AGENT-BASED OPEN CONNECTIVITY FOR DECISION SUPPORT SYSTEMS

By

HAO LAN ZHANG

MInfoSys, Central Queensland University MBA, Central Queensland University

A thesis submitted to in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

School of Computer Science and Mathematics VICTORIA UNIVERSITY

2007

DECLARATION

I, Hao Lan Zhang, declare that the PhD thesis entitled *Agent-based Open Connectivity for Decision Support Systems* is no more than 100,000 words in length including quotes and exclusive of tables, figures, appendices, bibliography, references and footnotes. This thesis contains no material that has been submitted previously, in whole or in part, for the award of any other academic degree or diploma. Except where otherwise indicated, this thesis is my own work.

Signature

Date

ACKNOWLEDGEMENTS

It would have not been possible for me to finish this thesis without the help from many people. First, I would like to thank my principal supervisor, Professor Clement Leung, for his guidance, support, and valuable advice during the past three years. Our regular meetings guided me towards the right direction. This research work would have not been done without his insightful suggestions.

I am grateful to my current principal supervisor, Professor Yanchun Zhang, for his valuable comments, guidance, advice, support, and encouragement in the crucial stage of finalising my thesis. I would have not been able to finalise this thesis without his help. I also appreciate his advice and help in starting my academic career.

I would like to thank my co-supervisor, Dr. Gitesh Raikundalia, for his valuable comments, guidance, support, and assistance throughout my research study. I appreciate him for giving me the opportunity to work as the research assistant, which helped me gain the research experience.

I wish to thank Angela Rojter for correcting my English writing in my thesis. I highly appreciate her excellent work and friendly help that created a pleasant working environment for me.

Many thanks to the School of Computer Science and Mathematics at Victoria University for providing a high quality research environment, which include: providing me with several travel funds to attend conferences, and offering me the computing facilities for my research experiments. I am grateful to the Head of the School, A/Prof. Peter Cerone, for offering me the school scholarship although I took another scholarship in the end. Thanks also go to Victoria University for offering me the Victoria University Scholarship.

To all the staff members and students in the School of Computer Science and Mathematics at Victoria University, particularly, Dr. Bai-ling Zhang, Janet Grady, Ponnusamy Rajendran, Danh Ho, Mark Mojic, A/Prof. Yuan Miao, Ian Gomm, Michael Grubinger, A/Prof. Neil Barnett, Dr. Iwona Miliszewska, and Anne Venables.

I wish to express my deep gratitude to Dr. Jing He from the Chinese Academy of Sciences for her encouragement, help, and suggestions.

Finally but most importantly, I would like to thank my parents, my sister, Yinghong, and her family. I can do nothing without their support.

ABSTRACT

One of the major problems that discourages the development of Decision Support Systems (DSSs) is the un-standardised DSS environment. Computers that support modern business processes are no longer stand-alone systems, but have become tightly connected both with each other and their users. Therefore, having a standardised environment that allows different DSS applications to communicate and cooperate is crucial. The integration difficulty is the most crucial problem that affects the development of DSSs. Therefore, an open and standardised environment for integrating various DSSs is required.

Despite the critical need for an open architecture in the DSS designs, the present DSS architectural designs are unable to provide a fundamental solution to enhance the flexibility, connectivity, compatibility, and intelligence of a DSS.

The emergence of intelligent agent technology fulfils the requirements of developing innovative and efficient DSS applications as intelligent agents offer various advantages, such as mobility, flexibility, intelligence, etc., to tackle the major problems in existing DSSs. Although various agent-based DSS applications have been suggested, most of these applications are unable to balance manageability with flexibility. Moreover, most existing agent-based DSSs are based on agent-coordinated design mechanisms, and often overlook the living environment for agents. This could cause the difficulties in cooperating and upgrading agents because the agent-based coordination mechanisms have limited capabilities to provide agents with relatively comprehensive information about global system objectives.

This thesis proposes a novel multi-agent-based architecture for DSS, called Agentbased Open Connectivity for Decision support systems (*AOCD*). The AOCD architecture adopts a hybrid agent network topology that makes use of a unique feature called the *Matrix-agent* connection. The novel component, i.e. Matrix, provides a living environment for agents; it allows agents to upgrade themselves through interacting with the Matrix. This architecture is able to overcome the difficulties in concurrency control and synchronous communication that plague many decentralised systems. Performance analysis has been carried out on this framework and we find that it is able to provide a high degree of flexibility and efficiency compared with other frameworks.

The thesis explores the detailed design of the AOCD framework and the major components employed in this framework including the Matrix, agents, and the unified Matrices structure. The proposed framework is able to enhance the system reusability and maximize the system performance. By using a set of interoperable autonomous agents, more creative decision-making can be accomplished in comparison with a hard-coded programmed approach.

In this research, we systematically classified the agent network topologies, and developed an experimental program to evaluate the system performance based on three different agent network topologies. The experimental results present the evidence that the hybrid topology is efficient in the AOCD framework design. Furthermore, a novel topological description language for agent networks (TDLA) has been introduced in this research work, which provides an efficient mechanism for agents to perceive the information about their interconnected network.

A new *Agent-Rank* algorithm is introduced in the thesis in order to provide an efficient matching mechanism for agent cooperation. The computational results based on our recently developed program for agent matchmaking demonstrate the efficiency and effectiveness of the Agent-Rank algorithm in the agent-matching and re-matching processes.

PUBLICATIONS

Refereed Journal Articles:

- 1. **Zhang, H.L.**, Leung, C.H.C. and Raikundalia, G.K. (2008) "Topological Analysis of Agent Networks and Experimental Results based on the AOCD Architecture", *Journal of Computer and System Sciences*, Vol. 74, No. 2, pp. 255 278, Elsevier Publication.
- 2. **Zhang, H.L.**, Leung, C.H.C. and Raikundalia, G.K. (2006) "Matrix-Agent Framework: A Virtual Platform for Multi-agents", *Journal of System Sciences and Systems Engineering*, Vol. 15, No. 4, pp. 436 456, Springer-Verlag Press.
- 3. Raikundalia, G.K. and **Zhang, H.L.** (2006) "Document-related Awareness Elements in Synchronous Collaborative Authoring", *Australian Journal of Intelligent Information Processing Systems*, Vol. 9, No. 2, pp. 41 48.

Submitted Journal Articles:

- 4. **Zhang, H.L.**, Leung, C.H.C., Zhang, Y., and Raikundalia, G.K. "A New Agent-Rank Algorithm for Agent Matching", **Submitted to** *IEEE Transactions on Systems, Man, and Cybernetics-Part A*.
- 5. **Zhang, H.L.**, Leung, C.H.C., and Raikundalia, G.K. "Application of Multi-agent Technology to Information System: An Agent-based Design Architecture for Decision Support Systems", **Submitted to** *AJIS* (in December 2006).

Refereed Conference and Workshop Papers:

- Zhang, H.L., Leung, C.H.C. and Raikundalia, G.K. (2007) "Performance Evaluation of Agent Network Topologies Based on the AOCD Architecture", *Proc. of 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW)*, Canada, pp. 605 – 610, IEEE CS Press.
- Zhang, H.L., Leung, C.H.C. and Raikundalia, G.K. (2006) "Classification of Intelligent Agent Network Topologies and A New Topological Description Language for Agent Networks", in: *IFIP International Federation for Information Processing, Volume 228, Intelligent Information Processing III, Shi Z., Shimoharar K., Feng D. (eds.)*, Australia, pp. 21–31, Springer-Verlag Press.
- Zhang, H.L., Leung, C.H.C. and Raikundalia, G.K. (2006) "Towards the *Matrix* Concept: A Virtual Platform for Intelligent Agent Application in Decision Support Systems". *Proc. of The* 7th *International Symposium on Knowledge and Systems Science*, Beijing, China, pp. 115 122, Lecture Notes in Decision Sciences 8.
- Zhang, H.L., Leung, C.H.C. and Raikundalia, G. K. (2006) "Performance Analysis of Network Topology in Agent-based Open Connectivity Architecture for DSS", *Proc. of 20th International Conference on Advanced Information Networking and Applications (AINA)*, Austria, Vol.2, pp. 257-261, IEEE CS Press.
- Zhang, H.L., Leung, C.H.C. and Raikundalia, G. K. (2005) "AOCD: A Multi-agent Based Open Architecture for Decision Support Systems", *Proc. of International Conference on Computational Intelligence for Modelling, Control & Automation*, Vienna, Austria, Vol. 2, pp. 295-300, IEEE CS Press.

Refereed Technical Reports:

 Zhang, H.L., Leung, C.H.C. and Raikundalia, G. K. (2006) "A Novel Matrix-Agent Connection Design in Multi-agent Based Architecture for Decision Support Systems", *Technical Reports of International Conference on Creativity and Innovation in Decision Making and Decision Support* – An IFIP TC8/WG 8.3 Open Conference, The London School of Economics, London, UK.

TABLE OF CONTENTS

DE	ECLARATI	ION i	i	
ACKNOWLEDGEMENTS iii				
AE	BSTRACT	iv	,	
PU	BLICATIO	DNS vi	į	
LIS	ST OF FIG	URES x	i	
LIS	ST OF TAE	3LES x1	,	
CH	IAPTER			
1.	INTRODU	UCTION	1	
	1.1 Proble	m Description and Motivation	2	
	1.1.1	Problems in traditional DSSs	3	
	1.1.2	Problems in current agent-based DSSs	4	
	1.1.3	Motivations	5	
	1.2 Thesis	Contributions	6	
	1.2.1	Thesis Contributions	6	
	1.2.2	Research Methodologies	7	
	1.3 Thesis	Outline	8	
2.	LITERAT	URE REVIEW 1	0	
	2.1 Introd	uction 1	0	
	2.2 Develo	opment of Traditional DSSs and Agent-based DSSs 1	1	
	2.3 Currer	nt Agent-based DSS 1	3	
	2.3.1	Middle-Agent-based DSS 1	4	
	2.3.2	Decentralised Agent-based DSS 1	7	
	2.3.3	Web-based Intelligent DSS Utilising Agents 2	20	
	2.4 The A	gent Society Concept and its Evolution 2	2	
	2.5 Agent	Communication and Cooperation Design Methodologies 2	23	
	2.5.1	Agent Communication Language 2	24	
	2.5.2	Agent-Matching Methodologies 2	26	
	2.5.3	Agent Capability Description 2	28	
	2.6 Agent	Software Development Tools	60	

	2.7 Summ	ary	32
3.	THE AOC	D ARCHITECTURE	33
	3.1 AOCE	D-based DSSs Vs Traditional DSSs	33
	3.2 Compo	onents in the AOCD Framework	36
	3.3 The M	atrix Concept	39
	3.4 The A	OCD Framework: A hybrid network	40
	3.5 A Case	e Study: Agent-Technology- A Solution to Modern DSS	42
	3.6 Summ	ary	47
4.	MATRIX	DESIGN AND THE UNIFIED MATRICES STRUCTURE	48
	4.1 Matrix	Structural Design	49
	4.1.1	Four-Layer Structure of the Matrix	50
	4.1.2	Matrix Control Panel	54
	4.1.3	Matrix Register	56
	4.1.4	The DSC Usage Centre and the Matrix Learning Centre	57
	4.1.5	Interfaces Between the Matrix and Agents	67
	4.2 A Unit	fied Matrices Structure for Matrices Cooperation	68
	4.2.1	An Overview of the Unified Matrices Structure	69
	4.2.2	Matrix Network Maintainer	70
	4.2.3	Matrix Searching Algorithm for Service-Provider Matrices	71
	4.2.4	Super-node Model in the Matrices Cooperation	75
	4.2.5	Security Control in the Agent-Matrix Link Layer	77
	4.3 Matrix	Development Life Cycle	78
	4.4 Summ	ary	79
5.	AGENT D	DESIGN METHODOLOGIES	80
	5.1 Introdu	action	80
	5.2 Agent	Architectural Design	81
	5.2.1	Agent Pattern Design in AOCD	83
	5.2.2	The Domain Specific Component Design for Agents	85
	5.2.3	BDI Model in AOCD	87
	5.2.4	Agent Mobility and Travel Control Centre (TCC)	91
	5.2.5	Agent Interface Design in AOCD	94
	5.3 Agent	Communication Methodologies	95
	5.3.1	AOCD Agent Communication Language	96
	5.3.2	Topological Description Language for Agent Networks	99

	5.4 Agent	Capability Descriptions (ACD) for Cooperation	104
	5.4.1	The Structure of ACD Language in AOCD	105
	5.4.2	A Top-down Tree for Classifying Agent Capabilities in AOCD	107
	5.4.3	Agent Roles in Agent Capability Descriptions	108
	5.5 AOCE	Agent Development Life Cycle	108
	5.6 Summ	ary	111
6.	AGENT N	1ATCHING MECHANISMS	113
	6.1 Backg	round Review of Agent-Matching Methodologies	113
	6.2 Agent-	Matching Methodologies in AOCD	116
	6.3 Part I:	General-Ranking Algorithm in AR	117
	6.3.1	Factors in the General-Ranking Process	118
	6.3.2	Composition of General Ranking	121
	6.4 Part II	Request-Based-Ranking Process in AR	122
	6.4.1	Agent Capability Description Tree	124
	6.4.2	RBR Similarity Calculation	125
	6.5 Summ	ary	129
7.	THEORE	FICAL ANALYSIS OF AGENT NETWORK TOPOLOGIES	131
	7.1 Backg	round Review and Related Works	132
	7.1.1	Motivations	132
	7.1.2	Traditional Network Topological Theory	134
	7.1.3	Complex Agent Network Topological Theory	135
	7.2 Classif	fication of Agent Network Topologies	136
	7.2.1	Simple Agent Network Topologies	136
	7.2.2	Complex Agent Network Topologies	142
	7.2.3	Hybrid Agent Network Topologies	146
	7.2.4	Topological Description Language for Agent Networks	148
	7.3 Theore	etical Analysis Based On Three Agent Network Topologies	150
	7.3.1	Analysis of Centralised Agent Network Topology	151
	7.3.2	Analysis of Decentralised Agent Network Topology	153
	7.3.3	Analysis of Hybrid Agent Network Topology	156
	7.3.4	Overall Performance Analysis	158
	7.4 Summ	ary	160
8.	EXPERIM	IENTAL EVALUATION	162
	8.1 AOCE	D-based Agent Network Topological Experiments	162

	8.	1.1	Operational Procedures of the AOCD Topological Experiment	163
	8.	1.2	Functionalities and Configurations of the Program	165
	8.	1.3	Design Methodologies of the Experimental Program	168
	8.	1.4	Experimental Results Based On the Program	171
	8.2 Ex	xperii	mental Computation of Agent-Rank Algorithm	185
	8.	2.1	Results and Examples of the General Ranking Calculation	185
	8.	2.2	Results and Examples of the RBR Calculation	188
	8.	2.3	Discussion	195
	8.3 St	ımma	ıry	196
9.	CON	CLUS	SIONS	198
	9.1 Sı	ımma	ary of Contributions	198
	9.2 Di	iscuss	sion and Future Work	201
	9.	2.1	Discussion	201
	9.	2.2	Future Work	202
BI	BIBLIOGRAPHY			204

LIST OF FIGURES

Figure	Figure P		
1.1	A Schematic View of Traditional DSSs	3	
2.1	General Framework of Agent-Based Hybrid Intelligent Systems	15	
2.2	MASST framework for Stock-Trading DSS	16	
2.3	Distributed DSS architecture	18	
2.4	A Decentralised Multi-agent Traffic Control Architecture	18	
2.5	The Open DSS Model Based On the Agent Grid	19	
2.6	System Framework of FWDSSG	21	
2.7	An Agent Federation	23	
2.8	Examples of KQML Messages	. 25	
2.9	A General Model of an InfoSleuth Application	27	
2.10	Structure of LARKS	29	
2.11	Three Types of Knowledge Components and Their Main Features	. 30	
2.12	JADE Agent Platform Distributed Over Several Containers	31	
2.13	Graphical Interfaces of JADE Tools	31	
3.1	A Conceptual View of the Matrix-agent Connection Structure	34	
3.2	A Unified Matrices Structure	37	
3.3	Updating an AOCD Agent's Knowledge Base	38	
3.4	Average Processing Time Comparison	41	
3.5	Success Rate Comparison	41	
3.6	Two Companies' AOCD-based Information Systems	44	
3.7	New Company's Information System (after merger)	45	
4.1	Conceptual View of Matrix	49	
4.2	Four Layers in the Matrix Design	51	
4.3	GUI Design for the External Cooperation Layer	51	
4.4	GUI Design for the Agent-Matrix Link Layer	52	
4.5	GUI Design for the DSC Usage Layer	53	
4.6	Matrix Control Panel Design	54	
4.7	Operation Process of the Matrix Control Panel	55	

4.8	Inputs and Outputs in a DSC item	58
4.9	The Two Section-based Structure of the DSC Usage Centre	60
4.10	Dynamic Alteration Process	62
4.11	Information Updating Process of the Matrix Learning Centre	66
4.12	Agent Interface Allocation Process	67
4.13	A Schematic Diagram of the Matrix Network Maintainer Design	70
4.14	Working Process of the Matrix Network Maintainer	71
4.15	Intersections of Matrices' Capabilities	73
4.16	An Example Super-node-based Network	76
4.17	A Super-node Model in the Unified Matrices Structure	76
5.1	General Agent Pattern Design based on AOCD	84
5.2	DSC Slot Design	85
5.3	Functionality Similarity Calculation	86
5.4	BDI Model in AOCD Agent Design	89
5.5	Mobile Agent Travelling in an Agent Network	92
5.6	Agent-agent Interface Design	95
5.7	FIPA ACL Structure	97
5.8	A Schematic View of the TCC Structure	99
5.9	FIFO Principle in Itinerary Set in TCC	100
5.10	Agent Network Diagram based on IAD, MAD, and OAD	103
5.11	Destination Section Message After Completing One Round Travel	104
5.12	Structure of the Multi-level Agent Capability Descriptions	105
5.13	An Example of A Top-down Folding Tree	107
5.14	Agent Life Cycle in Agent Society	109
5.15	Agent Life-cycle Defined by FIPA	109
6.1	An Agent Association Graph	118
6.2	An RBR Semantic Extension Tree	122
6.3	Generating A Semantic Extension Tree	122
6.4	An Example of A Top-down Folding Tree	124
7.1	Centralized Topology	137
7.2	Peer-to-peer Agent Network Topology	138
7.3	Broadcasting Topology	139
7.4	Closed-Loop Topology	140
7.5	Linear Topology	140

7.6	Hierarchical Topology	141
7.7	Overview of Three Complex Network Topologies	144
7.8	Two Typical Hybrid Agent Network Topologies	147
7.9	IAD for Individual Agent	148
7.10	MAD for A Main Agent Group	149
7.11	OAD for Overall Agent Network	150
7.12	Centralised Transmission Framework	151
7.13	Waiting Time in A Queue	152
7.14	Decentralised Transmission Framework	154
7.15	Hybrid Transmission Framework	156
7.16	Total Transmission Time for The Three Topologies	158
7.17	Total Waiting Time for The Three Topologies	159
8.1	The Main Interface of the AOCD Topological Experiments	163
8.2	Delivering Agent Requests to Matrix	164
8.3	Completion of Agent Matching Process	165
8.4	Control Commander	166
8.5	Terminating Matching Process	167
8.6	Progress Indicator	167
8.7	Program Structure of the AOCD Topological Experiments	168
8.8	Comparisons of the Time Consumption in Hybrid and Centralised	
	Topologies with Different Experimental Parameters	172
8.9	Average Processing Time Affected by Success Rate in Hybrid	
	Agent Networks	173
8.10	Processing Time Affected by Request Number in Hybrid	
	Agent Networks	173
8.11	Processed Request Number and Success Rate in Hybrid	
	Agent Networks	174
8.12	Average Processing Time Affected by Success Rate in	
	Centralised Networks	175
8.13	Processing Time Affected by Request Number in	
	Centralised Agent Networks	176
8.14	Processing Time for Centralised and Hybrid Agent Networks	177
8.15	Impact of Deadlock Parameter on Processing Time	179
8.16	Impact of Deadlock Parameter on Success Rate	179

8.17	Relationship Between Success Rates and (PRV/PAN) in	
	Centralised Topologies (Deadlock = 2)	180
8.18	Relationship Between Success Rates and (PRV/PAN) in Hybrid	
	Topologies (Deadlock = 2)	181
8.19	Relationship Between the Matrix's Capacity and the Average	
	Requests Processing Time	181
8.20	Impact of the Matrix Capacity on the Average Success Rate	182
8.21	Processing Time Affected by Request Volume in Centralised	
	Topologies (DP = 2, MC = 3)	183
8.22	Processing Time Affected by Request Volume in Centralised	
	Topologies (DP = 2, MC = 5)	183
8.23	Processing Time Affected by Request Volume in Hybrid	
	Topologies (DP = 2, MC = 3)	184
8.24	Processing Time Affected by Request Volume in Hybrid	
	Topologies (DP = 2, MC = 5)	184
8.25	A Case-based Agent Association Graph	185
8.26	50 Loops of General Ranking Calculations	187
8.27	A Quasigroup Form of AAG	187
8.28	An RBR Semantic Extension Tree From R-A	188
8.29	Agent Capability Description Tree of P-agent Candidate A1	190
8.30	Agent Capability Description Tree of P-agent Candidate A2	190
8.31	Agent Capability Description Tree of P-agent Candidate A6	191
8.32	Agent Capability Description Tree of P-agent Candidate A7	191
8.33	The GUI of the Computation Program for the General-ranking	
	Calculation	192
8.34	The GUI of the Computation Program for the RBR Calculation	192
8.35	RBR Similarity Calculation Scores in Different Levels	
	Between R-A Semantic Tree and P-agent A1 Tree	193
8.36	RBR Similarity Calculation Scores in Different Levels	
	Between R-A Semantic Tree and P-agent A2 Tree	193
8.37	RBR Similarity Calculation Scores in Different Levels	
	Between R-A Semantic Tree and P-agent A6 Tree	194
8.38	RBR Similarity Calculation Scores in Different Levels	
	Between R-A Semantic Tree and P-agent A7 Tree	194

LIST OF TABLES

Table	I	Page
2.1	Brief Review of DSS Development History	12
2.2	Major Agent Software Tools	30
3.1	Comparison Between Traditional DSS and AOCD-based DSS	35
3.2	Comparison Between AOCD-based DSS and Other Agent-based DSS	35
3.3	The Core Components in the AOCD framework	36
4.1	An Example of the Matrix Register	57
4.2	Matrix Capability Descriptions	72
5.1	Detailed Process of Transferring An Agent in AOCD	94
5.2	FIPA ACL Message Parameters	97
5.3	Agent Capability Description Language in AOCD	106
5.4	AOCD Agent Development Life Cycle	111
6.1	RBR Similarity Values for Set A and B	128
7.1	IAD Routing Table	149
7.2	Total Waiting Time for Processing 4 Requests (worst case)	155
8.1	Results of 600 Sets of the AOCD topological Experiments	184
8.2	The Example Values of the P-agents in An AAG	185
8.3	Final General Ranking Scores of the Example	186
8.4	Similarity Relationships Used in the RBR Calculations	188
8.5	RBR Similarity Scores	195