
Title of book. Name of editors (Eds.)
© 1997 IFIP. Published by Chapman & Hall

DIMMA – A Multi-Media ORB

D. I. Donaldson, M. C. Faupel, R. J. Hayton, A. J. Herbert,
N. J. Howarth, A. Kramer, I. A. MacMillan, D. J. Otway,
S. W. Waterhouse
APM Limited
Poseidon House, Castle Park,
Cambridge, UK. CB3 0RD
Tel: +44 (0) 1223 515010 Fax: +44 (0) 1223 359779
Email: apm@ansa.co.uk

Abstract
DIMMA – A Distributed Interactive Multi-Media Architecture – is an open
distributed processing (ODP) platform that facilitates the production of distributed
applications. It has particular support for those applications that have soft real-time
constraints, and those that make use of multi-media.
 DIMMA consists of a portable layer of distribution engineering (middleware),
together with tools to interface applications to this engineering. The most popular
commercial ODP platform is the Common Object Request Broker Architecture
(CORBA) whose definition is managed by the Object Management Group (OMG).
In recognition of this popularity, DIMMA supports a CORBA compliant API so
that CORBA applications may be easily ported to or from the DIMMA platform.
 This paper describes the example implementation of DIMMA. It gives an
overview of the motivations behind the design of DIMMA and then highlights
some key features of the DIMMA implementation. It concludes with a brief
analysis of DIMMA’s performance

Keywords
ORB, Multi-media, CORBA, QoS, flow

Title of book. Name of editors (Eds.)
© 1997 IFIP. Published by Chapman & Hall

1 INTRODUCTION

1.1 The goal of the DIMMA project

Object Request Brokers (ORBs) have been developed to provide support for
distributed object-oriented applications, hiding much of the complex engineering
needed to implement distribution. These can now be regarded as stable technology;
the most wide-spread ORB architecture, OMG’s CORBA (OMG, 1998), was first
introduced in 1987, and many commercial and public-domain implementations of
their CORBA ORB specification are now available.

However, combining this provision of distributed object-orientation with
support for multi-media is not straight-forward, as it imposes a number of
requirements on the ORB:
• Support for specifying flow interfaces

Most ORBs only support RPC type interfaces, i.e., call an object and
(possibly) receive a return value. Multi-media applications often require
handling of continuous flows of data being transmitted and received.

• Control over resources used
Many types of multi-media service are particularly sensitive to quality of
service. For instance, a video stream must deliver its frames at a regular and
timely rate in order to avoid the picture being jerky or corrupted. This requires
the system to guarantee that the resources are available to deliver this quality
of service, which in turn requires the system to provide the programmer with
control over those resources, possibly including those provided by an
underlying real-time OS.

• Support for new protocols to be easily added
CORBA ORBs can work correctly while only supporting one RPC protocol
(IIOP). Due to the diverse nature of multi-media though, there are a much
larger number of protocols that a multi-media ORB may have to support, and
more are being developed all the time. This requires a multi-media ORB to
provide an easy method for adding new protocols.

• Minimum necessary footprint
Multi-media services make heavy use of system resources (buffers, CPU time,
network bandwidth). For this reason, the ORB itself should have the minimum
necessary use of such resources so as to avoid impacting the quality of the
services that it is supporting. Furthermore it should be scaleable to allow its
use in a range of environments from small devices to large switches.

DIMMA was designed in the context of verifying the ISO Reference Model for
Open Distributed Processing computational model (ISO, 1995). The ability to
support CORBA APIs and the IIOP protocol were important subgoals.

The goal of the DIMMA project was to produce an architecture for a multi-
media ORB that met these requirements, and a practical implementation of that

architecture, making as few assumptions as possible about the host OS. It aimed to
create a small, efficient, modular ORB, with support for flows and resource
control, and the flexibility to add new protocols and new styles of application
interface.

1.2 The application of DIMMA

DIMMA is intended primarily as an experimental vehicle. The focus is on using
DIMMA to identify the needs of multi-media and real-time distributed applications
in terms of proposed core ORB facilities and to prototype the resultant ideas.

Although DIMMA will run “out of the box”, it is of greatest value to those who
wish to customise the core ORB. The internal structure is very flexible and the
components are built according to a set of well defined frameworks. For example,
new protocols may be easily added using the DIMMA protocol framework which
facilitates the reuse of layered modules.

The explicit binding model, together with the flexible resource reservation
mechanisms allow a considerable range of applications to be built: applications that
are not possible on most standard commercial ORBs. This should be of interest to
those involved in telecommunications applications such as video on demand.

1.3 Paper structure

The remainder of this paper highlights particular features of the design of DIMMA
and how it has been extended to support the achievement of the goals outlined
above. It concludes with a summary of the performance of the final version of
DIMMA, demonstrating the results possible when explicit control of quality of
service is given to the application programmer.

2 DIMMA STRUCTURE

2.1 Overview

DIMMA is constructed as a set of small components that may be combined in
many different ways to suit the diverse needs of applications. This also
acknowledges the fact that the real world needs ORBs that are high performance,
down-sizeable and scaleable. In this sense, DIMMA may be regarded as an ORB
core.

The components of DIMMA are considered to be subdivided into groups and
arranged in layers; this is also reflected in the source structure. This layering is
depicted in Figure 1.

DIMMA provides two interfaces for the application programmer: a proprietary
one based on a mapping of the ODP-RM computational language into C++ – the

ODP Computational API – and a CORBA extended subset called “Jet”. This is
implemented as a personality built on top of the ODP facilities and hence shares a
number of features with the former. Further personalities could be added if
required.

Both APIs are mapped onto a common ODP Engineering API by the ODP
Library in order to facilitate hosting on different ORB cores (or Nuclei in ODP
terminology). The DIMMA nucleus supports the ODP Engineering API directly,
whilst adapters can be provided for other ORBs. To date only one experimental
adapter has been produced, which was to allow applications written using Jet or
ODP to communicate over APM’s ANSAware (Li, 1995).

The DIMMA nucleus provides the distribution engineering apparatus such as
binders and communications protocols. Currently two protocols are provided: the
CORBA Internet Interoperability Protocol 1.0 (IIOP) for interoperability with other
vendors’ ORBs and a proprietary protocol (ANSA Flow), optimised for
transporting multi-media flows. New protocols can be added within a well-defined
framework; furthermore existing protocol components (e.g., the TCP part of the
IIOP stack) can be reused by these new protocols as required.

2.2 Target platform

To exploit the full range of QoS controls offered by DIMMA, the DIMMA nucleus
must be hosted on an operating system able to provide the necessary soft real-time
facilities. DIMMA makes use of Posix interfaces (IEEE, 1992) to access OS
resources; in particular the Posix threads interface is relied upon to support control
of multi-tasking. DIMMA has been tested and released on Solaris 2.5.

Other
Personalities

CORBA
Personality

ODP Library

Nucleus

IIOP ANSA
Flow

TCP UDP

Other
Protocols

CORBA
Program

ODP
Program

Solaris (Posix-compilant OS)

Protocol API

ODP Engineering API

ODP Computational API

Figure 1 Structure of DIMMA

3 COMMUNICATIONS FRAMEWORK

The purpose of the communications framework is to simplify the production of
new protocols by encouraging and facilitating reuse, through providing general
components and standard interfaces, and through providing a uniform approach to
resourcing for quality of service.

The communications framework comprises a set of generic interfaces and
components, and informal guidelines pertaining to their use.

Due to the requirement to support many diverse protocols, e.g., connection
oriented, connectionless, RPC, flow, etc., the protocol framework cannot be too
prescriptive and aims instead to provide a minimal number of generally useful
“building blocks”. Likewise, many of the compositional constructs are too informal
to express in a strongly typed language like C++ and instead are presented as a
“cook book” of guidelines.

The framework considers a protocol to comprise a set of modules, each
supporting a layer of protocol. The definition of what constitutes a protocol layer is
not a formal one: it may be anything that is reasonably self-contained in terms of
the framework interfaces. That said, a protocol layer typically has at least one of
the following characteristics:
• performs message multiplexing
• dispatches messages to stubs
• interfaces with OS network facilities.

To this end, a module (providing a layer of protocol) will normally be
associated with specific message header information, i.e., it will typically add a
header on message transmission and remove it on receipt. This header is used to
hold addressing information for message multiplexing.

Modules create channels in response to requests from their associated protocol
and these act as conduits for message transmission and reception. Like the modules
of a protocol, channels are also layered, forming a channel “stack”. In other words,
modules are the static representation of available protocol layers, while channels
are the objects created dynamically when a binding is set up using that protocol,
which manage the resources associated with the binding.

Client call and server reply messages are presented to the top channel and go
down the channel stack until they reach the lowest level channel (called an anchor
channel) which passes them to the operating system network interface.

The processing of incoming messages is not necessarily symmetric with that of
transmission. Messages arriving from the network are processed by low level
channels but cannot necessarily be passed directly to the next higher level channel,
e.g., when there is channel multiplexing. In this case, the message is passed by the
channel to the next higher level module, which interprets the associated header
information to identify the next higher level channel to which the message is then
passed. In this way, the message makes it way up through the protocol, alternating

between channel and module, until it reaches the highest channel where it is
dispatched to the stub or server object.

The framework allows for optional message concurrency on a channel through
the concept of a session layer. This may be regarded as a layer of multiplexing
between the highest level channel and the stub. Session objects are assigned for
each concurrent flow or invocation on a stub. They act as state machines,
preserving any information required by each caller and linking the calling threads
to the messages that are passing through the channel to carry out their operations.

4 FLOW SUPPORT

There is a class of applications for which the operational RPC mechanism is
inappropriate. These applications deal naturally in continuous flows of information
rather than discrete request/reply exchanges. Examples include the flow of audio or
video information in a multimedia application, or the continuous flow of periodic
sensor readings in a process control application.

A flow has a distinct type and an associated direction with respect to the
binding, e.g., video information might flow out of a producer binding associated
with a camera and into a consumer binding associated with a TV monitor on which
the output of the camera is to be displayed. It follows that flow interface types exist
in pairs that are related by the reversal of the flow.

The type of flow is characterised by the set of possible frames that it can
support. For example, a video flow might be able to carry both MPEG and JPEG
frames.

DIMMA extends the functionality of a basic ORB in three ways in order to
support flows:

1. The ODP library provides a means to represent and manipulate flows
2. The CORBA IDL compiler understands a new type of flow interface, mapping

them on to the appropriate ODP library facilities
3. An example flow protocol is provided to demonstrate the use of flows.

Additionally, the use of flow interfaces generally requires the ability to specify
QoS parameters; the support for this is dealt with in more detail in subsequent
sections.

4.1 Flow Interfaces in IDL

The IDL extension to support flows proved very simple from the user’s point of
view: all that is changed is that the keyword “flow” is used instead of “interface” in
CORBA IDL. It actually required more changes behind the scenes though to

support this, such as checks in the IDL compiler to ensure that the operations
within the flow were legal (e.g., no inout parameters).

A flow interface is modelled in Jet IDL in terms of one-way operations and will
result in the generation of both producer and consumer components, in an
analogous way to client and server components generated from an operational
interface. The main difference is that the operations are one-way and data is
unidirectional with respect to the binding. The operations within a flow interface
correspond to frame types and these are further described by the parameters of the
operation.

For example, a simple video flow consisting of a single frame type (Frame1)
consisting of a frame number and the video image data (image), could be described
in IDL as follows:

flow Video
{
 void Frame1(in long frame_no, in string image);
};

Note that both parameters are described as input (in) and that the operation
returns no result (void type).

The ODP standard defines an additional concept called stream which is
described as a set of unidirectional flows, e.g., a TV stream might be considered a
logical entity consisting of an audio and video flow. DIMMA does not implement
the stream concept directly, although in principal, a stream binding could be
constructed by an application from a set of flow bindings.

Although flows appear to be similar to operational interfaces in IDL, they are
distinct entities and a flow cannot inherit from an interface, nor can an interface
inherit from a flow.

The protocol that was added to demonstrate flows within DIMMA is called
ANSA Flow. It is a lightweight but fully functional multicast protocol based on
RTP (Schultzrinne, 1996) over UDP. Note though that it is not a full
implementation of all possible RTP packet types; just the parts of it needed to
support ANSA Flow’s proprietary packets.

5 RESOURCE MANAGEMENT

5.1 Overview

DIMMA provides for application control and management of resources through the
use of QoS parameters. All resources needed by an application affect QoS, but
many are managed by the OS and/or the network, and the application has only
limited influence over them. This constrains what can be achieved in terms of
guaranteeing QoS.

In practice, with current OSs, an ORB may control sharing within a capsule
(process), e.g., the number of tasks, or how channels are multiplexed. It may exert
some influence over inter-capsule behaviour, e.g., via task priorities. To do any
better than that requires a specialist resource-aware OS and a resource-aware
network protocol.

DIMMA QoS parameters are specified in terms of attributes such as buffers,
threads, communication endpoints and so on. Mapping between application
specific QoS parameters (e.g., jitter, frame rate, etc.) and these “engineering”
parameters remains the responsibility of the application.
The DIMMA QoS infrastructure allows the application explicit control over the
resource allocation policy to be used within a given channel. For example, buffer
allocation may be defined to be “on demand”, or a set of buffers may be
preallocated for the channel’s exclusive use.

Channels may share a read/demultiplex thread. This is shown on the left-hand
side of Figure 2. The channel itself may be shared between multiple application-
level threads as shown on the right-hand side. One extreme (not shown) is one
thread per capsule, i.e., the single threaded case.

Figure 3 gives an example of two possible resourcing policies for a complete
end-to-end channel. The left-hand diagram gives a typical policy for “default”
quality of service. The calling threads share a common channel, and at the server
side, there is only a single listener thread which, on receipt of an incoming call,
causes a new thread to be created to handle the call and then passes control to that
thread (which is destroyed on call completion). All resources are allocated on
demand through factories and deleted when finished with.

The right-hand diagram shows a policy for high-performance quality of service.
The client has a dedicated channel so there is no need to maintain session

Shared read/demux Thread Invocation concurrency

Figure 2 Possible thread sharing policies

information, and there is no context switch on calling; the thread waits for the
response. At the server side, when a call is received, the receiving thread calls the
server object and returns the result, so again there is no context switch. While the
call is being executed, a new thread is drawn from a pool ready for the next
receive. When the call has been completed, that thread is returned to the pool. All
resources used by the configuration are drawn from pre-allocated pools and
returned when finished with.

5.2 Generic resource framework

The aim of the components of the DIMMA resource framework is to provide a
generic way of controlling all resources while allowing different specific resource
control policies to be implemented. To achieve this, all resources are allocated
through a generic Allocator interface behind which different policies can be
implemented, e.g., “create a new resource each time it is needed” (factories), or
“take a pre-allocated resource from a pool” (pools). The resources themselves
implement a generic Resource interface to allow them to be freed once finished
with.

Buffers, sessions and threads can all be controlled via this framework, and
different policies can be put together for different parts of a protocol to form a wide
range of overall resourcing policies. Buffer and session allocation is straight-
forward; threading requires a little more explanation.

5.3 Threading

DIMMA offers both single-threaded or multi-threaded operation, switchable at
compile time through a configuration flag. The latter is implemented internally

Object

Client Server

Task Factory

Client Session

Default QoS High performance

Object

NullThread

Client Server

Task Pool

NullClient Session

Figure 3 Two channel resourcing strategies

using Posix threads; the former is made available to produce a high-performance
executable, or for platforms that don’t support multi-threading. Since CORBA does
not define any standards for multi-threaded operation, DIMMA provides its own
interfaces to control threading.

The DIMMA model of threading provides two abstractions: Threads and Tasks.
Threads are a unit of potential concurrency and are scheduled over tasks by
DIMMA. Tasks represent a unit of real concurrency and are implemented as Posix
threads (bound to a lightweight process on Solaris). Tasks are scheduled
pre-emptively by the underlying operating system and it is the applications
responsibility to ensure that access to data shared between tasks is properly
synchronised.

Three threading policies are provided with DIMMA; these control what is done
when there is a possibility of a context-switch within the protocol. The “null task”
policy means that the calling task carries on executing, thus avoiding a context
switch. The “normal task” policy means that control is handed over to another task
and the calling task returns. The “scheduled thread” policy allows a specified
number of prioritised threads to be scheduled over a number of tasks. The threads
are added to a prioritised queue and the first on the queue is executed as and when
a task becomes available.

5.4 Specifying resource requirements

In order to provide any kind of bounded QoS, it must be possible for an application
to communicate its requirement to the underlying infrastructure, both distribution
layer and host operating system.

DIMMA supports a resource reservation model and allocates resources
according to the specified QoS when an application establishes a binding, e.g.,
when a client binds to a server. Resources are reserved for all parts of the
underlying channel, e.g., communications resources, buffers, tasks, etc. The
binding model used by DIMMA to support the specification of QoS is dealt with in
the next section.

6 BINDING

6.1 Overview

With standard RPC systems, binding is done implicitly, i.e., when a remote
reference is first used, a binder sets up an appropriate communications channel to
it. This is the model adopted by the majority of ORBs and provides maximum
transparency to the application in terms of hiding irrelevant engineering details.
However, there is a trade-off: transparency implies little or no control over the QoS
of the binding that is established.

When quality of service can be specified, binding must be done explicitly
(because the binder will not know which of a range of possible quality levels is
wanted); this requires extra support from the binding apparatus. Although explicit
specification of Quality of Service parameters can be provided for RPC protocols
as well, it is essential for flow protocols. QoS is specified on a per-connection basis
so as to allow the same service to be accessed with different levels of quality, e.g.,
a video source could be provided at different levels of quality over different
bandwidth connections.

DIMMA supports both implicit and explicit binding models.

6.2 Implicit binding

Implicit binding in DIMMA is provided by Binder objects which implement a
predefined binding policy, and make use of default QoS parameters. In keeping
with the DIMMA component philosophy, the implicit binders may be replaced by
application specific implicit binders which implement a different binding policy
appropriate to the application.

6.3 Explicit binding

To meet the needs of multi-media and real-time applications, DIMMA provides a
model of explicit binding. Explicit binding allows both the QoS and the time of
binding to be controlled and hence allows resource reservation. The downside is
the increased complexity of the mechanism required to establish the binding.

An explicit binding is accomplished in several stages and is bootstrapped using
the implicit binding mechanism. An application wishing to offer a service must do
so via a binding manager which offers its own interface as a proxy for the real
service. The binding manager is responsible for placing each party’s local explicit
binder in communication with the other. These in turn will set up the local bindings
with the specified QoS and establish the network connection. This procedure is
illustrated in Figure 4.

1. The service interface is exported via the server’s binding manager.
2. When the service interface reference is exported (e.g., as a call parameter or

via a trader), a reference to the server’s binding manager interface is passed
instead.

3. The client, on binding to the service, calls the binding manager passing it the
parameters for the binding (e.g., QoS requirements).

4. The binding manager hands off the binding request to the server’s local
endpoint binder, which creates a service endpoint and…

5. …returns the details to the binding manager, which in turn…
6. …returns the details to the client.

7. The client then passes the remote endpoint details plus other binding
parameters to its local endpoint binder, which sets up the binding and…

8. …returns an invocation reference to the client…
9. …which the client then uses to call the service.

All these machinations though are transparent to the client application, which
simply imports what it believes to be the interface reference for the service and
binds to it.

6.4 Binding and resource control

The protocol-specific QoS specification provided during explicit binding is passed
to the top level protocol binder at each end of the binding. In the usual case where
the protocol is made up of a number of layers, the QoS specification for the top
level layer will contain a pointer to the QoS for the next layer down, and so on.
When creating the channel for the binding, each layer extracts the QoS for the next
layer down and then passes that to a create channel request on the lower layer
recursively until the bottom layer is reached. The bottom layer extracts the
resourcing information from the QoS parameters it is given to create its channel
and then returns that to the next layer up, which repeats the process until the top
layer is reached again. Thus each layer resources its part of the channel
appropriately.

Local
endpoint
binder

Local
endpoint
binder

Server’s
binding

manager

Server
host

Client
host

Client Service

1

2

3
4 567

8
9

Figure 4 Explicit binding

6.5 Implications for network endpoints

Supporting Quality of Service affects how network endpoints are used. For a
standard RPC system with implicit binding, all connections to a service can be
multiplexed through the same network endpoint because they all have the same
(default) quality of service. See Figure 5.

With an ORB such as DIMMA, which supports access to the same service with
different levels of quality of service, a server must be able to offer multiple
network endpoints in order to support the different QoS (Figure 6).

Client ClientServer

Low QoS High QoS

Figure 6 Multiple endpoints for varying QoS

Client ClientServer

Figure 5 Standard ORB sharing a single network endpoint

Although supporting QoS requires support for multiple network endpoints for
the same service, this extra level of complexity is masked within the binding
mechanism outlined above, and all the application ever sees is a standard
invocation reference that encapsulates the details necessary to distinguish between
multiple possible endpoints.

6.6 Implications for binders

Supporting explicit specification of QoS has a number of implications – there is a
trade-off between the amount of control allowed to the application over QoS and
the transparency to the application of the mechanisms being used.

As resource usage and thus QoS is specific to each protocol, a binder can no
longer be generic. This requires the application to understand the QoS details of
each protocol it uses, i.e., it too can no longer be generic. It also affects the
dynamic loading of protocols – if QoS is protocol specific, how do we determine
and select from the possibilities offered by a dynamically loaded protocol?

This problem of lack of transparency can be mitigated by defining a more
generic sort of QoS and then having each protocol be able to map from the generic
QoS to its own specific QoS.

DIMMA has support for this concept of generic QoS, which is called
engineering QoS. It is at a higher level than protocol specific QoS, though it does
not attempt to provide very high level “application” QoS. It is the responsibility of
the implementer of a protocol to map this engineering QoS into terms that are
applicable to the protocol. The two protocols supplied with DIMMA, IIOP and
ANSA Flow, both implement this mapping.

The options currently configurable with engineering QoS are:
• Processing concurrency, which defines the maximum number of tasks to run

concurrently. A special “null task” value indicates that the message reading
task is to process the operation.

• Message concurrency, which defines the maximum number of messages that
can be simultaneously processed (and hence the size of the buffer pool). If this
is greater than processing concurrency, message processing is scheduled over
the available tasks as described earlier in section 5.3.

• Buffer size, which defines the size of the buffers in the pool and hence the
maximum size of a message.

• Channel policy, which defines whether or not channels are multiplexed on
transport connections.

By having this engineering QoS it allows application programmers to write
applications that control QoS without having to hard-code decisions about protocol
use throughout the program. It also means that the choice of which protocol to use
can be deferred until runtime, allowing dynamically loaded protocols (that were not
necessarily known about at design time) to be used.

7 PERFORMANCE

The default QoS configuration in DIMMA is comparable with commercial ORBs.
The high-performance QoS configuration is 2-3 times faster than commercial
ORBs. Descriptions of the default and high-performance QoS configurations are
given earlier in Figure 7.

The tests were carried out using 5,000 iterations of a remote call using IIOP on
a 167MHz Sparc Ultra 1 with 128Mb of memory. The first two tests used CORBA
oneway operations; the second two used standard operations. The “no param” tests
used an operation with no parameters, the “null string” tests used an operation with
a single string parameter, which was passed a zero length string.

8 SUMMARY

DIMMA was designed to explore how the needs of multimedia applications may
be met in the context of an ODP platform. To this end it provides applications with
control over their allocation and use of resources through quality of service (QoS)
parameters, and supports multi-media flows through flow interfaces.

1-way
no

param

1-way
null

string

RPC
no

param

RPC
null

string

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1-way
no

param

1-way
null

string

RPC
no

param

RPC
null

string

Orbix 2.1
MT no QoS
ST no QoS
MT full QoS
ST full QoS

µs

• Orbix 2.1 - a popular commercial CORBA ORB from Iona
• MT no QoS - multi-threaded build, default QoS configuration
• ST no QoS - single-threaded build, default QoS configuration
• MT full QoS - multi-threaded build, high-performance QoS
• ST full QoS - single-threaded build, high-performance QoS

Figure 7 Performance results

We have shown how application control of QoS can have a significant impact
on performance. However for true end-to-end quality of service, QoS control of the
network and operating system are also required.

REFERENCES

IEEE (1992) POSIX.
IEEE POSIX Standard 10003.4a.

ISO (1995) Reference Model of Open Distributed Computing.
ISO/IEC 10746-3.

Li, G. (1995) An overview of real-time ANSAware 1.0.
Distributed Systems Engineering Vol 2. No. 1

Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V. (1996) RTP: A
Transport Protocol for Real-Time Applications.
RFC 1889. Audio-Video Transport Working Group, January 1996.

The Object Management Group (1998) The Common Object Request Broker:
Architecture and Specification, revision 2.2.
 OMG 98-02-33. OMG Headquarters, Framingham MA, U.S.A.

9 BIOGRAPHIES

 APM is a recognised world leader in distributed system technology, offering
research and consulting services to customers world-wide. It specialises in the
application, management and security of mobile objects and innovative
technologies in networked and distributed systems. APM Research manages and
operates the ANSA open, collaborative research programme (Advanced Networked
Systems Architecture).

Douglas Donaldson is currently on the FollowMe research project,
investigating the impact of mobility on information systems, and designing a
persistent object store. Matthew Faupel has contributed an implementation of IIOP
and a protocol negotiator to the FlexiNet project, and has now moved to APM’s
consultancy branch. Richard Hayton is managing the FlexiNet project, and is
currently developing a Java network class loader for enhancing object mobility.
Andrew Herbert is Technical Director of APM Limited. Nicola Howarth, Andre
Kramer and Ian MacMillan have joined Digitivity Inc., APM’s product arm, which
develops products to support the secure deployment and management of mobile
code. Dave Otway and Simon Waterhouse are working for APM’s consultancy
branch with specific involvement in security and distributed architectures.

