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Abstract: The first journal article on neural network
application in civil/structural engineering was published in
this journal in 1989. This article reviews neural network
articles published in archival research journals since then.
The emphasis of the review is on the two fields of structural
engineering and construction engineering and management.
Neural networks articles published in other civil engi-
neering areas are also reviewed, including environmental
and water resources engineering, traffic engineering, high-
way engineering, and geotechnical engineering. The great
majority of civil engineering applications of neural net-
works are based on the simple backpropagation algorithm.
Applications of other recent, more powerful and efficient neu-
ral networks models are also reviewed. Recent works on inte-
gration of neural networks with other computing paradigms
suchas genetic algorithm, fuzzy logic, andwavelet to enhance
the performance of neural network models are presented.

1 INTRODUCTION

Artificial neural networks (ANNs) are a functional abstrac-
tion of the biologic neural structures of the central nervous
system (Aleksander and Morton, 1993; Rudomin et al.,
1993; Arbib, 1995; Anderson, 1995). They are powerful
pattern recognizers and classifiers. They operate as black-
box, model-free, and adaptive tools to capture and learn
significant structures in data. Their computing abilities have
been proven in the fields of prediction and estimation,
pattern recognition, and optimization (Adeli and Hung,
1995; Golden, 1996; Mehrotra et al., 1997; Adeli and Park,
1998; Haykin, 1999). They are suitable particularly for
problems too complex to be modeled and solved by classi-
cal mathematics and traditional procedures.
The first journal article on civil/structural engineering

applications of neural networks was published by Adeli and
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Yeh (1989) in this journal. Since then, a large number of arti-
cles have been published on civil engineering applications
of neural networks. Most of these articles deal with some
type of pattern-recognition or learning problem. A neural
network can be trained to learn to perform a particular task.
The approach is particularly attractive for hard-to-learn
problems and when there is no formal underlying theory for
the solution of the problem. Engineering design and image
recognition are two such problems (Adeli and Hung, 1995).
One of the reasons for popularity of the neural network is

the development of the simple error backpropagation (BP)
training algorithm (Rumelhart et al., 1986), which is based
on a gradient-descent optimization technique. The BP algo-
rithm is now described in many textbooks (Adeli and Hung,
1995; Mehrotra et al., 1997; Topping and Bahreininejad,
1997; Haykin, 1999), and unfamiliar readers can refer to
any one of them. A review of the BP algorithm with sug-
gestions on how to develop practical neural network appli-
cations is presented by Hegazy et al. (1994). The great
majority of the civil engineering application of neural net-
works is based on use of the BP algorithm primarily
because of its simplicity. Training of a neural network with
a supervised learning algorithm such as BP means finding
the weights of the links connecting the nodes using a set
of training examples. An error function in the form of the
sum of the squares of the errors between the actual out-
puts from the training set and the computed outputs is min-
imized iteratively. The learning or training rule specifies
how the weights are modified in each iteration.

2 STRUCTURAL ENGINEERING

2.1 Pattern recognition and machine learning in
structural analysis and design

Adeli and Yeh (1989) present a model of machine learn-
ing in engineering design based on the concept of internal

© 2001 Computer-Aided Civil and Infrastructure Engineering. Published by Blackwell Publishers, 350 Main Street, Malden, MA 02148, USA,
and 108 Cowley Road, Oxford OX4 1JF, UK.



Neural networks in civil engineering: 1989–2000 127

control parameters and perceptron (Rosenblatt, 1962). A
perceptron is defined as a four-tuple entity (sensors to
receive inputs, weights to be multiplied by the sensors,
a function collecting all the weighted data to produce a
proper measurement on the impact of the observed phe-
nomenon, and a constant threshold), and the structural
design problem is formulated as a perceptron without hid-
den units. Adeli and Yeh apply the model to the design of
steel beams.
Vanluchene and Sun (1990) demonstrate potential appli-

cations of the BP algorithm (Rumelhart et al., 1986)
in structural engineering by presenting its application
to three problems—a simple beam load location prob-
lem involving pattern recognition, the cross-section selec-
tion of reinforced-concrete beams involving typical design
decisions, and analysis of a simply supported plate—
showing how numerically complex solutions can be esti-
mated quickly with the neural network approach.
Hajela and Berke (1991) demonstrate that neural net-

works can be used for rapid reanalysis for structural opti-
mization. Hung and Adeli (1991a) present a model of
machine learning in engineering design, called PERHID,
based on the concept of the perceptron learning algorithm
(Rosenblatt, 1962; Adeli and Yeh, 1989) with a two-layer
neural network. PERHID has been constructed by com-
bining a perceptron with a single-layer AND neural net.
Extending this research, Hung and Adeli (1994a) present a
neural network machine learning development environment
using the object-oriented programming paradigm (Yu and
Adeli, 1991, 1993).
Adeli and Zhang (1993) present an improved perceptron

learning algorithm by introducing an adjustment factor in
each self-modification iteration of the original perceptron
learning model. The adjustment factor in each iteration is
determined such that the domain error is reduced in the
subsequent iterations. This leads to global improvement in
the iterative process toward finding the final weight vector.
The application of the new algorithm to the steel beam
design problem demonstrates that the number of iterations
needed for convergence of the vector is substantially fewer
than that using the original perceptron algorithm.
Theocaris and Panagiotopoulos (1993) describe the

parameter identification problem in fracture mechanics
as a neural network learning problem. Gunaratnam and
Gero (1994) study the effect of representation on the
performance of neural networks in structural engineering
applications using the the BP algorithm. They suggest
that dimensional analysis provides a suitable representa-
tion framework for training the input-output pattern pairs.
Messner et al. (1994) describe a neural network system
for preliminary selection of the most appropriate struc-
tural members (beams, columns, and slabs) given a build-
ing project’s attributes such as available site space, budget,
and height.

The BP algorithm is used by Yeh et al. (1993) as a
knowledge-acquisition tool for a knowledge-based system
for diagnosing damage to prestressed concrete piles (such
as spalling of concrete and transverse cracking or break-
ing of the pile); by Kang and Yoon (1994) for design of
simple trusses; by Hoit et al. (1994) for equation renum-
bering in finite element analysis of structures to improve
profile and wavefront characteristics; by Rogers (1994) for
fast approximate structural analysis in a structural opti-
mization program; by Mukherjee and Deshpande (1995a,
1995b) for the preliminary design of structures; by Abdalla
and Stavroulakis (1995) to predict the behavior of semirigid
connections in steel structures from experimental moment
rotation curves for single-angle and single-plate beam-
column connections; by Turkkan and Srivastava (1995)
to predict the steady-state wind pressure profile for air-
supported cylindrical and hemispherical membrane struc-
tures; by Mukherjee et al. (1996) to predict the buckling
load of axially loaded columns based on experimental data;
by Papadrakakis et al. (1996) for structural reliability anal-
ysis in connection with the Monte Carlo simulation; by
Anderson et al. (1997) to predict the bilinear moment-
rotation characteristics of the minor-axis beam-to-column
connections based on experimental results; by Szewczyk
and Noor (1996, 1997) for sensitivity and nonlinear anal-
ysis of structures; by Kushida et al. (1997) to develop a
concrete bridge rating system; by Hegazy et al. (1998) to
model the load-deflection behavior, concrete strain distribu-
tion at failure, reinforcing steel strain distribution at failure,
and crack-pattern formation of concrete slabs; by Chuang
et al. (1998) to predict the ultimate load capacity of pin
ended reinforced concrete columns; by Stavroulakis and
Antes (1998) for crack identification in steady-state elas-
todynamics; by Cao et al. (1998) to identify loads on air-
craft wings modeled approximately as a cantilever beam
subjected to a set of concentrated loads; by Mathew et al.
(1999) for analysis of masonry panels under biaxial bend-
ing; and by Jenkins (1999) for structural re-analysis of two-
dimensional trusses.
Biedermann (1997) investigates the use of the BP neural

networks to represent heuristic design knowledge such as
how to classify the members of a multistory frame into
a limited number of groups for practical purposes (design
fabrication groups). Cattan and Mohammadi (1997) use the
BP algorithm to relate the subjective rating of bridges based
on visual inspection of experienced bridge inspectors to
the analytical rating based on detailed structural analyses
under standard live loads as well as the bridge parameters.
They conclude that “neural networks can be trained and
used successfully in estimating a rating based on bridge
parameters.”
Adeli and Park (1995c) present application of counter-

propagation neural networks (CPNs) with competition and
interpolation layers (Hecht-Nielsen, 1987a, 1987b, 1988) in
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structural engineering. A problem with the CPN algorithm
is the arbitrary trial-and-error selection of the learning coef-
ficients encountered in the algorithm. The authors propose
a simple formula for the learning coefficients as a function
of the iteration number and report excellent convergence
results. The CPN algorithm is used to predict elastic criti-
cal lateral torsional buckling moment of wide-flange steel
beams (W shapes) and the moment-gradient coefficient for
doubly and singly symmetric steel beams subjected to end
moments. The latter is a complex stability analysis problem
requiring a large neural network with 4224 links, exten-
sive numerical analysis, and management of a large amount
of data. It took less than 30 iterations to train the large
CPN network in both competition and interpolation lay-
ers using 528 training instances. Compared with the BP
algorithm, the authors found superior convergence property
and a substantial decrease in the processing time for the
CPN algorithm with the proposed formula for the learning
coefficients.
The computation of an effective length factor, K , is com-

plicated but essential for design of members in compres-
sion in steel-frame structures. The present AISC codes for
design of steel structures (AISC, 1995, 1998) present sim-
plified alignment charts for determining the effective length
factor. Duan and Chen (1989) and Kishi et al. (1997) have
pointed out the gross underestimation (leading to an unsafe
design) and overestimation (leading to an overly conserva-
tive design) of the alignment charts for different boundary
conditions. Hung and Jan (1999a) describe a variation of
the cerebellar model articulation controller (CMAC), used
mostly in the control domain, for predicting the effective
length factor, K for columns in unbraced frames. They
conclude that the results obtained from the neural network
model are more accurate than those obtained from the AISC
alignment charts.
In the finite element analysis of structures, the relation-

ship between the loads and displacements is represented
by the structure or global stiffness matrix. A neural net-
work can be trained to perform the same task. Solution
of the simultaneous linear equations including the stiff-
ness matrix is the most time-consuming part of any large-
scale finite element analysis. To speed up this step of the
finite element analysis, neural networks can be used to cre-
ate domain-specific equation solvers using the knowledge
of a particular domain such as highway bridges. However,
neural networks can provide only an approximate solution
where an “exact” solution is usually required. Consolazio
(2000) proposes combining neural networks with iterative
equation-solving techniques such as a preconditioned con-
jugate gradient algorithm (PCG) (Adeli and Kumar, 1999).
In particular, he uses the BP neural network algorithm
to compute approximate displacements at each iteration,
whereas the overall PCG steers convergence to the exact
solution. The neural network part of the algorithm improves

the efficiency of the algorithm by (1) providing a good
initial solution and (2) playing the role of the precondi-
tioner in the PCG algorithm. Consolazio applies the method
to finite element analysis of flat-slab highway bridges and
concludes the neural network to be an effective method for
accelerating the convergence of iterative methods. Use of
neural networks in finite element analysis is also discussed
by Li (2000).

2.2 Design automation and optimization

Automation of design of large one-of-a-kind civil engineer-
ing systems is a challenging problem due partly to the
open-ended nature of the problem and partly to the highly
nonlinear constraints that can baffle optimization algo-
rithms (Adeli, 1994). Optimization of large and complex
engineering systems is particularly challenging in terms
of convergence, stability, and efficiency. Most of the neu-
ral network research has been done in the area of pattern
recognition and machine learning (Adeli and Hung, 1995).
Neural network computing also can be used for optimiza-
tion (Berke et al., 1993).
Adeli and Park (1995a) present a neural dynamics

model for optimal design of structures by integrating the
penalty function method, the Lyapunov stability theorem,
Kuhn-Tucker conditions, and the neural dynamics concept.
A pseudo-objective function in the form of a Lyapunov
energy functional is defined using the exterior penalty func-
tion method. The Lyapunov stability theorem guarantees
that solutions of the corresponding dynamic system (tra-
jectories) for arbitrarily given starting points approach an
equilibrium point without increasing the value of the objec-
tive function. The robustness of the model was first verified
by application to a linear structural optimization problem,
the minimum-weight plastic design of low-rise planar steel
frames (Park and Adeli, 1995). Optimization algorithms are
known to deteriorate with increases in size and complexity
of the problem. The significance of the new optimization
model is that it provides the optimal design of large struc-
tures with thousands of members subjected to complicated
and discontinuous constraints with excellent convergence
results.
In order to achieve automated optimal design of realis-

tic structures subjected to actual constraints of commonly
used design codes such as the American Institute of Steel
Construction (AISC) allowable stress design (ASD) and
load and resistance factor design (LRFD) specifications
(AISC, 1995, 1998), Adeli and Park (1995b, 1996) devel-
oped a hybrid CPN–neural dynamics model for discrete
optimization of structures consisting of commercially avail-
able sections such as the wide-flange (W) shapes used in
steel structures. The computational models are shown to
be highly stable and robust and particularly suitable for
design automation and optimization of large structures no
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matter how large the size of the problem is, how irregular
the structure is, or how complicated the constraints are. For
their innovative work, the authors were awarded a patent
by the U.S. Patent and Trademark Office on September 29,
1998 (United States Patent Number 5,815,394).
An important advantage of cold-formed steel is the

greater flexibility of cross-sectional shapes and sizes avail-
able to the structural steel designer. The lack of standard
optimized shapes, however, makes selection of the most
economical shape very difficult, if not impossible. This task
is further complicated by the complex and highly nonlin-
ear nature of the rules that govern their design. Adeli and
Karim (1997a) present a general mathematical formulation
and computational model for optimization of cold-formed
steel beams. The nonlinear optimization problem is solved
by adapting the robust neural dynamics model of Adeli and
Park (1996). The basis of design can be the AISI ASD
or LRFD specifications (AISI, 1996, 1997). The computa-
tional model is applied to three different commonly used
types of cross-sectional shapes: hat, I, and Z shapes. The
computational model was used to perform extensive para-
metric studies to obtain the global optimal design curves
for cold-formed hat- , I- , and Z-shaped steel beams based
on the AISI code to be used directly by practicing design
engineers (Karim and Adeli, 1999a, 1999b, 2000).
Optimization of space structures made of cold-formed

steel is complicated because an effective reduced area
must be calculated for members in compression to take
into account the nonuniform distribution of stresses in
thin cold-formed members due to torsional/flexural buck-
ling. The effective area varies not only with the level of
the applied compressive stress but also with its width-to-
thickness ratio. Tashakori and Adeli (2001) present optimal
(minimum weight) design of space trusses made of cold-
formed steel shapes in accordance with the AISI specifica-
tions (AISI, 1996, 1997) using the neural dynamics model
of Adeli and Park (1996). The model has been used to
find the minimum-weight design for several space trusses
commonly used as roof structures in long-span commer-
cial buildings and canopies, including a large structure with
1548 members, with excellent convergence results.
Arslan and Hajela (1997) discuss counterpropagation

neural networks in decomposition-based optimal design.
Parvin and Serpen (1999) discuss a procedure to solve an
optimization problem with a single-layer, relaxation-type
recurrent neural network but do not present a solution to
any significant structural design problem.

2.3 Structural system identification

Masri et al. (1993) describe neural networks as a power-
ful tool for identification of structural dynamic systems.
Chen et al. (1995b) use the BP algorithm for identification
of structural dynamic models. The authors indicate “great

promise in structural dynamic model identification by using
neural networks” based on simulation results for a real mul-
tistory building subjected to earthquake ground motions.
The BP algorithm is used byYun and Bahng (2000) for sub-
structural identification and estimating the stiffness param-
eters of two-dimensional trusses and frames. Huang and
Loh (2001) propose a neural network–based model for
modeling and identification of a discrete-time nonlinear
hysteretic system during strong earthquakes. They use two-
dimensional models of a three-story frame and a real bridge
in Taiwan subjected to several earthquake accelerograms to
validate the feasibility and reliability of the method for esti-
mating the changes in structural response under different
earthquake events.

2.4 Structural condition assessment and
monitoring

Wu et al. (1992) discuss use of the BP algorithm for detec-
tion of structural damage in a three-story frame with rigid
floors. The damage is defined as a reduction in the mem-
ber stiffness. Elkordy et al. (1994) question the reliability
of the traditional methods for structural damage diagno-
sis and monitoring that rely primarily on visual inspection
and simple on-site tests. They propose a structural damage
monitoring system for identifying the damage associated
with changes in structural signatures using the BP algo-
rithm. For training, they used experimental results from a
shaking table as well as numerical results from a finite ele-
ment analysis of the structure for strain-mode shapes as
the vibrational signatures. They point out that “analyzing
the data obtained from different types of sensors to detect
damage is a very complex problem, particularly because
of the noise associated with the signals,” and suggest that
neural networks can diagnose complicated damage patterns
and “can handle noisy and partially incomplete data sets.”
Stephens and Vanluchene (1994) describe an approach for
assessing the safety condition of structures after the occur-
rence of a damaging earthquake using multiple quantitative
indices and the BP algorithm. They conclude that the neural
network model “generated more reliable assessments than
could be obtained using any single indicator or from a lin-
ear regression model that utilized all indicators.”
Defining damage as a reduction in the stiffness of struc-

tural members, Szewczyk and Hajela (1994) use a CPN
for damage detection in truss and frame structures. They
describe the problem as an inverse static analysis prob-
lem where the elements of the structure stiffness matrix
are found based on experimentally observed response data.
Pandey and Barai (1995) describe use of the BP algorithm
for damage detection of steel-truss bridge structures. A sim-
ilar study for vibration signature analysis of steel trusses is
discussed in Barai and Pandey (1995). Masri et al. (1996)
explore the use of neural networks to detect changes in
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structural parameters during vibrations. Masri et al. (2000)
describe application of neural networks to a nonparametric
structural damage detection methodology based on nonlin-
ear system identification approaches.
High-strength bolts in spliced joints of steel bridges may

become loose gradually during their lifetime. This problem
has to be detected and corrected during periodic inspec-
tion and maintenance of the bridge. Mikami et al. (1998)
present a system based on the BP algorithm to estimate the
residual axial forces of high-strength bolts in steel bridges
using the reaction and acceleration waveforms collected
by an automatic hammer or looseness detector. An impor-
tant issue in structural health monitoring is selection of the
members and locations of the structure to be monitored.
Feng and Bahng (1999) use the BP algorithm to estimate
the change in stiffness based on the measured vibration
characteristics for damage assessment of reinforced con-
crete columns retrofitted by advanced composite jackets.
Kim et al. (2000b) describe a two-stage procedure where in
the first stage traditional sensitivity analysis is used to rank
and select critical members. In the second stage, the results
of the sensitivity analysis and a trained neural network are
used to identify the optimal numbers and locations of mon-
itoring sensors. The method is applied to two-dimensional
trusses and multistory frames.

2.5 Structural control

Active control of structures has been an active area of
research in recent years (Adeli and Saleh, 1999). Ghaboussi
and Joghataie (1995) present application of neural networks
in structural control. A neural network training algorithm,
a modified BP algorithm in this case, performs the role of
the control algorithm. The structure’s response, measured
at a selected number of points by sensors, and the actua-
tor signals are the input to the neurocontroller. Its output is
the subsequent value of the actuator signal to produce the
desired actuator forces. The neurocontroller learns to con-
trol the structure after being trained by an emulator neu-
ral network. The authors suggest that neurocontrollers are
a potentially powerful tool in structural control problems
based on simulation results for a three-story frame with one
actuator.
Chen et al. (1995a) also describe use of the BP algo-

rithm in structural control and present simulation results
based on the model of an actual multistory apartment build-
ing subjected to recorded earthquake ground motions. The
BP algorithm is also used by Tang (1996a) for active
control of a single-degree-of-freedom system and by Yen
(1996) for vibration control in flexible multibody dynamics.
Nikzad et al. (1996) compare the performances of a conven-
tional feedforward controller and a neurocontroller based
on a modified BP algorithm in compensating the effects
of the actuator dynamics and computational phase delay

using a two-degree-of-freedom dynamic system and report
the latter is “far more effective.” Most control algorithms
are based on the availability of a complete state vector
from measurement. Tang (1996b) uses the BP algorithm
as the state-vector estimator when only a limited number
of sensors are installed in the structure, and consequently,
a complete state vector is not available. Bani-Hani and
Ghaboussi (1998) discuss nonlinear structural control using
neural networks through numerical simulations on a two-
dimensional three-story steel frame considering its inelastic
material behavior.
Ankireddi and Yang (1999) investigate the use of neu-

ral networks for failure detection and accommodation in
structural control problems. They propose a failure detec-
tion neural network for monitoring structural responses and
detecting performance-reducing sensor failures and a fail-
ure accommodation neural network to account for the failed
sensors using the Widrow-Hoff (Widrow and Lehr, 1995)
training rule. Kim et al. (2000a) propose an optimal con-
trol algorithm using neural networks through minimization
of the instantaneous cost function for a single-degree-of-
freedom system. Hung et al. (2000) describe an active pulse
structural control using neural networks with a training
algorithm that does not require the trial-and-error selection
of the learning ratio needed in the BP algorithm and present
simulation results for a small frame.

2.6 Finite element mesh generation

In finite element analysis of structures, creating the right
mesh is a tedious trial-and-error process often requiring a
high level of human expertise. The accuracy and efficiency
of the method rely heavily on the selected mesh. Auto-
matic creation of an effective finite element mesh for a
given problem has been an active area of research. Different
approaches have been explored in the literature, including
neural networks. For a given number of nodes and mesh
topology, Manevitz et al. (1997) use the self-organizing
algorithm of Kohonen (1988) to create a near-optimal finite
element mesh for a two-dimensional domain using a com-
bination of different types of elements. Bahreininejad et al.
(1996) explore application of the BP and Hopfield neural
networks for finite element mesh partitioning. Pain et al.
(1999) present a neural network graph-partitioning algo-
rithm for partitioning unstructured finite element meshes.
First, an automatic graph coarsening method is used to cre-
ate a coarse mesh, followed by a mean field theorem neural
network to perform partitioning optimization.

2.7 Structural material characterization and
modeling

Ghaboussi et al. (1991) describe use of the BP neural
network for modeling behavior of conventional materials
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such as concrete in the state of plane stress under mono-
tonic biaxial loading. Brown et al. (1991) demonstrate
the applicability of neural networks to composite mate-
rial characterization. They use the BP algorithm to predict
hygral, thermal, and mechanical properties of composite-
ply materials. The BP algorithm also has been used for
constitutive modeling of concrete (Sankarasubramanian and
Rajasekaran, 1996) and viscoplastic materials (Furukawa
and Yagawa, 1998).
Ghaboussi et al. (1998) present autoprogressive train-

ing of neural network constitutive models using the global
load-deflection response measured in a structural test with
application to laminated composites. In their approach, a
partially trained neural network generates its own training
cases through an iterative nonlinear finite element analy-
sis of the test specimen. Yeh (1999) uses the BP algorithm
to model the concrete workability in the design of a high-
performance concrete mixture. Neural networks are also
used to model generalized hardening plasticity (Theocaris
and Panagiotopoulos, 1995), the alkali-silica reaction of
concrete with admixtures (Li et al., 2000), and elastoplas-
ticity (Daoheng et al., 2000).

2.8 Parallel neural network algorithms for
large-scale problems

The convergence speed of neural network learning mod-
els is slow. For large networks, several hours or even
days of computer time may be required using the con-
ventional serial workstations. A parallel BP learning algo-
rithm has been developed by Hung and Adeli (1993) and
implemented on the Cray YMP supercomputer. A parallel-
processing implementation of the BP algorithm on a
Transputer network with application to finite element mesh
generation is also presented by Topping et al. (1997).
Optimization of large structures with thousands of mem-

bers subjected to actual constraints of commonly used
codes requires an inordinate amount of computer pro-
cessing time and high-performance computing resources
(Adeli and Kamal, 1993; Adeli, 1992a, 1992b; Adeli and
Soegiarso, 1999). Park and Adeli (1997a) present a data
parallel neural dynamics model for discrete optimization
of large steel structures implemented on a distributed-
memory multiprocessor, the massively parallel Connection
Machine CM-5 system. The parallel algorithm has been
applied to optimization of several high-rise and super-
high-rise building structures, including a 144-story steel
super-high-rise building structure with 20,096 members in
accordance with the AISC ASD and LRFD codes (AISC,
1995, 1998) and subjected to multiple loading conditions
including wind loading according to the Uniform Build-
ing Code (UBC, 1997). This is by far the largest structural
optimization problem subjected to actual constraints of a
widely used design code ever solved and reported in the

literature. Park and Adeli (1997b) present distributed neu-
ral dynamics algorithms on the Cray T3D multiprocessor
employing the work-sharing programming paradigm.

3 CONSTRUCTION ENGINEERING

3.1 Construction scheduling and management

Adeli and Karim (1997b) present a general mathemati-
cal formulation for scheduling of construction projects and
apply it to the problem of highway construction scheduling.
Repetitive and nonrepetitive tasks, work-continuity consid-
erations, multiple-crew strategies, and the effects of vary-
ing job conditions on the performance of a crew can be
modeled. An optimization formulation is presented for the
construction project scheduling problem with the goal of
minimizing the direct construction cost. The nonlinear opti-
mization is then solved by the neural dynamics model of
Adeli and Park (1996). For any given construction duration,
the model yields the optimal construction schedule for min-
imum construction cost automatically. By varying the con-
struction duration, one can solve the cost-duration tradeoff
problem and obtain the global optimal schedule and the cor-
responding minimum construction cost. Karim and Adeli
(1999c) present an object-oriented information model for
construction scheduling, cost optimization, and change-
order management based on the new neural network–based
construction scheduling model of Adeli and Karim (1997b).
The model can be used by the owner/client who has to
approve any change-order requests made by the contractor,
as well as by the contractor. The model provides support for
schedule generation and review, cost estimation, and cost-
time tradeoff analysis. The model has been implemented
in a prototype software system called CONSCOM (CON-
struction Scheduling, Cost Optimization, and Change-Order
Management) using Microsoft Foundation Classes under
the Windows environment (Karim and Adeli, 1999d).

3.2 Construction cost estimation

Williams (1994) attempts to use the BP algorithm for pre-
dicting changes in construction cost indexes for 1 and 6
months ahead but concludes that “the movement of the
cost indexes is a complex problem that cannot be predicted
accurately by a BP neural network model.” Automating the
process of construction cost estimation based on objective
data is highly desirable not only for improving the effi-
ciency but also for removing the subjective questionable
human factors as much as possible. The costs of construc-
tion materials, equipment, and labor depend on numerous
factors with no explicit mathematical model or rule for
price prediction. Adeli and Wu (1998) point out that “high-
way construction costs are very noisy, and the noise is the
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result of many unpredictable factors such as human judg-
ment factors, random market fluctuations, and weather con-
ditions.” They also discuss the problem of overfitting data,
noting that “because of the noise in the data, a perfect fit
usually is not the best fit,” and underfitting results in poor
generalization. Adeli and Wu (1998) present a regulariza-
tion neural network model and architecture for estimating
the cost of construction projects. The model is applied to
estimate the cost of reinforced concrete pavements as an
example. The new computational model is based on a solid
mathematical foundation, making the cost estimation con-
sistently more reliable and predictable. Moreover, the prob-
lem of noise in the data is taken into account in a rational
manner.

3.3 Resource allocation and scheduling

Mohammad et al. (1995) formulate the problem of opti-
mally allocating available yearly budget to bridge reha-
bilitation and replacement projects among a number of
alternatives as an optimization problem using the Hopfield
network (Hopfield, 1982, 1984). Savin et al. (1996, 1998)
also discuss the use of a discrete-time Hopfield net
in conjunction with an augmented Lagrangian multiplier
optimization algorithm for construction resource leveling.
Elazouni et al. (1997) use the BP algorithm to estimate the
construction resource requirements at the conceptual design
stage and apply the model to the construction of concrete
silo walls.
Senouci and Adeli (2001) present a mathematical model

for resource scheduling considering project scheduling
characteristics generally ignored in prior research, includ-
ing precedence relationships, multiple-crew strategies, and
the time-cost tradeoff. Previous resource scheduling formu-
lations traditionally have focused on project-duration min-
imization. The new model considers the total project cost
minimization. Furthermore, resource leveling and resource-
constrained scheduling are performed simultaneously. The
model is solved using the neural dynamics optimization
model of Adeli and Park (1996).

3.4 Construction litigation

Disputes and disagreements between the contractor and the
owner for reasons such as misinterpretation of the contract,
changes made by the owner or the contractor, differing site
and weather conditions, labor problems, and unexpected
delays can lead to litigation. Arditi et al. (1998) use neu-
ral networks to predict the outcome of construction litiga-
tion. They use the outcomes of circuit and appellate court
decisions to train the network and report a successful pre-
diction rate of 67 percent for the “extremely complex data
structure of court proceedings.” A comparison of the neural
network approach with case-based reasoning (CBR) for the
same problem is presented by Arditi and Tokdemir (1999).

3.5 Other applications of BP and other neural
network models in construction engineering
and management

Moselhi et al. (1991) were among the first to realize the
potential applications of neural networks in construction
engineering. They present an application of the BP algo-
rithm for optimal markup estimation under different bid
conditions. They use a small set of 10 bid situations to
train the system but report up to 30,000 iterations for the
BP algorithm to converge with a small error. The BP algo-
rithm also has been used for selection of vertical concrete
formwork supporting walls and columns for a building site
(Kamarthi et al., 1992), for estimating construction produc-
tivity (Chao and Skibniewski, 1994; Sonmez and Rowings,
1998), for markup estimation using knowledge acquired
from contractors in Canada and the United States (Hegazy
and Moselhi, 1994), for evaluation of new construction
technology acceptability (Chao and Skibniewski, 1995), for
selection of horizontal concrete formwork to support slabs
and roofs (Hanna and Senouci, 1995), and for measur-
ing the level of organization effectiveness in a construc-
tion firm.
Murtaza and Fisher (1994) describe the use of neu-

ral networks for decision making about construction
modularization. Yeh (1995) uses a combination of simu-
lated annealing (Kirkpatrick et al., 1983) and a Hopfield
neural network (Hopfield, 1982, 1984) to solve the
construction-site layout problem. Kartam (1996) uses neu-
ral networks to determine optimal equipment combinations
for earthmoving operations. Pompe and Feelders (1997)
use neural networks to predict corporate bankruptcy. Li
et al. (1999) discuss rule extractions from a neural network
trained by the BP algorithm for construction markup esti-
mation in order to explain how a particular recommenda-
tion is made.

4 NEURAL NETWORK APPLICATIONS IN
OTHER CIVIL ENGINEERING FIELDS

4.1 Environmental and water resources
engineering

Karunanithi et al. (1994) demonstrate the use of neu-
ral networks for river flow prediction using the cascade-
correlation algorithm. The BP algorithm is used by Du
et al. (1994) to predict the level of solubilization of six
heavy metals from sewage sludge using the bioleaching
process, by Grubert (1995) to predict the flow conditions
at the interface of stratified estuaries and fjords, by Kao
and Liao (1996) to facilitate the selection of an appropri-
ate facility combination for municipal solid-waste incin-
eration, by Tawfik et al. (1997) to model stage-discharge
relationships at stream gauging locations at the Nile River,
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by Deo et al. (1997) to interpolate the ocean wave heights
over short intervals (weekly mean wave heights) from the
values obtained by remote sensing techniques and satellites
over long durations (a month), and by Liong et al. (2000)
for water-level forecasting in Dhaka, Bangladesh.
Crespo and Mora (1995) describe neural network learn-

ing for river streamflow estimation, prediction of carbon
dioxide concentration from a gas furnace, and a feed-
water control system in a boiling water reactor. Basheer
and Najjar (1996) use neural networks to model fixed-
bed adsorber dynamics. Rodriguez and Serodes (1996) use
the BP neural network to estimate the disinfectant dose
adjustments required during water rechlorination in stor-
age tanks based on representative operational and water-
quality historical data and conclude that the model “can
adequately mimic an operator’s know-how in the control of
the water quality within distribution systems.” Maier and
Dandy (1997) discuss the use of neural networks for mul-
tivariate forecasting problems encountered in the field of
water resources engineering, including estimation of salin-
ity in a river. Thirumalaiah and Deo (1998) present neural
networks for real-time forecasting of stream flows. Flood
values during storms are forecast with a lead time of 1 hour
or more using the data from past flood values at a specific
location. Deo and Chaudhari (1998) use neural networks to
predict tides at a station located in the interior of an estuary
or bay.
Gangopadhyay et al. (1999) integrate the BP algorithm

with a Geographic Information System (GIS) for generation
of subsurface profiles and for identification of the distribu-
tion of subsurface materials. The model is applied to find
the aquifer extent and its parameters for the multiaquifer
system under the city of Bangkok, Thailand. Coulibaly
et al. (2000) use feedforward and recurrent neural networks
for long-term forecasting of potential energy inflows for
hydropower operations planning. This is one of the few arti-
cles addressing the problem of overfitting in neural network
pattern recognition. The authors conclude that “the neu-
ral network–based models provide more accurate forecasts
than traditional stochastic models.” Liu and James (2000)
use the BP algorithm to estimate the discharge capacity in
meandering compound (or two-stage) channels consisting
of a main channel flanked by floodplains on one or both
sides. Guo (2001) presents a semivirtual watershed model
for small urban watersheds with a drainage area of less than
150 acres using neural networks where the network train-
ing and the determination of the matrix of time-dependent
weights to rainfall and runoff vectors is guided by the kine-
matic wave theory.

4.2 Traffic engineering

Cheu and Ritchie (1995) use three different neural net-
work architectures—multilayer perceptron, self-organizing

feature map, and adaptive resonance theory (ART) model
two (ART2)—for the identification of incident patterns in
traffic data. Faghri and Hua (1995) use ART model one
(ART1) to estimate the average annual daily traffic (AADT)
including the seasonal factors and compare its performance
with clustering and regression methods. They conclude that
the neural network model yields better results than the other
two approaches. Dia and Rose (1997) use field data to
test a multilayer perceptron neural network as an incident-
detection classifier. Eskandarian and Thiriez (1998) use
neural networks to simulate a driver’s function of steering
and braking and develop a controller on a moving platform
(vehicle) encountering obstacles of various shapes. The sys-
tem can generalize its learned patterns to avoid obstacles
and collisions. The BP neural network is used by Lingras
and Adamo (1996) to estimate average and peak hourly
traffic volumes, by Ivan and Sethi (1998) for traffic incident
detection, by Sayed and Abdelwahab (1998) for classifica-
tion of road accidents for road improvements, and by Park
and Rilett (1999) to predict the freeway link travel times
for one through five time periods into the future.
Saito and Fan (2000) present an optimal traffic signal

timing model that uses the BP algorithm to conduct an
analysis of the level of service at a signalized intersection
by learning the complicated relationship between the traffic
delay and traffic environment at signalized intersections.

4.3 Highway engineering

Gagarin et al. (1994) discuss the use of a radial-Gaussian-
based neural network for determining truck attributes such
as axle loads, axle spacing, and velocity from strain-
response readings taken from the bridges over which the
truck is traveling. Eldin and Senouci (1995) describe the
use of a BP algorithm for condition rating of roadway
pavements. They report very low average error when com-
pared with a human expert determination. Cal (1995) uses
the BP algorithm for soil classification based on three pri-
mary factors: plastic index, liquid limit water capacity,
and clay content. Razaqpur et al. (1996) present a com-
bined dynamic programming and Hopfield neural network
(Hopfield, 1982, 1984) bridge-management model for effi-
cient allocation of a limited budget to bridge projects over
a given period of time. The time dimension is modeled by
dynamic programming, and the bridge network is simulated
by the neural network. Roberts and Attoh-Okine (1998) use
a combination of supervised and self-organizing neural net-
works to predict the performance of pavements as defined
by the International Roughness Index. The BP algorithm
is used by Owusu-Ababio (1998) for predicting flexible
pavement cracking and by Alsugair and Al-Qudrah (1998)
to develop a pavement-management decision support sys-
tem for selecting an appropriate maintenance and repair
action for a damaged pavement. Attoh-Okine (2001) uses
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the self-organizing map or competitive unsupervised learn-
ing model of Kohonen (1988) for grouping of pavement-
condition variables (such as the thickness and age of
pavement, average annual daily traffic, alligator cracking,
wide cracking, potholing, and rut depth) to develop a model
for evaluation of pavement conditions.

4.4 Geotechnical engineering

A common method for evaluation of elastic moduli and
layer thicknesses of soils and pavements is the seismic
spectral analysis of surface waves (SASW). Williams and
Gucunski (1995) use the BP algorithm to perform the inver-
sion of SASW test results. Core penetration test (CPT)
measurements are frequently used to find soil strength and
stiffness parameters needed in design of foundations. Goh
(1995) demonstrates application of the BP algorithm for
correlating various experimental parameters and evaluating
the CPT calibration chamber test data. The BP algorithm
is used by Chikata et al. (1998) to develop a system for
aesthetic evaluation of concrete retaining walls and by Teh
et al. (1997) to estimate static capacity of precast reinforced
concrete piles from dynamic stress wave data. Juang and
Chen (1999) present neural network models for evaluating
the liquefaction potential of sandy soils. Use of neural net-
works to predict the collapse potential of soils is discussed
by Juang et al. (1999).
After pointing out that “classical constitutive model-

ing of geomaterials based on the elasticity and plasticity
theories suffers from limitations pertaining to formulation
complexity, idealization of behavior, and excessive empiri-
cal parameters,” Basheer (2000) proposes neural networks
as an alternative for modeling the constitutive hysteresis
behavior of soils. He examines several mapping techniques
to be used as frameworks for creating neural network mod-
els for constitutive response of soils, including a hybrid
approach that provides high accuracy.

5 SHORTCOMINGS OF THE BP ALGORITHMS
AND OTHER RECENT APPROACHES

5.1 Shortcomings of the BP algorithm

The momentum BP learning algorithm (Rumelhart et al.,
1986, Adeli and Hung, 1995) is widely used for training
multilayer neural networks for classification problems. This
algorithm, however, has a slow rate of learning. The num-
ber of iterations for learning an example is often in the
order of thousands and sometimes more than one hundred
thousands (Carpenter and Barthelemy, 1994). Moreover, the
convergence rate is highly dependent on the choice of the
values of learning and momentum ratios encountered in
this algorithm. The proper values of these two parameters
depend on the type of the problem (Adeli and Hung, 1994;

Yeh, 1998). As such, a number of other neural network
learning models have been proposed in recent years. Some
of them with applications in civil engineering are reviewed
briefly in this section.

5.2 Adaptive conjugate gradient neural
network algorithm

In an attempt to overcome the shortcomings of the BP algo-
rithm, Adeli and Hung (1994) have developed an adaptive
conjugate gradient learning algorithm for training of multi-
layer feedforward neural networks. Powell’s modified con-
jugate gradient algorithm has been used with an approxi-
mate line search for minimizing the system error. The prob-
lem of arbitrary trial-and-error selection of the learning and
momentum ratios encountered in the momentum backprop-
agation algorithm is circumvented in the new adaptive algo-
rithm. Instead of constant learning and momentum ratios,
the step length in the inexact line search is adapted dur-
ing the learning process through a mathematical approach.
Thus the new adaptive algorithm provides a more solid
mathematical foundation for neural network learning. The
algorithm has been applied to the domain of image recog-
nition. It is shown that the adaptive neural networks algo-
rithm has a superior convergence property compared with
the momentum BP algorithm.

5.3 Radial basis function neural networks

The radial basis function neural network (RBFNN) learns
an input-output mapping by covering the input space with
basis functions that transform a vector from the input space
to the output space (Moody and Darken, 1989; Poggio and
Girosi, 1990). Conceptually, the RBFNN is an abstraction
of the observation that biologic neurons exhibit a receptive
field of activation such that the output is large when the
input is closer to the center of the field and small when the
input moves away from the center. Structurally, the RBFNN
has a simple topology with a hidden layer of nodes hav-
ing nonlinear basis transfer functions and an output layer
of nodes with linear transfer functions (Adeli and Karim,
2000). The most common type of the basis function is
Gaussian. Yen (1994) proposes the use of radial basis func-
tion networks as a neurocontroller for vibration suppres-
sion. Amin et al. (1998) use the RBFNN to predict the flow
of traffic. Jayawardena and Fernando (1998) present appli-
cation of the RBFNN for hydrologic modeling and runoff
simulation in a small catchment and report that it is more
efficient computationally than the BP algorithm.

5.4 Other approaches

Masri et al. (1999) propose a stochastic optimization algo-
rithm based on adaptive random search techniques for
training neural networks in applied mechanics applications.
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Castillo et al. (2000a) present functional networks where
neural functions are learned instead of weights but apply
the concept to simple problems such as predicting the
behavior of a cantilever beam and approximating the dif-
ferential equation for vibration of a simple single-degree-
of-freedom system with spring and viscous damping. Some
learning methods in functional networks are presented in
Castillo et al. (2000b).

6 INTEGRATING NEURAL NETWORKS WITH
OTHER COMPUTING PARADIGMS

6.1 Genetic algorithms

Hung and Adeli (1991b) present a hybrid learning
algorithm by integrating a genetic algorithm with error
backpropagation multilayer neural networks. The algorithm
consists of two learning stages. The first learning stage is
to accelerate the learning process by using a genetic algo-
rithm with the feedforward step of the BP algorithm. In
this stage, the weights of the neural network are encoded
on chromosomes as decision variables. The objective func-
tion for the genetic algorithm is defined as the average
squared system error. After performing several iterations
and meeting the stopping criterion, the first learning stage
is terminated, and the chromosome returning the minimum
objective function is considered as the initial weights of
the neural network in the second stage. Next, the BP algo-
rithm performs the second learning process until the termi-
nal condition is satisfied.
Moselhi et al. (1993) use the BP neural networks and

the genetic algorithm (Adeli and Hung, 1995) to develop
a decision support system to aid contractors in preparing
bids. A parallel genetic–neural network algorithm is also
presented by Hung and Adeli (1994b). Jinghui et al. (1996),
Hajela and Lee (1997), and Papadrakakis et al. (1998) use
the BP algorithm to improve the efficiency of genetic algo-
rithms for structural optimization problems. Topping et al.
(1998) present parallel finite element analysis on a MIMD
distributed computer. They describe a mesh partitioning
technique for planar finite element meshes where a BP
neural network is used to find the approximate number of
elements within a coarse mesh. The coarse mesh is then
divided into several subdomains using a genetic algorithm
optimization approach.

6.2 Fuzzy logic

Adeli and Hung (1993) present a fuzzy neural network
learning model by integrating an unsupervised fuzzy neural
network classification algorithm with a genetic algorithm
and the adaptive conjugate gradient neural network learn-
ing algorithm. The learning model consists of three major
stages. The first stage is used to classify the given train-
ing instances into a small number of clusters using the

unsupervised fuzzy neural network classification algorithm.
The second stage is a supervised neural network learning
model using the classified clusters as training instances.
The genetic algorithm is used in this stage to accelerate the
whole learning process in the hybrid learning algorithm.
The third stage is the process of defuzzification. The hybrid
fuzzy neural network learning model has been applied to
the domain of image recognition. The performance of the
model has been evaluated by applying it to a large-scale
training example with 2304 training instances.
Hurson et al. (1994) discuss the use of fuzzy logic in

automating knowledge acquisition in a neural network–
based decision support system. Anantha Ramu and Johnson
(1995) present a fuzzy logic–BP neural network approach
to detect, classify, and estimate the extent of damage from
the measured vibration response of composite laminates.
Kasperkiewicz et al. (1995) use a fuzzy ART neural net-
work (Carpenter et al., 1991) to predict strength properties
of high-performance concrete mixes as a factor of six com-
ponents: cement, silica, superplasticizer, water, fine aggre-
gate, and coarse aggregate.
Furuta et al. (1996) describe a fuzzy expert system for

damage assessment of reinforced concrete bridge decks
using genetic algorithms and neural networks. The goal is
to automatically acquire fuzzy production rules through use
of the genetic algorithm and the BP neural networks. The
weights of the links obtained from the neural networks are
used in the genetic algorithm evaluation function to obtain
the optimal combination of rules to be used in the knowl-
edge base of the expert system (Adeli, 1988; Adeli and
Balasubramanyam, 1988; Adeli, 1990a, 1990b).
Ni et al. (1996) present a fuzzy neural network approach

for evaluating the stability of natural slopes considering
the geologic, topographic, meteorologic, and environmental
conditions that can be described mostly in linguistic terms.
Parameters of the neural networks are represented by fuzzy
sets (Zadeh, 1970, 1978). Faravelli and Yao (1996) discuss
the use of neural networks in fuzzy control of structures.
Rajasekaran et al. (1996) describe the integration of fuzzy
logic and neural networks for a prestressed concrete pile
diagnosis problem and concrete mix design. Hung and Jan
(1999b) present a fuzzy neural network learning model con-
sisting of both supervised and unsupervised learning and
apply it to simply supported concrete and steel beam design
problems. Sayed and Razavi (2000) combine fuzzy logic
with an adaptive B-spline network to model the behavioral
mode choice in the area of transportation planning. They
apply the model to a bimodal example for shipment of
commodities (rail and Interstate Commerce Commission–
regulated motor carriers for shipments over 500 lb).

6.3 Wavelets

Neural network models can lose their effectiveness when
the patterns are very complicated or noisy. Traffic data
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collected from loop detectors installed in a freeway system
and transmitted to a central station present such patterns.
Neural networks have been used to detect incident pat-
terns from nonincident patterns with limited success. The
dimensionality of the training input data is high, and the
embedded incident characteristics are not easily detectable.
Adeli and Samant (2000) present a computational model
for automatic traffic incident detection using the discrete
wavelet transform (Samant and Adeli, 2000) and neural net-
works. The wavelet transform is used for feature extraction,
denoising, and effective preprocessing of data before the
adaptive conjugate gradient neural network model of Adeli
and Hung (1994) is used to make the traffic incident detec-
tion. The authors show that for incidents with a duration of
more than 5 minutes, the incident-detection model yields a
detection rate of nearly 100 percent and false-alarm rate of
about 1 percent for two- or three-lane freeways.
Adeli and Karim (2000) present a new multiparadigm

intelligent system approach to the traffic incident-detection
problem through integration of fuzzy, wavelet, and neural
computing techniques to improve reliability and robustness.
A wavelet-based denoising technique is employed to elim-
inate undesirable fluctuations in observed data from traffic
sensors. Fuzzy c-mean clustering is used to extract signif-
icant information from the observed data and to reduce its
dimensionality. A radial basis function neural network is
developed to classify the denoised and clustered observed
data. The authors report excellent incident-detection rates
with no false alarms when tested using both real and sim-
ulated data.
Liew and Wang (1998) describe application of wavelets

for crack identification in structures. Marwala (2000) uses
the wavelet transform and neural networks for damage
identification in structures.

7 FINAL COMMENTS

The neural networks articles reviewed in this article have
been published mostly in the following journals (the first
number in the parentheses refers to the year when the first
article on neural networks was published in that particular
journal, and the second number refers to the number of
articles published and reviewed in this article). This list will
guide readers on where to find additional articles on the
subject in the future.

• Computer-Aided Civil and Infrastructure Engineer-
ing (formerly Microcomputers in Civil Engineering,
1986–1997) (1989, 52)

• Journal of Computing in Civil Engineering, ASCE
(1992, 36)

• Computers and Structures (1991, 24)
• Journal of Engineering Mechanics, ASCE (1991, 13)

• Journal of Construction Engineering and Management,
ASCE (1991, 10)

• Journal of Structural Engineering, ASCE (1995, 9)
• Canadian Journal of Civil Engineering (1994, 8)
• Computer Methods in Applied Mechanics and
Engineering (1993, 7)
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