoid some of the pitfalls associated with
non-convergence of value-function methods. A third rea-
son for preferring direct policy approaches is that it is often
far easier to construct a reasonable class of parameterized
policies than it is to construct a class of value functions; we
often knowhow to act without being able to compute the
valueof acting.

In this paper we have analyzed one algorithm for comput-
ing an approximation to the performance gradient. There
should be many possible generalizations to other approx-
imate algorithms. We also showed how the approximate
gradients could be used robustly in greedy local search.
One weakness of our algorithm is the need to specify run-
ning times and the discount factor� in advance. we are cur-
rently investigating automatic algorithms for finding these
variables.

It is somewhat “folklore” in the Machine Learning com-
munity that gradient-based methods suffer from unaccept-
ably large variance. The reasons for this conclusion are still
not clear and warrant further investigation. There are also
many avenues for further research. Particularly exciting
is the generalization ofGPOMDP to multi-agent settings,
and implications for learning in biological neural networks
(Bartlett & Baxter, 1999).
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