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Abstract − Instead of minimizing the observed training error, Support Vector Regression 
(SVR) attempts to minimize the generalization error bound so as to achieve generalized 
performance. The idea of SVR is based on the computation of a linear regression function 
in a high dimensional feature space where the input data are mapped via a nonlinear 
function. SVR has been applied in various fields – time series and financial (noisy and 
risky) prediction, approximation of complex engineering analyses, convex quadratic 
programming and choices of loss functions, etc. In this paper, an attempt has been made to 
review the existing theory, methods, recent developments and scopes of SVR. 
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1. Introduction 
 

Support Vector Machines (SVM) are learning machines implementing the structural risk minimization 
inductive principle to obtain good generalization on a limited number of learning patterns. Structural risk 
minimization (SRM) involves simultaneous attempt to minimize the empirical risk and the VC (Vapnik–
Chervonenkis) dimension. The theory has originally been developed by Vapnik and his co-workers on a basis of 
a separable bipartition problem at the AT & T Bell Laboratories. SVM implements a learning algorithm, useful 
for recognizing subtle patterns in complex data sets. The algorithm performs discriminative classification 
learning by example to predict the classifications of previously unseen data. 

The VC dimension of a set of functions is the size of the largest data set due to that the set of functions can 
scatter. Let us consider a set of function F= {f(X, W)} that map points from Rn into the set {0, 1} or     {-1, 1}. 
These are called indicator functions that map data points into one of two classes. If one considers Q points in Rn, 
each of these can be assigned (called labelling) a class of 0 or 1 randomly. Now, Q points can be labeled in 2Q 

different ways. For example, for three points in the plane R2, the eight possible labellings are shown in Fig. 1. 
For the eight possible labellings the threshold logic neuron (TLN) can correctly separate or classify all eight 

configurations as shown in Fig 1. This is achieved by carefully placing the hyperplane to have the correct 
orientation such that all points to be classified as a +1 lie on the positive side of the hyperplane indicated by a 
small arrow. Now, it can be said that the VC dimension of the set of oriented straight lines in R2 is three.  

 

REVIEW 
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The SV(Support Vector) algorithm is a nonlinear generalization of the generalized Portrait algorithm 
developed in Russia in the sixties [1, 2]. VC theory has been developed over the last three decades by Vapnik, 
Chervonenkis and others [3, 4, 5]. This theory characterizes properties of learning machines which enable them 
to effectively generalize the unseen data. In its present form, the SV machine has been developed at AT & T Bell 
Laboratories by Vapnik and co-workers [6]. Initial work has focused on OCR (optical character recognition). 
Within short period, SV classifiers have become competitive with the best available systems for both OCR and 
object recognition tasks [7]. Burges [8] published a comprehensive tutorial on SV classifiers. Excellent 
performances have been obtained in regression and time series prediction applications [9]. 

Statistical Learning Theory has provided a very effective framework for classification and regression tasks 
involving features. Support Vector Machines (SVM) are directly derived from this framework and they work by 
solving a constrained quadratic problem where the convex objective function  for minimization is given by the 
combination of a loss function with a regularization term (the norm of the weights). While the regularization 
term is directly linked, through a theorem, to the VC-dimension of the hypothesis space, and thus fully justified, 
the loss function is usually (heuristically) chosen on the basis of the task at hand. 

Traditional/statistical regression procedures are often stated as the processes deriving a function f(x) that has 
the least deviation between predicted and experimentally observed responses for all training examples. One of 
the main characteristics of Support Vector Regression (SVR) is that instead of minimizing the observed training 
error, SVR attempts to minimize the generalized error bound so as to achieve generalized performance. This 
generalization error bound is the combination of the training error and a regularization term that controls the 
complexity of the hypothesis space.  

Support vector machine (SVM) has been first introduced by Vapnik. There are two main categories for 
support vector machines: support vector classification (SVC) and support vector regression (SVR). SVM is a 
learning system using a high dimensional feature space. It yields prediction functions that are expanded on a 
subset of support vectors. SVM can generalize complicated gray level structures with only a very few support 
vectors and thus provides a new mechanism for image compression.  A version of a SVM for regression has 
been proposed in 1997 by Vapnik, Steven Golowich, and Alex Smola [6]. This method is called support vector 
regression (SVR). The model produced by support vector classification only depends on a subset of the training 
data, because the cost function for building the model does not care about training points that lie beyond the 
margin. Analogously, the model produced by SVR only depends on a subset of the training data, because the 
cost function for building the model ignores any training data that is close (within a threshold ε) to the model 
prediction. 

Support Vector Regression (SVR) is the most common application form of SVMs.  An overview of the basic 
ideas underlying support vector (SV) machines for regression and function estimation has been given in [10]. 
Furthermore, it has included a summary of currently used algorithms for training SVMs, covering both the 

    (a)     (b)     (c)      (d) 

   (e)   (f)     (g)   (h) 

          Fig.1: Three points in a plane. 
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quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, some 
modifications and extensions have been applied to the standard SV algorithm. It has discussed the aspect of 
regularization and capacity control from a SV point of view. The training data have been taken as 

,)},(),...,,{( 11 ℜ×ℵ⊂ll yxyx  where ℵ  denotes the space of the input patterns – for instance .dℜ  In 

SV−ε regression, the goal has been to find a function f(x) that has at most ε  deviation from the actually 
obtained targets iy for all the training data and at the same time as flat as possible.  The case of linear function f 
has been described in the form as  

        ,)( bxxf += ω  with ℜ∈ℵ∈ b    , ω              (1) 

where .,.  denotes the dot product in ℵ . Flatness in (1) means smallω . For this, it is required to minimize the 
Euclidean norm i.e. 

2ω . Formally this can be written as a convex optimization problem by requiring  
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The above convex optimization problem is feasible in cases where f actually exists and approximates all pairs 

),( ii yx  with ε  precision. Sometimes, some errors are allowed. Introducing slack variables *, ii ξξ to cope with 
otherwise infeasible constraints of the optimization problem (2), the formulation becomes  
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The constant C > 0 determines the trade off between the flatness of f and the amount up to which deviations 
larger than  ε  are tolerated. ε -intensive loss function εξ has been described by 
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Fig. 2. depicts the situation graphically. 
The dual formulation provides the key for extending SV machine to nonlinear functions. The standard 

dualization method utilizing Lagrange multipliers has been described as follows: 
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The dual variables in (5) have to satisfy positivity constraints i.e. .0,,, ** ≥iiii ηηαα  It follows from saddle point 
condition that the partial derivatives of L with respect to the primal variables ),,,( *
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Fig. 2. The soft margin loss setting corresponds to a linear SV machine [11]. 

   
 

0(*)(*)
(*)

=−−=
∂
∂

ii
i

C
L ηα

ξ
             (8) 

Substituting (6), (7), and (8) into (5) yields the dual optimization problem. 
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Dual variables *, ii ηη through condition (8) have been eliminated for deriving (9). Equation (7) can be rewritten 
as follows:   
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This is the so-called support vector expansion, i.e. ω  can be completely described as a linear combination of the 
training patterns ix . Even for evaluating f(x), it is not needed to compute ω explicitly (although this may be 
computationally more efficient in the linear setting). Computation of b is done by exploiting Karush-Kuhn-
Tucker (KKT) conditions [10] which states that at the optimal solution the product between dual variables and 
constraints has to vanish. In the SV case, this means 
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Following conclusions can be made: (i) only samples ),( ii yx with corresponding Ci =*α  lie outside the ε -
insensitive tube around f,  (ii) 0* =iiαα , i.e. there can never be a set of dual variables *, ii αα  which are both 
simultaneously nonzero as this would require nonzero slacks in both directions. Finally for ),0(* Ci ∈α , 0* =iξ  
and moreover the second factor in (11) has to vanish. Hence b can be computed as follows: 

),0(         ,

),0(          ,
* Cforxyb

Cforxyb

iii

iii

∈+−=

∈−−=

αεω

αεω
                            (13) 

ξ

ξ
 

ξ  ε+  

0 
ε−  

ε+  ε−  



Neural Information Processing – Letters and Reviews                                                      Vol. 11, No. 10, October 2007 

207 

From (11), it follows that only for ε≥− ii yxf )(  the Lagrange multipliers may be nonzero, or in other words, 
for all samples inside the ε -tube, the *, ii αα  vanish:  for ε<− ii yxf )(  the second factor in (11) is nonzero, 
hence *, ii αα  has to be zero such that the KKT conditions are satisfied. Therefore, a sparse expansion of 
ω exists in terms of ix  (i.e., all ix  are not needed to describeω ). The examples that come with non-vanishing 
coefficients are called Support Vectors. 

SV algorithm can be made nonlinear by simply preprocessing the training patterns ix , by a map ℑ→X:φ , 
into some feature space ℑ and then applying the standard SV regression algorithm. The expansion in (10) 
becomes  

∑
=

−=
l

i
iii x

1

* )()( φααω  

and therefore,  

bxxkxf ii

l

i
i +−= ∑

=
),()()( *

1

αα                                          (14) 

The difference with the linear case is that ω is no longer explicitly given. In the nonlinear setting, the 
optimization problem corresponds to finding the flattest function in feature space, not in input space. 

The standard SVR to solve the approximation problem is as follows:    

                                                         bxxkxf ii
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where  *
iα  and iα  are Lagrange multipliers. The kernel function ),( xxk i has been defined as a linear dot product 

of the nonlinear mapping, i.e.,   

),( xxk i = )()( xxi ϕϕ                                                    (16) 
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iα  and iα  of   (15) have been obtained by minimizing the following regularized risk functional  
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The term 
2ω has been characterized as model complexity, C as a constant determining the trade-off and the ε - 

insensitive loss function )(yLε has been given by  
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In classical support vector regression, the proper value for the parameter ε  is difficult to determine 
beforehand. Fortunately, this problem is partially resolved in a new algorithm, ν  support vector regression (ν -
SVR), in which ε  itself is a variable in the optimization process and is controlled by another new parameter 
ν ∈(0, 1). ν is the upper bound on the fraction of error points or the lower bound on the fraction of points 
inside the ε -insensitive tube. Thus a good ε can be automatically found by choosingν , which adjusts the 
accuracy level to the data at hand. This makes ν  a more convenient parameter than the one used in ε -SVR. 
Scholkopf, et. al. [12] have estimated the function in (1) from the empirical data ℜ×ℜ∈ N

ii yxyx ),(),...,,( 11   by 
allowing an error of ε  at each point ix . Everything above ε  is captured in slack variables (*)

iξ  ((*) being a 
shorthand implying both the variables with and without asterisks), which are penalized in the objective function 
via regularization constant C, chosen a priori. The tube size ε  is traded off against model complexity and slack 
variables via a constant ν 0≥  : 
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for i = 1,2…,l. Introducing Lagrangian multipliers ,0,, (*)(*) ≥βηα ii the Wolfe dual problem is obtained. 
Moreover, substituting a kernel k for the dot product, corresponds to a dot product in some feature space related 
to input space via a nonlinear mapφ ,  

  ))()((),( yxyxk φφ ⋅=           (23) 

This leads to ν -SVR Optimization Problem:  forν 0≥ , C > 0, 
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The regression estimate can be shown to take the form 
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where b (andε ) can be computed by taking into account that (20) and (21) (substitution of ),()( * xxk iij i αα −∑  
for (w.x) is understood) become equalities with 0(*) =iξ  for points with lCi /0 (*) << α , following the Karush-
Kuhn-Tucker conditions. The latter moreover imply that in the kernel expansion equation (28), only those (*)

iα  
will be nonzero that correspond to a constraint in (20) and (21) which is precisely met. The respective patterns 

ix  are referred to as Support Vectors. If  ν  > 1, then ε  = 0, since it does not pay to increaseε . If  ν  ≤  1, then 
ε  = 0, e.g. if the data are noise-free and can perfectly be interpolated with a low capacity model. The case ε  = 0, 
however, is not of interest; it corresponds to plain 1L  loss regression.  

Scholkopf  has given a brief description of the main ideas of statistical learning theory, support vector 
machines, and kernel feature spaces [13, 14]. Wahba [15] has suggested nonparametric regression and statistical 
model building as solutions to optimization problems in Reproducing Kernel Hilbert Spaces. Gaussian and non-
Gaussian data, direct and indirect observations, splines and spline anova models and radial basis functions have 
been discussed as special cases. 

The importance of data classification, interpolation, prediction, regression in information technology has 
been discussed [16]. In recent years, machine learning has become a focal point in Artificial Intelligence. 
Support vector machines are a relatively new, general formulation for learning machines. SVMs perform 
exceptionally well on pattern classification, function approximation, and regression problems. 

Empirical comparisons between classical statistical methods (Akaike Information Criteria (AIC), Bayesian 
Information Criteria (BIC)) and the Structural Risk Minimization (SRM) method (based on VC-theory) for 
regression problems have been carried out [17, 18]. It has been intended to clarify the current state of affairs 
regarding practical usefulness of SRM model selection. In addition, they have addressed important 
methodological issues related to empirical comparisons in general and meaningful application of SRM model 
selection, in particular. In general, analytical estimates of (unknown) prediction risk estR  as a function of 

(known) empirical risk empR  takes one of the following forms:   

),().()( ndrdRdR empest =                       (29) 

or   

),/()()( 2σndrdRdR empest +=                            (30) 

where r (d, n) is often called the penalization factor, which is a monotonically increasing function of the ratio of 
model complexity (degrees of freedom) d to the number of samples n.  They have discussed three model 
selection methods. The first two are representative statistical methods: 
 
Akaike Information Criteria (AIC)  and  Bayesian Information Criteria (BIC) 

2ˆ
2

)()( σ
n

d
dRdAIC emp +=         (31) 
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2ˆ)(ln)()( σ
n

d
ndRdBIC emp +=                                                      (32) 

In AIC and BIC, d is the number of free parameters (of a linear estimator) and σ  denotes the standard deviation 
of additive noise in standard regression formulation under general setting for predictive learning i.e. y = g (x) + 
ε  where ε  is i.i.d. (independent and identically distributed) zero mean random error  (noise), x is a 
multidimensional input and y is a scalar output.  Both AIC and BIC are derived using asymptotic analysis (i.e. 
large sample size). In addition, AIC assumes that correct model belongs to the set of possible models. In practice, 
however, AIC and BIC are often used when these assumptions do not hold. When using AIC or BIC for practical 
model selection, one is faced with following two issues: (1) estimation and meaning of (unknown) noise variance, 
(2) estimation of model complexity. A third model selection method sometimes used in practice is based on 
Structural Risk Minimization (SRM) which provides a very general and powerful framework for model 
complexity control. Under SRM, a set of possible models forms a nested structure so that each element (of this 
structure) represents a set of models of fixed complexity. Hence, a structure provides natural ordering of possible 
models according to their complexity. Model selection amounts to choosing an optimal element of a structure 
using VC generalization bounds. For regression problems, the following VC – bound has been used: 

1
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ln
ln1)()(
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n

n
ppphRhR emp                                                       (33) 

where p = h/n and h is a measure of model complexity (called VC-dimension). The model complexity has been 
estimated accurately and the linear estimators first compared and used in crude heuristic estimates of model 
complexity for k-nearest neighbor regression where accurate estimates of model complexity are not known. 

In support vector machines, time complexity appears empirically to locally grow linearly with the number of 
examples, while generalization performance can be enhanced. Non-linear classification and function 
approximation is an important topic of interest with continuously growing research areas. Estimation techniques 
based on regularization and kernel methods play an important role. Support vector machines are a family of data 
analysis algorithms, based on convex quadratic programming. Their use has been demonstrated in classification, 
regression and clustering problems. Support vector regression (SVR) fits a continuous-valued function to data in 
a way that shares many of the advantages of support vector machines classification. Most algorithms for SVR 
[19, 11, 20, 21] require that the training samples be delivered in a single batch.  

A toolbox LS-SVMlab for Matlab [22] has been presented first with implementations for a number of LS-
SVM related algorithms. Most functions can handle datasets up to 20,000 data points or more. LS-SVMlabs 
interface for Matlab consists of a basic version for beginners as well as a more advanced version with programs 
for multi-class encoding techniques and a Bayesian framework. The Matlab toolbox is built around a fast LS-
SVM training and simulation algorithm. The corresponding calls can be used for classification as well as 
function estimation. Additive models [23] have been described based on least square support vector machines 
(LS-SVM) which are capable of handling higher dimensional data for regression as well as classification tasks. 
Extensions of LS-SVMs towards robustness, sparseness and weighted versions, as well as different techniques 
for tuning of hyper-parameters have been included. Advantages of using componentwise LS-SVMs include the 
efficient estimation of additive models with respect to classical practice, interpretability of the estimated model, 
opportunities towards structure detection and the connection with existing statistical techniques. 

Following an incremental support vector classification algorithm [24], an accurate on-line support vector 
regression (AOSVR) has been developed.  AOSVR has efficiently updated a trained SVR function whenever a 
sample has been added to or removed from the training set. The updated SVR function has been identical to that 
produced by a batch algorithm. 

SVR has been investigated as an alternate technique for approximating complex engineering analyses [25]. 
The computationally efficient theory behind SVR has been reviewed and SVR approximations have been 
compared against the different meta-modeling techniques using a testbed of 26 engineering analysis functions. 
SVR has achieved more accurate and more robust function approximations than the meta-modeling techniques. 
To overcome the huge time and computational costs of running complex engineering codes, an approximation of 
the complex analysis code known as “metamodels” has been described. Mathematically, if the inputs to the 
actual computer analysis are supplied in vector x, and the outputs from the analysis in vector y, the true 
computational code evaluates: 

)(xfy =      where f(x) is a complex engineering analysis function. 
The computationally efficient metamodel approximation is: 
                    )(ˆ xgy =  such that ε+= yy ˆ  where ε  includes both approximation and random errors. 
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Lin and Weng [26] have proposed a simple approach for probabilistic prediction suitable for the standard 
SVR and they have started with generating out-of-sample residuals by cross validation (CV), and then fitted the 
residuals by simple parametric models like Gaussian and Laplace. Support Vector Machines have emerged as a 
powerful multivariate modeling technique for classification as well as regression purposes. 

Core Vector Machine (CVM) algorithm exploits the “approximateness” in the design of SVM 
implementations. The optimal solution is approximated by an iterative strategy. Typically, the stopping criterion 
utilizes either the precision of the Lagrange multipliers or the duality gap. The CVM algorithm has an 
asymptotic time complexity that is linear in m, m being the number of training patterns and a space complexity 
that is independent of m.  Applicability of the CVM depends on the following conditions: (1) the kernel k 
satisfies k(x,x) = a constant; and (2) the QP (quadratic programming) of the kernel method is of a special form. 
There is no linear term in the QP’s objective. The dual objective of SVR contains a linear term and is not of the 
required form. An enhancement of the CVM allowing a more general QP formulation lifts the condition on the 
kernel [27]. The resultant Core Vector Regression (CVR) algorithm can be used with any linear /nonlinear 
kernels and can obtain approximately optimal solutions. The resultant CVR procedure inherits the simplicity of 
CVM, and has small asymptotic time and space complexities. Experimentally, it is as accurate as existing SVR 
implementations, but is much faster and produces far fewer support vectors (and thus faster testing) on large data 
sets. This extension can also be used for scaling up other kernel methods, such as ranking SVM, SVMs in 
imbalanced learning problems, and SVMs with interdependent and structured outputs. 
  

2. Gaussian Process Regression and Variance of Noise 
 

A Gaussian process (GP) is specified by a mean and a covariance function. The mean is a function of x 
(which is often the zero function), and the covariance is a function C(x,x) which expresses the expected 
covariance between the value of the function y at the points x and x. The actual function y(x) in any data 
modeling problem is assumed to be a single sample from this Gaussian distribution. The equivalent kernel is a 
way of understanding how Gaussian process regression works for large sample sizes based on a continuum limit.   

The use of Gaussian process (GP) has been investigated priors over functions, which permit the predictive 
Bayesian analysis for fixed values of hyper-parameters to be carried out exactly using matrix operations. Two 
methods using optimization and averaging (via Hybrid Monte Carlo) over hyper-parameters, have been tested on 
a number of challenging problems and have produced excellent results [28, 29]. This GP have been introduced 
for classification and regression. The background facts on the connection between Neural Networks and GPs and 
given a Bayesian probabilistic interpretation, explaining the use of hyper-parameters and implementation issues 
have been introduced [30].  

Gaussian processes provide natural non-parametric prior distributions over regression functions. Regression 
problems where there is noise on the output have been considered [31] and the variance of the noise depends on 
the inputs. It has been assumed that the noise is a smooth function of the inputs and it is natural to model the 
noise variance using a second Gaussian process, in addition to the Gaussian process governing the noise-free 
output value and showed that prior uncertainty about the parameters controlling both processes can be handled 
and that the posterior distribution of the noise rate can be sampled from using Markov chain Monte Carlo 
methods. Their results on a synthetic data set have given a posterior noise variance that well-approximated the 
true variance.  

Starting from Bayesian linear regression, Williams [32] showed how by a change of viewpoint one can see 
this method as a Gaussian process predictor based on priors over functions, rather than on priors over parameters. 
This has lead to a more general discussion of Gaussian processes and further issues, including hierarchical 
modelling and the setting of the parameters that control the Gaussian process, the covariance functions for neural 
network models and the use of Gaussian processes in classification problems. The Bayesian analysis of neural 
networks is difficult because the prior over functions has a complex form, leading to implementations that either 
make approximations or use Monte Carlo integration techniques.  

In Gaussian process regression, the covariance between the outputs at input locations x and x' is usually 
assumed to depend on the distance (x - x')T W(x - x') where W is a positive definite matrix. W is often taken to 
be diagonal [33], but if W is allowed to be a general positive definite matrix which can be tuned on the basis of 
training data, then an eigen-analysis of W shows that they are effectively creating hidden features, where the 
dimensionality of the hidden-feature space is determined by the data. They have demonstrated the superiority of 
predictions using the general matrix over those based on a diagonal matrix on two test problems.  

Support Vector Clustering (SVC) methodology has been proposed in [34] with promising performance for 
high-dimensional and noisy data sets, and for clusters with arbitrary shape. Instead of searching for a single 
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optimal configuration, they have involved generation, selection and combination of distinct clustering solutions 
that lead to a consensus clustering.  

A method has been presented for the sparse greedy approximation of Bayesian Gaussian process regression, 
featuring a novel heuristic for very fast forward selection motivated by active learning [35]. It has been shown 
how a large number of hyper-parameters can be adjusted automatically by maximizing the marginal likelihood of 
the training data. The method is essentially as fast as an equivalent one which selects the “support” patterns at 
random, yet has the potential to outperform random selection on hard curve fitting tasks and at the very least 
leads to a more stable behaviour of first-level inference which makes the subsequent gradient-based optimization 
of hyper-parameters much easier. In line with the development of the method, they have presented a simple view 
on sparse approximations for GP models and their underlying assumptions and shown relations to other methods.  

Support vector machine (SVM) regression problems have been solved as the maximum a posteriori 
prediction in the Bayesian framework and described an approximation technique that is useful in performing 
calculations for SVMs based on the mean field algorithm as proposed in Statistical Physics of disordered 
systems [36, 37]. Based on the mean field equation for a Gaussian process, an efficient iterative implementation 
algorithm has been derived. The mean field SVR method is moderately easy to implement and use.  

The practical selection of hyper-parameters for support vector machines regression (that is, ε -insensitive 
zone and regularization parameter C) have been investigated [38]. The values of ε  and C parameters are 
obtained directly from the training data and (estimated) noise level. This approach is based on well-known 
theoretical understanding of SVM regression that provides the basic analytical form for parameter selection. 
Empirical tuning of these analytical dependencies has been performed using synthetic data sets. Extensive 
empirical comparisons have suggested that their selection yields good generalization performance of SVM 
estimates under different noise levels, types of noise, target functions and sample sizes. This approach can be 
applied in various application domains of SVM. The empirical results suggest that with the choice ofε , the 
value of regularization parameter C has only negligible effect on the generalization performance (as long as C is 
larger than a certain threshold determined analytically from the training data). The proposed value of C-
parameter is derived for RBF kernels; however, the same approach can be applied to other kernels bounded in 
the input domain. 

It has been also shown (i) how to approximate the equivalent kernel of the widely-used squared exponential 
(or Gaussian) kernel and related kernels, and (ii) how analysis using the equivalent kernel helps to understand 
the learning curves for Gaussian processes [39]. 
   

3. Ridge Regression and Kernel Methods 
 

It is useful to first read the ridge regression. In kernel ridge regression (KRR), the final solution is not sparse 
in the variables ofα . A regression method which is sparse has been formulated with the concept of support 
vectors that determine the solution. The sparseness has come from complimentary slackness conditions which in 
turn have come from inequality constraints [40]. 

Platt [41] has proposed a new algorithm for training support vector machines: Sequential Minimal 
Optimization (SMO) which is a simple algorithm that can quickly solve the SVM QP (Support Vector Machine 
Quadratic Programming) problems without any extra matrix storage and without using numerical QP 
optimization steps at all. SMO decomposes the overall QP problem into QP sub-problems using Osuna’s 
theorem to ensure convergence.  

In the regression case, the loss function used penalizes errors which are greater than a thresholdε . Such a 
loss function typically has lead to a sparse representation of the decision rule giving significant algorithmic and 
representational advantages. If, however, ε  = 0 in the case of optimizing the 2-norm of the margin slack vector, 
the regressor output has been recovered by a Gaussian process with corresponding covariance function, or 
equivalently the ridge regression function. These approaches have the disadvantage that since ε  = 0, the 
sparseness of the representation has been lost [42]. 

Ridge regression is a classical statistical technique that attempts to address the bias-variance trade-off in the 
design of linear regression models. A reformulation of ridge regression in dual variables permits a non-linear 
form of ridge regression via the well-known “kernel trick”. Unfortunately, unlike support vector regression 
models, the resulting kernel expansion is typically fully dense. Ridge regression is a well-known technique from 
classical multiple linear regression that implements a regularized form of least-squares regression. Given, 
training data  
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the ridge regression algorithm determines the parameter vector, ,dRw ∈  and bias, ,Rb ∈ of a linear model, f(x) 
= w.x + b, via minimization of the following objective function:  

2

1

2
).(  

2

1
),( bxwy

l
wbwL i

l

i
i −−+= ∑

=

γ
 

This objective function used in ridge regression that implements a form of Tikhonov regularization of a SSE 
metric where γ  is a regularization parameter controlling the bias-variance trade-off. This corresponds to 

penalized maximum likelihood estimation of w and b, assuming the targets have been corrupted by an 
independent and identically distributed (i.i.d.) sample from a Gaussian noise process, with zero mean and fixed 

variance 2σ  i.e.  
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A non-linear form of ridge regression, known as KRR can be obtained via the so-called “kernel trick”, whereby a 
linear regression model is constructed in a high dimensional feature space, F)X:F( →φ , induced by a non-

linear kernel function defining the inner product ).().(),( xxxxK ′=′ φφ  The kernel function, ℜ→ℵℵ x :K  may 
be any positive definite “Mercer” kernel. The objective function minimized in constructing a kernel ridge 
regression model is given by 
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The solution of an optimization problem of this nature can be written in the form of a linear combination of the 

training patterns, i.e. bxxKw i
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α . The output of the least squares support vector machine is then given 

by the kernel expansion 
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A reduced rank kernel ridge regression (RRKRR) algorithm capable of generating an optimally sparse kernel 
expansion that is functionally identical to that resulting from conventional kernel ridge regression (KRR) has 
been introduced [43]. This method has been demonstrated to out-perform an alternative sparse kernel ridge 
regression algorithm on the Motorcycle and Boston Housing benchmarks [44].  

A regularized kernel regression model has been introduced for data characterized by a heteroscedastic (input 
dependent variance) Gaussian noise process [45]. This model has provided more robust estimates of the 
conditional mean than standard models and also confidence intervals (error bars) on predictions. 

It has been extended a form of kernel ridge regression for data characterised by a heteroscedastic (i.e. input 
dependent variance) Gaussian noise process [45, 46]. It has been shown that the proposed heteroscedastic kernel 
ridge regression model can give a more accurate estimate of the conditional mean of the target distribution than 
conventional KRR and also provide an indication of the spread of the target distribution (i.e. predictive error 
bars). The leave-one-out cross-validation estimate of the conditional mean has been used in fitting the model of 
the conditional variance in order to overcome the inherent bias in maximum likelihood estimates of the variance. 
The benefits of the proposed model have been demonstrated on synthetic and real-world benchmark data sets 
and for the task of predicting episodes of poor air quality in an urban environment.  

A new and efficient algorithm for the sparse logistic regression problem has been developed [47]. This 
algorithm has been simple and based on the Gauss-Seidel method and asymptotically convergent and can be 
applied to a variety of real-world problems like identifying marker genes and building a classifier in the context 
of cancer diagnosis using microarray data.   

Agarwal [48] has given a statistical interpretation of proximal support vector machines (PSVM) as linear 
approximates to (nonlinear) support vector machines and proved that PSVM using a linear kernel has been 
identical to ridge regression, a biased-regression method known in the statistical community for more than thirty 
years. Techniques from the statistical literature to estimate the tuning constant that appears in the SVM and 
PSVM framework have been discussed. Better shrinkage strategies that incorporate more than one tuning 
constant have been suggested. For nonlinear kernels, the minimization problem posed in the PSVM framework is 
equivalent to finding the posterior mode of a Bayesian model defined through a Gaussian process on the 
predictor space. Apart from providing new insights, these interpretations have helped to attach an estimate of 
uncertainty to their predictions and enable them to build richer classes of models. In particular, he has proposed a 
new algorithm called PSVMMIX which is a combination of ridge regression and a Gaussian process model.  
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A novel algorithm for sparse online greedy kernel-based nonlinear regression has implemented a form of 
gradient ascent and demonstrated its scaling and noise tolerance properties on three benchmark regression 
problems [49]. 

A new iterative algorithm for kernel logistic regression has been based on the solution of the dual problem 
using ideas similar to those of the SMO algorithm for Support Vector Machines. The algorithmic ideas can also 
be used to give a fast dual algorithm for solving the optimization problem arising in the inner loop of Gaussian 
Process classifiers.  The well-known SMO algorithm of support vector machines has been then extended to Least 
Squares SVM formulations which include LS-SVM classification, kernel ridge regression and a particular form 
of regularized kernel fisher discriminant. Computational experiments have shown that the algorithm is fast and 
asymptotically convergent [50, 51]. 

A novel method for selecting descriptor subsets by means of Support Vector Machines in classification and 
regression - the Incremental Regularized Risk Minimization (IRRM) algorithm [52] has been presented. In 
contrast to many other wrapper methods, it is fully deterministic and computationally efficient. They have 
compared their method to existing algorithms and presented results on a Human Intestinal Absorption (HIA) 
classification data set [53] and Huuskonen regression data set for aqueous solubility [54, 55] 

A mechanism to train SVMs with a hybrid kernel and minimal VC dimension has been presented [56]. After 
describing the VC dimension of sets of separating hyper-planes in a high-dimensional feature space produced by 
a mapping related to kernels from the input space, they have proposed an optimization criterion to design SVMs 
by minimizing the upper bound of the VC dimension. This method realizes a structural risk minimization and 
utilizes a flexible kernel function such that a superior generalization over test data can be obtained. In order to 
obtain a flexible kernel function, they have developed a hybrid kernel function and a sufficient condition to be an 
admissible Mercer kernel based on common Mercer kernels (polynomial, radial basis function, two-layer neural 
network, etc.). The nonnegative combination coefficients and parameters of the hybrid kernel are determined 
subject to the minimal upper bound of the VC dimension of the learning machine. The use of the hybrid kernel 
results in a better performance than those with a single common kernel. 

In generalized Gaussian kernel regression models [57], each kernel regressor in the pool of candidate 
regressors has an individual diagonal covariance matrix. This matrix is determined by maximizing the absolute 
value of the correlation between the regressor and the training data using a repeated weighted search 
optimization. The standard orthogonal least squares algorithm is then applied to select a parsimonious model 
from the full regression matrix. Compared with the existing kernel regression modeling approaches which adopt 
a single common kernel variance for all regressors, their method has the advantages of improving modeling 
capability and producing sparser models. It has been proved that SVM regression result is effective and available 
for simulation. Cortical control of virtual cursor has been investigated by means of SVM where the training 
inputs of the regression estimation are firing rates of neuronal ensembles in motor and premotor cortex, and the 
outputs are trajectories of virtual cursors. 

Statistical properties have been investigated for a broad class of modern kernel based regression (KBR) 
methods [58]. These kernel methods have been developed during the last decade and are inspired by convex risk 
minimization in infinite dimensional Hilbert spaces. One leading example is support vector regression. They 
have first described the relation between the loss function used in the KBR method and the tail of the response 
variable and then established the risk consistency for KBR which gives the mathematical justification for the 
statement that these methods are able to 'learn'. Then they have considered robustness properties of such kernel 
methods. In particular, the results have allowed choosing the loss function and the kernel to obtain computational 
tractable and consistent KBR methods having bounded influence functions. Furthermore, bounds for the 
sensitivity curve which is a finite sample version of the influence function have been developed and the 
relationship between KBR and classical M-estimators [59] has been discussed.  

Kernel methods have gained a growing interest during the last few years for designing QSAR models [60] 
having a high predictive strength. One of the key concepts of SVMs is the usage of a so-called kernel function, 
which can be thought of as a special similarity measure. Fröhlich and Zell [61] have considered kernels for 
molecular structures, which are based on a graph representation of chemical compounds. The similarity score has 
been calculated by computing an optimal assignment of the atoms from one molecule to those of another one, 
including information on specific chemical properties, membership to a substructure (e.g. aromatic ring, 
carbonyl group, etc.) and neighbourhood for each atom. By using this kernel, they have achieved a 
generalization performance comparable to a classical model with a few descriptors, which are a priori known to 
be relevant for the problem and significantly better results than with and without performing an automatic 
descriptor selection. They have further explored the effect of combining kernel with a problem dependent 
descriptor set and also demonstrated the usefulness of an extension of their method to a reduced graph 
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representation of molecules, in which certain structural features, like rings, donors or acceptors, have been 
represented as a single node in the molecular graph. 

Support vector machines have become one of the most popular methods in Machine Learning during the last 
few years. A special strength is the use of a kernel function to introduce nonlinearity and to deal with arbitrarily 
structured data. Usually the kernel function depends on certain parameters, which, together with other 
parameters of the SVM, have to be tuned to achieve good results. However, finding good parameters can become 
a real computational burden as the number of parameters and the size of the dataset increases. Fröhlich and Zell 
[61] have proposed an algorithm to deal with the model selection problem, which is based on the idea of learning 
an Online Gaussian Process model of the error surface in parameter space and sampling systematically at points 
for which the so called expected improvement is highest. Their experiments have found good parameters very 
efficiently. 

Recursive neural networks and kernel methods have been compared for structured data specifically support 
vector regression machine using a tree kernel, in the context of regression tasks for trees [62].  

 
4. Convex Quadratic Programming and Loss Function 

 
In regression problems, choice of different loss functions arises from various assumptions about the 

distribution of the noise in measurement. Several non-quadratic loss functions have been introduced to reduce 
the sensitivity of the outliers, such as the Laplacian loss function and the Huber’s loss function. 

The ε -insensitive loss function (ILF) has been proposed by Vapnik [5] in Support Vector Machines (SVM) 
for regression (SVR). The performance of SVR crucially depends on the shape of the kernel function and other 
hyper-parameters that represent the characteristics of the noise distributions in the training data. Bayesian 
methods have been regarded as suitable tools to determine these hyper-parameters. However, these methods 
have been difficult to use SVR due to lack of smoothness of ILF.  

A new smoothing strategy has been proposed for solving epsilon-SVR tolerating a small error in fitting a 
given data set linearly or nonlinearly [63]. Conventionally, this has been formulated as a constrained 
minimization problem, namely, a convex quadratic programming problem. The smoothing techniques that have 
been used for solving the support vector machine for classification has been applied to replace the epsilon-
insensitive loss function by an accurate smooth approximation and allowed to solve epsilon-SVR as an 
unconstrained minimization problem directly and termed reformulated problem as epsilon- support vector 
regression. Newton-Armijo algorithm [64] has been shown to be convergent globally and quadratically to solve 
their problem has been prescribed.  In order to handle the case of nonlinear regression with a massive data set, 
they also have introduced the reduced kernel technique to avoid the computational difficulties in dealing with a 
huge and fully dense kernel matrix. 

The Bayesian evidence framework can be applied to both ε-SVR and ν-SVR algorithms [65]. Standard SVR 
training has been regarded as performing level one inference of the evidence framework, while levels two and 
three have allowed automatic adjustments of the regularization and kernel parameters respectively, without the 
need of a validation set. 

Support Vector Machines for regression problems are trained by solving a quadratic optimization problem 
which needs memory and time resources of the order of t2, where t is the number of training examples. A 
decomposition algorithm, SVMTorch, has been proposed for classification problems, but adapted to regression 
problems [66]. This algorithm efficiently solves large-scale regression problems. 

 A randomized subset selection scheme has been suggested for SVR with respect to the so-called ε -
insensitive loss usually employed for SVR [67]. From the data points and from the value ε  received for the loss 
function, one constructs two new datasets, one by shifting the response up byε , and the other by shifting it 
down byε . For a large enough ε  for which hard tubes exist, these shifts amount to move the first dataset to 
stand fully above the regression hyperplane, and the second dataset to stand fully below it. Thus, the regression 
hyperplane has been effectively transformed into a classification hyperplane. Algorithms for training support 
vector machines in classification problems have been extended into algorithms for support vector regression 
problems under ε -insensitive loss. 

The dual formulation of support vector regression involves two closely related sets of variables. When the 
decomposition method is used, many existing approaches use pairs of indices from these two sets as the working 
set. Basically, they select a base set first and then expand it so that all indices are pairs. This makes the 
implementation different from that for support vector classification. In addition, a larger optimization sub-
problem has to be solved in each iteration. Theoretical proofs and conducted experiments have been provided to 
show that using the base set as the working set leads to similar convergence (number of iterations). Therefore, by 
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using a smaller working set while keeping a similar number of iterations, the program can be simpler and more 
efficient [68]. 

Practical selection of meta-parameters have been investigated for SVM regression (that is, ε -insensitive 
zone and regularization parameter C) advocating analytic parameter selection directly from the training data, 
rather than resampling approaches commonly used in SVM applications. Good generalization performance of 
the proposed parameter selection [17] has been demonstrated empirically using several low-dimensional and 
high-dimensional regression problems. Further, they have pointed out the importance of Vapnik’s ε -insensitive 
loss function for regression problems with finite samples and compared generalization performance of SVM 
regression (with optimally chosen ε ) with regression using ‘least-modulus’ loss (ε  = 0). These comparisons 
have indicated superior generalization performance of SVM regression for finite sample settings. They have also 
demonstrated the importance of ε - insensitive loss function on the generalization performance. 

A methodology has been described for performing variable ranking and selection using support vector 
machines [69]. The method has constructed a series of sparse linear SVMs to generate linear models that can 
generalize well, and used a subset of nonzero weighted variables found by the linear models to produce a final 
nonlinear model. The method has exploited the fact that a linear SVM (no kernels) with 1-norm regularization 
inherently performs variable selection as a side-effect of minimizing capacity of the SVM model. The 
distribution of the linear model weights has provided a mechanism for ranking and interpreting the effects of 
variables. They have illustrated the effectiveness of the methodology on synthetic data, benchmark problems, 
and challenging regression problems in drug design. This method can dramatically reduce the number of 
variables and outperforms SVMs using all attributes and using the attributes selected according to correlation 
coefficients. The visualization of the resulting models has been useful for understanding the role of underlying 
variables. 

A unified framework for popular non-quadratic regression loss functions has been proposed in [70]. It has 
been done using a novel loss function known soft insensitive loss function (SILF) which possesses most of the 
virtues in popular non-quadratic loss functions such as insensitivity to the outliers, differentiability and 
sparseness in sample selection, etc. in addition, the introduction of SILF in regression makes it possible to apply 
Bayesian techniques on support vector methods, while preserving their individual advantages. Standard Gaussian 
processes for regression to set up the Bayesian framework, in which the unified loss function is used in the 
likelihood evaluation have been followed. The overall approach has the merits of support vector regression such 
as convex quadratic programming and sparsity in solution representation. Experimental results on simulated and 
real-world data sets have indicated that the approach has worked well even on large data sets. Moreover, 
confidence interval has been provided in prediction.  

Training a SVR requires the solution of a very large QP (quadratic programming) optimization problem. 
Despite the fact that this type of problem is well understood, the existing training algorithms are very complex 
and slow. Linear and nonlinear regression models have been evaluated combining the possibility and necessity 
estimation formulation with the principle of SVM [71]. For data sets with crisp inputs and interval outputs, the 
possibility and necessity models have been recently utilized, which are based on quadratic programming 
approach giving more diverse spread coefficients than a linear programming one.  

A heuristic method based on the similarity measurement, for reducing training data to accelerate support 
vector machines training, has been investigated [72].  The method (HSVM training) is fast enough without 
discounting the generalization performance. The extra computation cost for reducing training data is rather 
feasible since the total time spent on HSVM training is less than that done on SVM training with the complete 
training data. The algorithm transforms a QP problem of large size into one of small size without complex 
computations like other conventional methods. The presented method HSVM is more effective for dealing with 
dense training sets. The notion of similarity, as a measurement of the approaching degree between two samples, 
is introduced to select new training data. The similarity function S is defined as 
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where x, y denote samples and M is the dimension of a sample. For the sake of simplification, let f(t) = t. It is 
clear that the larger the S, the closer are the two samples from the viewpoint of geometry. To obtain good 
generalization performance, the reduction process may not be carried out on the whole data instead on several 
groups. The reduction result depends on the selection of similarity threshold and the division of data groups. Too 
large similarity threshold will result in less data being reduced and the advantage, i.e., fast training in SVM, 
being concealed. On the other hand, too small similarity threshold will lead more data to be removed, and 
therefore the generalization error may increase greatly. Hence, the similarity threshold is actually a trade-off 
between training speed and predicting accuracy.  
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An approximate formulation of the SVM regression algorithm is desirable to avoid raising the quadratic 
programming problem of the classical formulation. Farag and Mohamed [73] have suggested an advanced 
approach utilizing some principles of the mean field theory to cope with the Gaussian classification problem. 
The basic idea of the mean field theory is to approximate the statistics of a random variable which is correlated 
to other random variables by assuming that the influence of the other variables can be compressed into a single 
effective mean “field” with a rather simple distribution. Mean field (MF) methods replace the intractable task of 
computing high dimensional sums and integrals by much easier problem of solving a system of linear equations.  
The regression problem is formulated so that the MF method can be used to approximate the learning procedure 
in a way that avoids the quadratic programming optimization. This approach is suitable for high dimensional 
regression problems.  

 
5. Time Series Analysis and Financial Prediction 

 
In the Bayesian framework, predictions for a regression problem are expressed in terms of a distribution of 

output values. The mode of this distribution corresponds to the most probable output, while the uncertainty 
associated with the predictions can conveniently be expressed in terms of error bars. The evaluation of error bars 
have been considered in the context of the class of generalized linear regression models and provided insights 
into the dependence of the error bars on the location of the data points. It derived an upper bound on the true 
error bars in terms of the contributions from individual data points which are themselves easily evaluated [74]. 

Support vector regression has been introduced to solve regression and prediction problems. It has become a 
hot topic of intensive study due to its successful application in classification tasks and regression tasks, 
especially on time series prediction and financial related applications. SVMs are state-of-the-art tools for non-
linear input-output knowledge discovery. The support vector regressor (SVR) is for regression and function 
approximation. The combination of clustering and a state-of-the-art technique has been proposed for knowledge 
gain and accuracy improvement in a complex pharmacokinetic prediction problem [75]. The power and 
versatility of the SVR machines have allowed fast and reliable prediction schemes. 

Use of an adaptive margin in SVR has also been suggested for financial prediction to minimize the downside 
risk, which is an essential part in financial prediction with volatile financial data [76]. More specifically, the two 
approaches are: one uses the fixed and asymmetrical margins (FAAM), whereas the other uses non-fixed and 
symmetrical margins (NASM). A key difference between FAAM and FASM is that there exist an up and a down 
margin that are asymmetrical. In the case of FAAM when the up margin is greater than the down margin, the 
predictive results tend to be smaller than the predictive results which are produced by using FASM. A general 
type of insensitive loss function in SVR and outline of the various margins, i.e., FASM, FAAM and NASM have 
been presented. 

A novel algorithm based on SVM regression has been employed to obtain predictive Quantitative Structure-
Retention relationship (QSRR) models using two-step computational strategy: (1) a sparse linear SVM is utilized 
as a variable selection method to identify relevant molecular descriptors, and (2) a set of nonlinear SVM models 
derived by kernel mapping using the selected features [77]. In addition, a statistical technique called “bagging” 
(Bootstrap aggregation) has been employed to improve model generalization performance.  

The external administration of recombinant human erythropoietin is the chosen treatment for those patients 
with secondary anemia due to chronic renal failure in periodic hemodialysis. An individualized prediction of the 
EPO dosage has been carried out to be administered to those patients [78]. The high cost of this medication, its 
side-effects and the phenomenon of potential resistance which some individuals suffer --- all have justified the 
need for a model which is capable of optimizing dosage individualization. A group of 110 patients and several 
patient factors have been used to develop the models. The support vector regressor (SVR) has been benchmarked 
with the classical multilayer perceptron (MLP) and the Autoregressive Conditional Heteroskedasticity (ARCH) 
model. They have introduced a priori knowledge by relaxing or tightening the epsilon-insensitive region and the 
penalization parameter depending on the time period of the patients' follow-up. The so-called profile-dependent 
SVR (PD-SVR) has improved results of the standard SVR method and the MLP. They have performed sensitivity 
analysis on the MLP and inspected the distribution of the support vectors in the input and feature spaces in order 
to gain knowledge about the problem. 

Experimental results have been conducted by studying the regression problem itself and the resultant 
predicted choice of ε  has been much closer to the experimentally observed optimal value, while again 
demonstrating a linear trend with the input noise [79]. 

Support vector regression (SVR) is a powerful technique for predictive data analysis.  The goal of the 
regression problem is to approximate a function. The solution to a support vector regression problem is a 
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function that accepts a data point and returns a continuous value. The support vector regression problem also 
allows for a ‘zone of insensitivity’ defined typically by a parameterε .  

When using SVM in regression tasks, the support vector regressor must use a cost function to measure the 
empirical risk in order to minimize the regression error. For financial data, due to the embedded noise, one must 
set a suitable margin in order to obtain a good prediction. The financial data are usually highly noisy and contain 
outliers. A novel two-phase SVR training algorithm has been proposed to detect outliers and reduce their 
negative impact [80]. 

The use of Support Vector Machines (SVMs) has been presented for prediction and analysis of antisense 
oligonucleotide (AO) efficacy [81]. The collected database has comprised 315 AO molecules including 68 
features, each inducing a problem well-suited to SVMs. The task of feature selection is crucial given the 
presence of noisy or redundant features, and the well-known problem of the curse of dimensionality. They have 
proposed a two-stage strategy to develop an optimal model: (1) feature selection using correlation analysis, 
mutual information, and SVM-based recursive feature elimination (SVM-RFE), and (2) AO prediction using 
standard and profiled SVM formulations. A profiled SVM has given different weights to different parts of the 
training data to focus the training on the most important regions. The SVM approach has been well suited to the 
AO prediction problem, and yielded a prediction accuracy superior to previous methods. The profiled SVM has 
been found to perform better than the standard SVM, suggesting that it could lead to improvements in other 
prediction problems as well. 

Travel time is a fundamental measure in transportation. Accurate travel-time prediction also is crucial to the 
development of intelligent transportation systems and advanced traveler information systems. Support vector 
regression has been applied for travel-time prediction and compared its results to other baseline travel-time 
prediction methods using real highway traffic data [82]. Since support vector machines have greater 
generalization ability and guarantee global minima for given training data, it is believed that SVR would perform 
well for time series analysis. Compared to other baseline predictors, their results have shown that the SVR 
predictor could significantly reduce both relative mean errors and root-mean-squared errors of predicted travel 
times. They have also demonstrated the feasibility of applying SVR in travel-time prediction and proved that 
SVR is applicable to and performs well in traffic data analysis. 

Support vector machines have been developed by Vapnik as an effective algorithm for determining an 
optimal hyperplane to separate two classes of patterns. Comparative studies have shown that support vector 
classification (SVC) usually has given better predictions than other classification methods. In a short period of 
time, SVC has found significant applications in bioinformatics and computational biology, such as cancer 
diagnosis, prediction of protein fold, secondary structure, protein-protein interactions, and sub-cellular 
localization. Using various loss functions, the support vector method has been extended for regression (SVR). 
SVR can have significant applications in QSAR (quantitative structure-activity relationships) if it is able to 
predict better than other well-established QSAR models. QSAR models obtained with multiple linear regression 
(MLR) and SVR has been compared for the benzodiazepine receptor affinity using a set of 52 pyrazolo[4,3-
c]quinolin-3-ones [83]. 

6.  Usefulness of SVR 

The problem of the determination of developmental age of an embryo from its segmentation gene expression 
patterns in Drosophila has been addressed [84]. By applying support vector regression, they have developed a 
fast method for automated staging of an embryo on the basis of its gene expression pattern. Support vector 
regression is a statistical method for creating regression functions of arbitrary type from a set of training data. 
The training set has been composed of embryos for which the precise developmental age has been determined by 
measuring the degree of membrane invagination. Testing the quality of regression on the training set has shown 
good prediction accuracy. The optimal regression function has been used for the prediction of the gene 
expression based age of embryos in which the precise age has not been measured by membrane morphology. 
Moreover, they have shown that the same accuracy of prediction can be achieved when the dimensionality of the 
feature vector is reduced by applying factor analysis. The data reduction has allowed them to avoid over-fitting 
and to increase the efficiency of the algorithm.  

Support vector regression has been applied to the geolocation problem with the addition of Kalman-Bucy 
filtering to smooth location estimates in a mobile tracking scenario [85]. Mobile positioning using radiolocation 
techniques usually involves time of arrival (TOA), time difference of arrival (TDOA), angle of arrival (AOA), 
signal strength (SS) measurements or some combination of these methods. They have described two-step 
location estimation algorithm to estimate the location of a mobile user. The first step employs an approach in 
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SVR to obtain an initial estimate of the mobile location. Measurements have been taken at known locations a 
priori and a training database has been created.  

Functional magnetic resonance imaging (fMRI) is a noninvasive technique for mapping brain function by 
the blood oxygenation level dependent (BOLD) effect. An approach has been presented utilizing spatio-temporal 
support vector regression (SVR), within which the intrinsic spatio-temporal auto correlations in fMRI data have 
been reflected [86]. The following major advantages of the approach have been found: avoidance of 
interpolation after motion estimation, embedded removal of low-frequency noise components, and easy 
incorporation of multi-run, multi-subject, and multi-task studies into the framework.  

Blind identification of single-input multiple-output (SIMO) channels is a common problem encountered in 
communications, sonar and seismic signal processing. SIMO channels appear either when the signal is 
oversampled at the receiver or from the use of an array of antennas. Blind identification has been formulated as a 
support vector regression problem and an iterative procedure has also been suggested to solve it avoiding trivial 
solution [87]. According to the SRM principle the proposed cost function establishes a trade-off between a loss 
function and the complexity of the solution: this regularized functional leads to a robust solution to either 
channel order overestimation or badly conditioned channels. 

An application of support vector machine has been demonstrated to the oceanic disasters search and rescue 
operation [88]. The support vector regression for system identification of a nonlinear black-box model has been 
utilized in this research. The SVR-based ocean model has helped the search and rescue unit by predicting the 
disastrous target's position at any given time instant. The closer the predicted location to the actual location 
would shorten the searching time and minimize the loss. One of the most popular ocean models, namely the 
Princeton ocean model, has been applied to provide the ground truth of the target leeway. From the experiments 
[88], the results on the simulated data showed that the SVR-based ocean model has provided a good prediction 
compared to the Princeton ocean model. Moreover, the experimental results on the real data collected by the 
Royal Thai Navy also has shown that this model can be used as an auxiliary tool in the search and rescue 
operation. 

A performance analysis has been reported between Multivariate Adaptive Regression Splines (MARS), 
neural networks and support vector machines. The MARS procedure has built flexible regression models by 
fitting separate splines in to distinct intervals of the predictor variables [89]. 

The ultrasonic motor (USM) has excellent performance and many useful features which electromagnetic 
type motors do not have. A characteristic of the USM that is affected by friction is strong nonlinearity, which 
makes it difficult to control. A position control method has been proposed for the USM using SVR, which is a 
regression method for SVM [80]. It has been a newly proposed method of machine learning that does not have 
the disadvantages of a Neural Network such as a large number of learning times, local minima, overfitting and so 
on. They have used an SVR controller combined with a PI controller. The SVR controller performs nonlinear 
input-output mapping of the USM. The learning of the SVR controller has used training data obtained from 
experiments. The effectiveness of this control method has been confirmed by experiments [90]. 

The identification of discriminative genes for categorical phenotypes in microarray gene expression data 
analysis has been extensively studied, especially for disease diagnosis. In recent biological experiments, 
continuous phenotypes have also been dealt with. For example, the extent of programmed cell death (apoptosis) 
can be measured by the level of caspase 3 enzyme. Thus, an effective gene selection method for continuous 
phenotypes is desirable. Two new support vector formulations have been proposed for ordinal regression, which 
optimize multiple thresholds to define parallel discriminant hyperplanes for the ordinal scales. Both approaches 
have guaranteed that the thresholds are properly ordered at the optimal solution [91].  
 

7. Conclusion 
 

It has been experimentally determined the values of ε  that lead to the lowest generalization error [92]. A 
good agreement with the values that has previously been predicted by a theoretical argument based on the 
asymptotic efficiency of a simplified model of SV regression has been found for various noise models and SV 
parameter settings. The existence of differential gloss would impair perceived image quality. As a result, it is 
desirable to measure the amount of differential gloss existing on a printed image. There are two approaches to 
quantify the differential gloss: direct instrument measurement and indirect estimation based on a priori model. A 
support vector regression technique based on 1-norm penalty function has been adopted to identify 
(density/gloss) patches that are important under various printing processes and paper types [93]. As a result, 
these patches can be printed and measured such that a mapping function f can be established, which, in turn, is 
used to quantify the differential gloss in a printed image. 
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The algorithm of SVR has been utilized to perform the compression of gray images [94]. Blocks of image 
have been represented by the values of the Lagrange multipliers of support vectors using the linear function, the 
polynomial function and the Gaussian radial basis function as the kernel functions. If the parameters of the 
learning machine are carefully adjusted, most of the multipliers will be zero. Since only very few of the 
parameters have been saved, the purpose of compression could be achieved.  

Active Set Support Vector Regression (ASVR) algorithm consists of partitioning the dual variables ά and α  
into non-basic and basic variables. The non-basic variables are those which are set to zero. The values of the 
basic variables are determined by finding the gradient of the objective function with respect to these variables, 
setting this gradient equal to zero and solving the resulting linear equations for the basic variables. If the basic 
variable takes on a negative value after solving the linear equations, it is set to zero and becomes non-basic. This 
is the essence of the algorithm. A new active set strategy has been presented to solve a straightforward 
formulation of the standard support vector regression problem [95]. They have demonstrated that active set 
algorithm can be used effectively for the support vector regression problem. ASVR is fast, finite, simple and 
capable of performing support vector regression on datasets with millions of points. ASVR requires nothing 
more complex than a commonly available linear equation solver for solving small systems with few variables 
even for massive datasets.  

The disappointing performance of value and small cap strategies shows that style consistency may not 
provide the long-term benefits often assumed in the literature. It has been examined whether the short-term 
variation in the U.S. size and value premium is predictable and documented with style-timing strategies based on 
technical and macro-economic predictors using a recently developed artificial intelligence tool called support 
vector regressions [96].  SVR are known for their ability to tackle the standard problem of over-fitting, especially 
in multivariate settings. Their findings have indicated that both premiums to be predictable under fair levels of 
transaction costs and various forecasting horizons. 

A support vector regression filtering approach has been introduced for reduction of False Positive signals 
(FPR) in an automated mass detection system [97]. The proposed approach consists of two steps: the first one 
belongs to the family of neural filters but has been based on SVM, a class of learning algorithm which has been 
proved in recent years to be superior to the conventional Neural Network method for both classification and 
regression tasks, hence its application to neural-like image processing looks very appealing. The second step is a 
simple way to take into account information given by SVR filter, in order to decide whether the analysed signal 
is a False Positive (FP) or not. ν -support vector regression (ν -SVR) has been considered for regression 
estimation. The SVR algorithm has acted as a filter because it has been capable to associate to each input crop an 
output image, which has been subsequently used to determine if the crop has contained or not a mass. 

Minimizing bounds of leave-one-out errors is an important and efficient approach for support vector 
machine model selection. Past research has focused on their use for classification but not regression. Chang and 
Lin [98] have derived various leave-one-out bounds for support vector regression and discussed the difference 

from those for classification. Experiments have demonstrated that the proposed bounds are competitive with 
Bayesian SVR for parameter selection. They have also discussed the differentiability of leave-one-out bounds. 

Most speech processing systems perform a frame-by-frame analysis of the speech data. Support vector 
regression problem has been formulated to estimate the Target-to-Interferer Ratio (TIR) by observing the usual 
speech features [99]. A fusion method based on support vector regression has been proposed. The basic idea is to 
determine a mapping function which maps the points in the feature space constructed from the usable speech 
measures into the TIR space. The TIR is an unobservable metric and hence the regression model would be 
determined in controlled environment, when the TIR values can be measured. 

The connection between higher order total variation (TV) regularization and SVR with spline kernels in a 
one-dimensional discrete setting has been studied and proved that the contact problem arising in the tube 
formulation of the TV minimization problem is equivalent to the SVR problem [100]. 

Many more aspects such as more data dependent generalization bounds, efficient training algorithms, 
automatic kernel selection procedures, vector valued regression and many techniques that already have made 
their way into the standard neural networks toolkit, will have to be considered in the future [21].  
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