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ABSTRACT 

In this study, we evaluate the accuracy of classifiers for classification of ultrasonic liver tissues. 
Two different statistic classifiers ami three various artificial neural networks are included: Bayes 
classifier k-nearest neighbor classifier. Back-propagation neural networks, probabilistic neural 
network and modified probabilistic neural network. These Jive different classifiers were investigated 
to determine their ability to classify various categories of ultrasonic liver images. The investigation 
was performed on the basis of the same feature vector. For statistic classifiers the classification 
accuracy is at most 90.7% and with artificial neural networks the accuracy is at least 92%. The 
experimental results illustrated that artificial neural networks are an attractive alternative to 
conventional statistic techniques when dealing with classification task. Moreover, the feature vector 
based on fractal geometry and wavelet transform can provide good discriminant ability for 
ultrasonic liver images under study. 
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1. INTRODUCTION pathological anatomy precisely. It is also economical in 
medical expenditure. 

Currently, the clinical diagnosis is based on visual 
Ultrasound imaging is widely used technique in interpretation of images by specialized physicians. One 

the diagnosis of soft tissues, due to its ability to application of diagnostic ultrasound is liver imaging, 
visualize human tissue without deleterious effects. from which the most useful tissue differentiation 
Meanwhile, it enables the operator to quickly locate techniques can be obtained based on the investigation 
the desired image plane to exhibit normal or of B-scan images [1-10]. Via visual interpretation of B-

scan images, a clinician can diagnose the tissue by 
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Correspondence: Ka,-ShengHs,eh, M.D. characterization using ultrasound apparatus mainly 
Department of Pediatrics. Veterans General Hospital, depends on the ability of the clinician to observe 
Kaohsiung, Taiwan certain textural characteristics. However, a visual 
E-mail: kshsieh@isca.vghks.gov.tw 

-17 -

ABSTRACT 

In this study, we evaluate the accuracy of classifiers for classification of ultrasonic liver tissues. 
Two different statistic classifiers and three various artificial neural networks are included: Bayes 
classifier, k-nearest neighbor classifier. Back-propagation neural networks, probabilistic neural 
network and modified probabilistic neural network. These five different classifiers were investigated 
to determine their ability to classify various categories of ultrasonic liver images. The investigation 
was performed on the basis of the same feature vector. For statistic classifiers the classification 
accuracy is at most 90.7% and with artificial neural networks the accuracy is at least 92%. The 
experimental results illustrated that artificial neural networks are an attractive alternative to 
conventional statistic techniques when dealing with classification task. Moreover, the feature vector 
based on fractal geometry and wavelet transform can provide good discriminant ability for 
ultrasonic liver images under study. 

Biomed Eng Appl Basis Comm, 20O4(April): 16: 59-67. 
Keywords: Classification, artificial neural networks, fractal geometry, wavelet transform, 
multiresolution analysis, statistic classifiers. 

mailto:kshsieh@isca.vghks.gov.tw


60 Vol. 16 No. 2 April 2004 

criterion of diagnosing liver diseases principally 
depends on the clinical experience of physicians and it 
is extremely subjective. Hence, there have been many 
endeavors to develop objective tissue characterization 
criteria on the premise that there is much more 
observer-independent information obtainable from 
ultrasound than what is currently being used. These are 
rooted on the primary notion that the biological tissue 
are composed of characteristic structures whose 
ultrasonic properties often change due to diseases. The 
object of tissue characterization is the extraction of 
signatures that assume diverse values in the present of 
normal and diseased states of tissues, such that it is 
possible to discriminate between them. 

Since ultrasound B-scan images present various 
granular structures as texture, the analysis of 
ultrasound image is similar to the problem in texture 
analysis. The most important aspect for texture 
analysis is to define a set of meaningful features. A 
considerable number of texture analysis techniques 
were developed over the years. The most common are 
the spatial gray-level dependence matrices [12], the 
Fourier power spectrum [13], the gray-level difference 
statistics [14], Laws' texture energy measures [15], and 
filtering approaches [16-25]. Although they yield 
promising results to general texture analysis, they are 
unable to classify ultrasonic liver images adequately 
but fractal analysis [16-17], [22-25]. Lee et al. [22-25] 
have proposed a texture feature based upon wavelet 
transform and fractal geometry to detect liver diseases 
quickly and accurately. 

Fractal geometry as initially developed by 
Mandelbrot [26] has had a major impact in modeling 
and analysis in natural and physical sciences. Fractal 
provides a suitable mathematical framework to 
investigate uneven and complex shapes that exist in 
nature. Hence, if the pixel intensity of ultrasound B-
scan images is regarded as the height above a plane 
then the intensity surface can be viewed as a coarse 
surface. A fundamental feature of fractal geometry is 
that it enables the characterization of irregularity that 
may not be treated generally in Euclidean geometry. 
Therefore, among fractal features, fractal dimension is 
one of the most essential features. Texture features 
based on fractal dimensions have been applied 
successfully to texture classification [16-17], [22-25], 
[27-28]. Generally, single fractal dimension is not 
sufficient to discriminate among most real-world 
textures since its dynamic range for an image is limited 
between two and three only. Wu et al. [16-17] and Lee 
et al. [22-25] have proposed a fractal feature vector 
based on multiple resolutions imagery or multi-
threshold concepts. Alternately, it has been established 
previously that the fractal feature vector, based on 
standard pyramid wavelet transform and fractal 
geometry, is a proper feature-extraction method for 

texture classification [22-25]. 
Another important issue in texture analysis is the 

choice of an appropriate classifier. There are basically 
two types of classifiers; statistic classifiers which 
include: linear discriminant, maximum likelihood and 
k-nearest neighbor classifiers, and the artificial neural-
network classifiers which include: multilayer 
backpropagation neural network (BPNN), probability 
neural network (PNN) and Learning Vector 
Quantization (LVQ), etc. Owing to the fact that the 
characteristics of ultrasonic liver images are highly 
complex and difficult to classify, artificial neural 
network classifiers through their adaptive learning 
nature offer attractive and computationally very 
efficient alternatives. 

In this study, the artificial neural-network-based 
classification schemes based on fractal geometry and 
wavelet transform for ultrasonic liver images are 
discussed. This paper is organized as follows: Feature 
extraction scheme is presented in the following section. 
Section III clarifies the pattern classification 
techniques. The experimental results and discussions 
are given in Section IV respectively. Finally, 
conclusions follow. 

2. FEATURE EXTRACTION 
SCHEME 

Feature extraction is a crucial step for any pattern 
recognition task especially for ultrasonic liver tissues 
classification since liver images are highly complex 
and it is difficult to define a reliable and robust feature 
vector. Generally, ultrasound B-scan images present 
various granular structures as texture; the analysis of 
ultrasound image is analogous to the problem in 
texture analysis. However, textural features are those 
characteristics such as smoothness, fineness and 
coarseness or certain pattern associated with an image 
[12]. They reflect the local spatial distribution property 
in a certain region. Lee et al. [22-25] have proposed a 
fractal feature vector based on multiple resolutions 
imagery. The scheme can extract features which 
contain contributions from both the spectral and 
textural aspects. In the following, the feature extraction 
scheme is briefly reviewed. 

2.1 Estimation of Fractal Dimension 
Mandelbrot [26] defines fractal as a bounded set 

for which the Hausdorff Besicovitch dimension strictly 
exceeds the topological dimension, where Hausdorff 
Besicovitch dimension or fractal dimension is a real 
number used to describe the shape and appearance of 
objects that have the property of self-similarity. The 
property of self-similarity or scaling, as exemplified by 
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coastline, Von Koch curve, and the Mandelbrot set, is resolutions where each resolution represents various 
one of the fundamental concepts of fractal geometry. physical structures in the signal. This coincides with 
The concept of self-similarity can be best employed to processing visual information in the early stages of the 
estimate the fractal dimension. human visual system. Campbell et al. [34] first 

Consider a bounded set A in Euclidean n-space. proposed the theory to support that the visual system 
The set A is said to be self-similar when A is the union decomposes the retinal image into a number of filtered 
of Nr non-overlapping copies of itself, each of which images. Each filtered image contains intensity 
has been scaled down by a ratio r in all coordinates. variations over a narrow range of frequency and 
The fractal dimension D^ofA can be obtained from the orientation. The psychophysical experiments that 
relation [26], suggested such decomposition used various grating 

patterns as stimuli and were based on adaptation 
n _ /.„, !°g(Nf) (1) techniques. Subsequent psychophysiological 

f r->° log(\ Ir) experiments provided additional evidence upholding 
the theory [35]. Therefore, the theory gives an impetus 

While the definition of fractal dimension by self- to describe a signal by decomposing it into subbands, 
similarity is straightforward, it can scarcely be and each subband can then be treated alone, based on 
calculated from the image data. However, a related its feature. Mallat [36] has illustrated that this 
measure of fractal dimension can be computed from a multiresolution representation of an image can be 
fractal set, A, in ft" . Several approaches exist to interpreted as its decomposition by a wavelet basis set. 
calculate fractal dimension in an image. The most Multiresolution analysis in the 2-band case is 
popular measure is box counting [29-33]. Among the referenced in [36-45]: 
varieties of box-counting approaches, the Differential Using M-band wavelets [38], [40], [42-45], the 
Box Counting (DBC) method [29] that has a large general multiresolution analysis provides a more 
dynamic range and computational efficiency is adopted flexible tiling of the time-scale plane than that resulting 
herein. Hence, is calculated as follows [24-25], [29- from the two-band multiresolution analysis, which is 
30]: important for the analysis of middle-frequency or high-

If an image of MxM pixels has been scaled down frequency signals as it reveals useful features from the 
to LxL pixels where K I S A / / 2 and L is an integer. subbands. 
Thus the scale ratio r is L/M. The image can be viewed Given a one-dimensional signal, the full discrete 
as a three-dimensional (3D) space with (x, y) indicates wavelet expansion can be represented as 
the two-dimensional (2D) position and the third 
coordinate (z) denoting gray-level. The (x, y) space is f, . _ ^ / u i / J ^ m ^ . n , 
partitioned into grids of size I XL. On each grid, there / W - 2^CJ^K>M 9\M l K) + 

is a column of boxes of size LXL XL'. If the total *=~~ (4) 
number of gray-levels is G, then L '=[L XG/MJ. Let the V *V V // (k\M>12 (M>t-k\ 
minimum and the maximum gray-level of the image in 2-i 2^ 2-< at,j\k>M Vv \M K), 
the (/", y)th grid both fall in the box number k and /, as j=J /=1 *~~°° 
illustrated in Fig. 1. Then where the expansion coefficients are determined 

by 
"r«J)=l-k+l <2> Cj (k) = (m M J.-2HM Jt_k)} 

is the contribution of Nr in the (/, j)\h grid. Taking (5) 
contributions from all grids, the following is produced: = [ f'(t)MJ'7<p(M 't -k)dt 

Nr=^nr{iJ) (3) and 
<j 

where Nr is counted for differing values of r (i.e. "/ .j (*) = \J (0> ^ y/f {M t - k)j 
differing values of L). Then using(l), the fractal (6) 
dimension Z^can be estimated from the least-squares _ f f'<t)M'l2w (MJt-k)dt 
linear fitting of log(Nf) versus log(l/r). J' ' 

2.2 General Multiresolution Analysis Based on w h e r e * (0 i s c a l l e d s c a l i n g function that satisfies 
M-band Wavelet Transforms t h e dilation equation:, 

By multiresolution analysis, a signal can be / 7 7 v u (L\^I\J V\ n\ 
decomposed into numerous details at various <p(t) = ^M 2,«o(«)<?>(A"-*) > (') 

k 
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with h0(k) denoting scaling filter and satisfying 
certain constraints [40], [42], [44]. 0,(t), /=1,2,... ,M-
1, are called wavelet functions that satisfy the wavelet 
equations: 

with h, (k) denoting the /-th wavelet filter and 
satisfying certain constraints [38], [40-41]. {<f>(t), *l>((t) 
, /=1,2,..., M-l} are mutually orthogonal functions. 

The filters h0(k) and h,(k), /=1,2,... ,M-1, play a 
essential role in a given wavelet transform. To achieve 
M-band discrete wavelet transform, the explicit forms 
of <f> (t) and tp,(t) are not required but only depend on 
h0(k) and h,(k), which must meet several conditions 
[36-45]. Hence, an M-band wavelet basis can be 
completely specified by the choice of the scaling filter 
(i.e. h0(k)) and M-l wavelet filters (i.e. h/Ji), /=1,2,... 
,M-1). A typical M-channel filter bank based on 
Mallat's fast algorithm [38] is shown in Fig. 2. That is, 
the filter bank furnishes an easy way to relate the 
coefficients of M-band wavelet analysis at different 
levels of decomposition. 

The above wavelet model can be generalized to 
any dimension. There are diverse extensions of one-
dimensional wavelet transform to two dimensions. The 
easiest way to extend one-dimensional wavelet 
transform to two dimensions is the introduction of 
separable 2-D scaling and wavelet functions as the 
tensor products of their one-dimensional wavelet basis 
functions along the horizontal and vertical directions. 

2.3 The Multiresolution Fractal Feature Vector 
Based on M-band Wavelet Transform 

An important aspect of texture analysis is to 
develop a set of texture measures that can successfully 
discriminate textures. The feature extraction scheme by 
traditional multiresolution analysis based on standard 
wavelet transform decomposes subimages recursively 
in the low frequency channel. Since the most 
significant information of a texture often appears in the 
middle frequency channels rather than the low 
frequency ones. Further decomposition in only the 
lower frequency channels may not provide satisfactory 
discriminative information to texture analysis [18]. 

The M-band wavelet transform is an outstanding 
means to portray signals at various scales, and 
decomposes a signal by projecting it onto a family of 
functions that are generated from a wavelet basis 
through its dilations and translations. Thus, an image is 
transformed into M2 resolution cells. This filtering can 
obtain the desired regularizations inherently. 
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2) ^-Nearest Neighbor (fr-NN) Classifier [47-48]: 
In a &-NN classifier, each class is represented by a set 
of prototype vectors. The k closest neighbors of a 
pattern vector are found from among all the prototypes. 
Hence, the class label is decided by the majority rule; 
that is, assuming that the number of voting neighbors 
is t = V t (where kt is the number of observations 

from class « , in the set of k neighbors), the 
classification rule is to assign the test sample to the 

k 
class that has the largest proportion -± . 

k 

(10) 

1) Bayes Classifier [46-48]: The Bayes classifier 
is applied to investigate the feasibility of classifying 
texture image, since from the statistical viewpoint, it 
represents the optimum measure of performance. The 
Bayesian decision rule classifies an observation to the 
class that has the highest a posteriori probability 
among the classes. One of the ways to represent a 
pattern classifier is in terms of a set of discriminant 
functions g/X), i=\,-\K where K is the total number 
of classes. The classifier is to assign a feature vector X 
to class od,. if gi(X)>gj(X) for ally'*/. Let us assume 
that the distribution of feature vectors X within the ith 
class P{X\ <w,-) is a multivariate normal distribution 
with mean vector ut and covariance matrix C, and the 
a priori probabilities are equal for all classes. Under 
such an assumption, the discriminant functions can be 
defined as 

A. Statistical Classifiers 

In the following subsection, the classification 
techniques that adopted in this study are reviewed, 
which give us the foundation for performance 
comparisons. 

3. PATTERN CLASSIFICATION 
TECHNIQUE 

(8) 
where £y' denotes the fractal dimension of the i-

th subimage at scale level m. 

General multiresolution analysis based on wavelet 
transform provides more significant features [23], [25]. 
Hence, the fractal feature vector based on general 
multiresolution analysis has been defined as [23], [25] 

(9) 



BIOMEDICAL ENGINEERING-
APPLICATIONS, BASIS & COMMUNICATIONS 63 

B. Neural Network Classifiers ^-^-^~~^-~-_ 
Neural network classifiers have shown promise in f > ~ ^ J ^ ^ l TOT BOX / 

pattern classification and are considered as a potential ^ - ^ T ^ ^ ^ ^ ' ^ ^ ^ - - ' " " 
alternative approach to statistical pattern classification. ~!~^Z^^^^'^^^^Z^---

1) Back-propagation Neural Network (BPNN) ~ ^ 7 ^ ^ ~ - ^ ,--—W^^j -
[49]: Back-propagation is currently the most popular image intensity " - - ^ T ^ " ^ - — " - M I L ^ - ' 
method for performing the supervised learning task. In — - _ _ —^~^~ ^ ^ ■ j ^ r 
supervised learning, we try to adapt an artificial neural ~ ^ ^ § ^ ^ ^ ^ ^ H B ^ " 
network so that its output comes close to certain target ^ - ^ - ^ T ^ ^ ^ P ^ ^ O - - - " 
output for a training set. The goal is to adapt the Bottom Box* ^~*^r^w~^~~^~-^~~' 
parameters of the network so that it performs well for - " ""^---CT^—~~~~^~^^~-~~' 
patterns from outside the training set. In this study, the <^^^^^^^X^sr^> "* 
BPNN uses 2-layer structure, one 15-neutron hidden "^^~~~^J^^ff^^-^^ 
layer with hyperbolic tangent transfer function and one 
3-neutron output layer with linear transfer function, F'8- '• Determination of nr. 
and utilize the Levenberg-Marquardt algorithm as F j ,# D e t e r m i n a t i o n o f „ r . 
learning rule to speedup the convergence. 

2) Probabilistic Neural Network (PNN) [50-51]: 
The network structure of PNN is similar to back- rr—I ,|""Rl V 1 

propagation; the primary difference is that the transfer I 1—°—l 1—I * 
function is replaced by exponential function and all 
training samples are stored as weight vectors. (__J~jj 1 »|~B] V"' 

Let Xb, k= 1,• • •, L,: be sample patterns belonging to J "—'-i "—' >Th~\ >[W\ ̂ 2 

a class &>,, the estimator of this class is '—°—i "—I 

I ► h, — ► n ► - — » h, — > H ► 

] j ,A l_U I 1 I—LJ TJU 
Li i2jt) a *=• (11) i—^n—fB]-^2 

( X — X )T(X — X ) 
exp[-^ ^ — —] Fig- 2. Filter bank structure for a three-band 

2<? wavelet system in one dimension. 
where 
k = pattern number, computationally extremely light and the convergence is 
Lj= total number of training patterns belonging to reasonably fast. The learning procedure can be 

class CJ„ described as follows: 
Xki= kth training pattern from class cof, (i) Define the total number of reference patterns. 
6 = smoothing parameter. (ii) Assign to each class a number of nodes for 
The smoothing parameter c is used to describe hidden layer in proportion to the a priori 

the sharpness of each sample pattern distribution; the probability of occurrence of that class. 
smoothing parameter a is 0.1 in this study. The (iii)Run the LVQ training procedure by using all 
network is trained by setting the weight vectors in one the available training patterns; the result of 
of the pattern units equal to each pattern Xki in the this step defines the weight vector relating to 
training set, which is the key feature, and then the connection from the input to the hidden 
connecting the output of the pattern units to the layer. 
appropriate summation unit. (iv) Connect the output of each unit of the hidden 

3) Modified Probabilistic Neural Network layer to the appropriate summation unit of the 
(MPNN) [52-53]: A network with the same function output layer. 
structure of the PNN but with a number of nodes per After the training phase has ended, the proposed 
class in the hidden layer much lower than the number network performs the same operation of the PNN but 
of training patterns can give classification results with a reduced number of elements in the hidden layer. 
approximating those of the PNN. The design of neural The smoothing parameter ff is also 0.1 in this case. 
network becomes one of defining the number of 
reference vectors and their location in the pattern 
space. The learning vector quantization (LVQ) 
technique is adopted in MPNN, for the algorithm is 
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4. EXPERIMENTAL RESULTS AND
DISCUSSIONS

A. Image Acquisition
In this study, ultrasonic liver images were

captured from a phased-array system (Aloka SSD-265,
Tokyo, Japan) with a 3.5 MHz transducer and were
stored as positive ones . These were then scanned by
AGFA's DUOSCAN scanner with 32-pixel/cm and 8-
bit/pixel resolution. All images were standardized to
the same mean intensity (i.e. 128) and were verified by
a specialized physician. All patients were biopsied for
pathological diagnosis ; therefore there is a basis of
truth in this study. Three sets of ultrasonic liver
images , each of 50 samples , were taken: cirrhosis,
hepatoma, and normal. Each sample of 64x64 pixels
was chosen to include solely liver parenchyma without
major blood vessels, acoustic shadowing, or any type
of distortion. Therefore, we uniformly divide whole
samples into training set and test set.

The training set is used to train the classifier,
while the test set is used to obtain the success rate of
the classifier.

B. Feature Extraction and Selection
In general, an M-band wavelet transform can be

constructed by two levels of filter bank [38]. The M
value can be different at varying levels. The general
multiresolution analysis in Chen et al. [22-25] is
implemented by the combinative structure of two-
channel and three-channel filter bank as shown in Fig.
3. In fact, from signal processing viewpoint, this
combinative structure is equal to six-channel filter
bank [38]. At the first level, the LL-band is adopted
and the other subbands are discarded. However, the
other bands may provide additional useful information
[23] , [25]. Since the fractal dimension of each chosen
subimage should provide valuable information about
individual roughness, if the fractal dimension is less
than threshold value a, it means that this subimage
has very smooth surface. Based on this observation,
the fractal dimension of this subimage is too low to be
used as a feature. Therefore, the number of features
can be reduced. Hence, the order of features is as
follows [25]:

3,0 ,D 2,1 2,2 1,1 12 1,3 1,4 1,5 1,6MF=^fDf Df,Df,Di J fDfDf,D (12)

where D f,0 is the fractal dimension of the original
image, D2.1 is the fractal dimension of the oversampled
LL-band subimage (i.e. no critical decimation and only
low-pass filtering along the abscissa and ordinate), D2,2
is the fractal dimension of the oversampled LH-band
subimage (i.e. no critical decimation, simply low-pass

ho
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Fig. 3. The general multiresolution analysis: the
combinative structure of two-channel and three-
channel filter bank.

filtering along the abscissa and high-pass filtering
along the ordinate). The final six components in the
feature vector are calculated from the oversampled
subimage. Herein, two levels with Daubechies 20-tap
filter bank for the first level and three-channel
orthogonal filter bank [39] for the second level were
employed.

C. Comparison Study of Various Classifiers
The performances of different kinds of classifiers

were examined for their classification accuracy. Table I
shows the correct classification rate of test samples for
all classifiers considered. The experimental results
exhibit that the classifiers using multiresolution fractal
feature vector based on wavelet transform is reliable.
However, the correct classification rate of k-NN
classifier is lower among the five classifiers. Since the
performance of the standard k-NN classifier depends
on the quality and size of the training set and the
performance of the classifier decreases if the available
computing resources limit the number of training
feature vectors one can use.

The performances of the artificial neural networks
considered are better than that of statistic classifiers in
this study. The results are expected. In artificial neural
networks, the approach has been bottom-up: starting
from a very simple linear neuron that computes a
weighted sum of its inputs, adding a saturating smooth
nonlinearity, and constructing layers of similar parallel
units, it turned out that "intelligent" behavior emerged
by simple learning rules. Furthermore, the PNN
achieved the highest classification rate for
classification of ultrasound liver images. However, the
key disadvantage of PNN is that if large training sets

-22-
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Table 1. Liver images classification results foi 
various classifiers 

Correct Classification Rale 

Liver Disease I I I ] 

Baycs *-NN UPNN PNN MPNN 

Normal 92% 92% 96% 92% 92% 

Cirrhosis 88% 84% 100% 100% !(»)% 

Hepatoma 92% 88% 88% 96% 84% 

Average 90.7% 88% 94.7% 96% 92% 

Table 2. Liver images classification results for 
various classifiers. The training set and test set are 
reversed with the above test. 

Correct Classification Rate 

Liver Disease I I I I 
Baycs *-NN UPNN PNN MPNN 

Normal 92% 96% 96% 96% 88% 

Cirrhosis 96% 96% 92°/. 96% 100% 

Hepatoma 92% 92% 100% 96% 100% 

Average 9 1 5 % 94.7% 96% 96% 96% 

are available, the computational cost associated with 
the testing phase of the PNN is much higher than that 
of the training phase and can become incompatible 
with real time classification tasks. Alternatively, the 
modified probabilistic neural network (MPNN) 
reduced the computational cost but a gradual 
degradation of classification performance can be 
expected as the number of reference vectors in the 
pattern space is reduced. On the whole, comparing the 
results obtained using the artificial neural networks 
with those obtained using conventional discriminant 
analysis show that the artificial neural networks 
outperform the statistical classifiers. 

From view of pathological anatomy, the trabecular 
pattern is common and characteristic form of 
hepatoma. In this form, the tumor cells are arranged in 
anastomosing plates that are separated by a sinusoidal 
network. The structure thus resembles that of a normal 
liver; however the trabeculate is typically wider and 
less regular [54]. Hence, the hepatoma liver image is 
rougher than that of a normal liver. The major 
characteristic of cirrhosis is the hepatic fibrosis that is 
associated with beginning nodules or fully established 
nodules [55]. The nodules cause a block structure in 
the image such that cirrhosis image is rougher than a 
normal liver image but less rough than hepatoma 
image. These two liver diseases have rough images of 
varying degrees. Since ultrasound B-scan liver images 
demonstrate various granular structures as texture. 
Generally, texture can be evaluated as being fine, 
coarse, or smooth. Herein, a fractal feature vector 
based on ^/-channel wavelet transform was adopted to 
determine the most useful information for the 

- 2 3 -
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In this study, artificial neural networks and 
statistic classifiers were adopted to classify ultrasonic 
liver images. Five classifiers are implemented with 
same type of multiresolution fractal feature vector. 
From the experimental results, the performance of all 
classifiers considered is trustworthy and robust. 
Meanwhile, the multiresolution fractal feature vector 
provides good discrimination ability to classify the 
three types of ultrasonic liver images under study. 
However, in the design of an artificial neural network, 
two features have to be optimized: convergence and 
generalization. Future works should include searching 
for a new powerful and robust feature extraction 
scheme and a self-adaptation for an artificial neural 
network. 

5. CONCLUSION 

characterization of ultrasonic liver images. In the 
previous works [22-25], the multiresolution fractal 
feature vector has the best performance among the 
feature vectors considered. That means that the fractal 
dimension can provide more useful information for 
ultrasonic liver image than the other measurements. 

The experimental results demonstrated that the 
fractal model is a good tool to measure the degree of 
roughness of liver image surfaces. Simultaneously, 
multiresolution analysis based on wavelet transform 
indeed provides spectral information of ultrasonic 
images. To validate the robust of the multiresolution 
fractal feature vector, we exchange the training set with 
test set. The result is given in Table II. From the 
experimental results, the feature vector based on these 
two analyses can provide a very useful discrimination 
for ultrasonic liver images. 
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