
Application Level Performance Optimizations for CORBA-
Based Systems

Weili Tao,
Systems and Computer Eng. Dept.,

Carleton University,
Ottawa, CANADA.

Shikharesh Majumdar
Systems and Computer Eng. Dept.

Carleton University,
Ottawa, CANADA

+1 (613) 520-5654 code
majumdar@sce.carleton.ca

ABSTRACT
Middleware provides inter-operability in a heterogeneous
distributed object computing environment. Common Object
Request Broker (CORBA) is a standard for middleware proposed
by OMG. Although inter-operability is achieved middleware
often introduces overheads that impair system performance. This
research is concerned with performance enhancement of
CORBA-based systems by deploying appropriate techniques at
the application level. The paper demonstrates that decisions
made by the application software designer and programmer can
have a large impact on the performance of a CORBA-based
system. The paper presents a set of guidelines that can be used at
the design and implementation levels for enhancing system
performance. We focus on issues such as reduction of connection
set up latency, appropriate techniques for parameter passing,
impact of method placement on response time, performance
implications of different ways of packing objects in servers and
load balancing. Insights into system behavior that highlight the
effectiveness of the guidelines as well as capture the relationship
between the CORBA compliant middleware and overall
application performance are presented.

Keywords: CORBA performance, middleware performance,
performance optimization, design guidelines.

1. INTRODUCTION
This research focuses on Distributed Object Computing (DOC)
which is currently one of the most popular paradigms for
application implementation [19]. It combines the desirable
properties of distributed processing such as concurrency and
reliability with the well-known re-usability characteristics of
object oriented technology. The ability to run DOC applications
over a set of diverse platforms is crucial for achieving scalability
as well as gracefully handling the evolution in hardware and
platform design. Additional components are

added to an existing system for handling an increase in workload
or the incorporation of new features in an embedded application
for example. Due to the continuous improvement in computing
technology, the newly added components are often built using a
technology that is different from that used for implementing the
legacy components. Moreover, the new feature in the embedded
system may require a special platform for execution. An effective
middleware system is required to provide the glue that holds
such a heterogeneous distributed system together, and achieve
high system performance. Using such middleware software it is
possible for a client and server written in different languages and
implemented on top of different operating systems to
communicate with one another [24]. The paper is concerned with
the performance of systems using middleware that provide this
communication infrastructure and inter-operability in a
heterogeneous distributed environment. Common Object Request
Broker (CORBA) is an OMG standard for middleware used
widely by distributed system builders [14]. This research is
concerned with such CORBA-based middleware systems.
Although Commercial-Off-The-Shelf middleware products
provide inter-operability they often introduce performance
overheads that adversely affect the latency and throughput which
make them unsuitable for performance demanding applications.
Examples include telephone switches and process control
systems, the proper functionality of which depends on the ability
to respond to a given volume of incoming requests in a timely
manner. When conventional implementation of CORBA is
applied to such systems, middleware overheads often degrade
performance to such an extent that system specifications are
violated [16].
Research at the Real Time and Distributed Systems Lab of
Carleton University is addressing this problem regarding
middleware performance at three different levels. At the
application-middleware interaction level, we have investigated
innovative architectures for client-middleware-server interactions
and their impact on performance [1, 18]. Performance enhanced
middleware systems that exploit limited heterogeneity in systems
and dynamically bypass overhead incurring standard CORBA
operations through a “flyover” when a similar client-server pair
communicates is discussed in [2, 25]. This research focuses on
performance optimization at the application level. Engineering
performance into software and system require the ability to
specify and analyze application performance [22] as well as the

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
WOSP '02, July 24-26, 2002 Rome, Italy
© 2002 ACM ISBN 1-1-58113-563-7 02/07 …$5.00

95

availability of guidelines and techniques for the design and
implementation of performance enhanced software. This paper
focuses on performance optimization techniques at the
application level for CORBA-based systems. The contribution of
the paper includes a set of guidelines that can be used during
application design and implementation. The guidelines are
concerned with four different issues: connection setup latency,
placement of methods into servers, packing of objects into
servers, and load balancing. Based on a synthetic workload, a
network of workstations, and the Orbix MT-2.3 middleware we
have investigated the impact of these performance optimization
techniques. The performance improvement is observed to vary
with the technique: from a few percent to an order of magnitude.
Insights gained into system behavior and performance are
reported. Some of the observations are intuitive, but our
experimental results help the designer to quantify the
performance impact and therefore determine the importance of
the performance optimization in the context of a given
application. The other observations are counter-intuitive and are
therefore important for system design and implementation. The
results of this research are likely to be most useful in the context
of general CORBA-based systems. Although most of the
currently available COTS middleware products are based on this
general CORBA specifications, real time CORBA has started
receiving attention from researchers. Issues specific to real time
CORBA are beyond the scope of this paper.
The layout of the paper is presented. The next section provides a
short description of CORBA and related work on CORBA
performance. A brief introduction into the performance
optimization issues and the environment used in our
investigations are presented in Section 3. Section 4 describes the
results revealing the impacts of the proposed performance
optimization techniques. Our conclusions captured in terms of a
few design and implementation guidelines are presented in
Section 5.
2. CORBA AND RELATED WORK

CORBA has been used in the context of various applications that
include enterprise computing [20] and network management [6].
A number of papers have captured the performance limitations of
several existing CORBA-based middleware products. Low level
C++ wrappers for sockets were observed to outperform two
implementations of CORBA: Orbix and ORBeline. The latency
and scalability problems in conventional middleware products
are discussed further in [5]. The authors observe high latency for
these CORBA implementations that also give rise to poor system
scalability. A performance comparison of a number of products
with a multithreaded architecture, CORBAplus, HP Orb Plus,
miniCOOL, MT-Orbix, TAO, and Visibroker is available in [16].
Using load balancing techniques at the middleware can lead to
an improvement in system performance [15]. The integration of
load balancing with name service is proposed in [4]. The
performance of a group membership protocol based on CORBA
is discussed in [13]. Achieving high performance by using
innovative client-middleware-server interaction architectures is
described in [1] whereas performance optimized ORBs that
exploit limited heterogeneity in systems are described in [2, 25].
The limitations of the original CORBA standard in providing real
time QoS, and in handling partial failures are described in [11].
Real time ORBs that need to provide low latency as well as

predictability have started receiving attention from researchers
(see [9, 8] for example). A more elaborate literature survey on
CORBA performance is available in [12].

Most of the previous works have focused on construction of low
overhead fast ORBs for achieving high performance. This paper
focuses on enhancement of system performance through
appropriate performance optimization techniques applied during
application design and implementation.

3. APPLICATION LEVEL PERFORMANCE
OPTIMIZATIONS

We have considered five different issues that concern application
performance. These include the connection setup latency
experienced by the client when it binds to a server, the
relationship between different ways of parameter passing and
performance, the impact of placement of methods in an object on
the method dispatching latency, the impact of the object packing
technique used on performance and load balancing. The
performance optimization techniques useful in these contexts are
to be considered during application design and implementation
and are therefore important in the context of this paper. A brief
description of the experimental environment and performance
metrics used in the investigation of these techniques are
presented next. The results of the experiment that demonstrate
the performance impact of these techniques are presented in
Section 4.
3.1. Experimental Environment

The experiments used in demonstrating the impact of the
performance optimization techniques are carried out on a
network of sun workstations running under Solaris 2.6. The
workstations are connected by a 100 Mbps Ethernet-based LAN.
The CORBA compliant middleware used is Orbix MT 2.3 [7]. A
closed system running a synthetic workload is used. With such a
workload it is possible to vary the different characteristics such
as service times and message lengths that is crucial for
answering “what if” questions.
Each client ran in a cyclic manner and invoked a single method
in each cycle. In most experiments a client cycle was
immediately followed by another. The only exception is the set of
experiments described in Section 4.5 in which two successive
cycles in a class of clients are separated by a think time. A server
either returns immediately after being called (zero service time)
or executed a for loop to consume a pre-determined amount of
CPU time. Both fixed and exponential distributions have been
used for service times. Unless mentioned otherwise the server
execution times are assumed to be fixed at the mean in the
following discussions. The parameters passed during a method
invocation is controlled both in terms of the mix of data types
used as well as the number of data units in the parameter list
transferred between the client and the server. The number of
workstations used varies from experiment to experiment. A
single workstation is always used however for running the
clients. Since clients consume very little CPU time and mostly
wait for a server response or the completion of a thinking period,
concurrency in client execution is not impaired by running them
as separate threads on the same workstation. The following
performance metrics are used in the evaluation of the various
performance optimization techniques presented.

96

Connection Set up Latency (T): is the time duration between the
invocation of a bind operation made by the client and the time at
which the operation is completed. T is measured in milliseconds
(ms)

Response Time (R): is the time duration between a method
invocation made by a client and the arrival of its result at the
client site. R is measured in terms of milliseconds.

System Throughput (X): is the sum of the throughputs of each
client that is measured in number of client cycles completed per
second.

Note that R and X are related by Little Law [10]: C = XR where
C is the number of clients

Ratio: is a metric used in certain cases for capturing the relative
performances of different options. It is the ratio between the
response time achieved with a specific case and the response
time of the base case identified in the text.

Response times and latencies are measured by inserting Solaris
system calls for time measurement at appropriate positions in the
client code. The experiments were run long enough to achieve an
interval that is lower than ± 5 % of the mean at a confidence
level of 95%.

4. PERFORMANCE OPTIMIZATION GUIDELINES

This paper is concerned with performance optimization
techniques that can be deployed during system design and
implementation. A number of issues that are important in this
context were described at the beginning of Section 3. An
investigation of each of these issues including the performance
data resulting from the experiments conducted on the network of
workstations is presented in a separate subsection.

4.1 Connection Setup Latency
A client needs to bind to a server object before it can invoke the
desired method. A connection is set up between a client and its
server whenever a bind operation is performed. In response to a
bind call, the middleware activates the server if the server was
found inactive. It also identifies the inter-object reference (IOR)
or handle associated with the object and returns it to the client.
The client can then use this handle for invoking the desired
method. The connection setup latency is likely to have a strong
impact on performance if the client binds to the different objects
in the systems frequently. Binding is mandatory when the client
uses an object for the first time. In spite of the availability of a
cached object handle, the client may choose to bind to the object
for avoiding a runtime exception in the event that the object
instance has crashed after the previous bind operation. Wit
replicated objects, the binding call always returns the handle of
an object instance that is functional at the current time. The
different factors that are expected to have a significant impact on
the connection setup latency are presented.
- State of the server: Active (A) or Non Active (NA)
- Distribution of client and server: Same Node (SN) or Different
Nodes (DN)

- Collocation of client and server in the same address space:
Collocated (C) or Not Collocated (NC). This option is available
to the designer only when the client and its server are allocated
on the same node (SN). A feature for collocation available in
Orbix is used to achieve this collocated configuration.
Various combinations of these factors lead to a number different
cases that are listed in Table 1.

Table 1. Configurations for Connectio Setup Latency

Factors Case I Case

II

Case

III

Case

IV

Case

V

Server state NA NA A A A

Distribution SN DN SN DN SN

Collocation NC NC NC NC C

The connection set up latency T measured with each of these
configurations is presented in Figure 1.

Figure 1. Connection Setup Latency Achieved with Different
System Configurations

Activating a server is expected to incur an extra overhead. Our
experimental results indicate that this overhead can be
substantial on a real system. The latencies achieved with Case
III and Case IV that correspond to a system with an active sever
are approximately 32% of those achieved with Case I and Case
II that incurred the extra overhead of server activation. Every
active sever consumes a finite amount of system resources. Thus
even though it may not be possible to keep every server on the
system active for all the time, keeping the “popular” servers
permanently active can lead to a substantial savings in
connection setup latency. A further savings is achieved by
locating the client and server on the same address space: the
latency achieved with Case V is an order of magnitude lower
than those achieved with Case III and Case IV. Note that in most
systems client and servers are compiled into separate processes.
Our experiments demonstrate that the non-intuitive design
decision of client-server collocation can significantly improve
system performance.

0

50

100

150

200

Case I Case II Case III Case IV Case V

Conection
Setup

Latency
 (ms)

97

4.2 Impact of Parameter Passing

System throughputs achieved with various types of native data
types passed as arguments are described in [3]. In this paper we
investigate applications that pass more complex arguments
involving structures that are often passed during a method
invocation. Our experiments demonstrate that the way
parameters involving such complex data structure are passed
between the client and its server can have a significant impact on
performance. Figure 2 displays three different ways of parameter
passing involving an array of structures. Option I (see Figure 2a)
is the most natural in which the array of structures is directly
passed. In Option II (see Figure 2b) the array of structures is
unraveled into two component arrays of primitive data types
whereas in Option III two methods each with a separate
parameter are invoked. We assume that the methods in three
different cases are implemented in such a way that the same
functional result is achieved with each option. The relative
performances of the three options are presented in Figure 3 that
displays the response time for a zero server execution time
observed with each option normalized with respect to that
achieved with Option I.

Option I: Method 1 with one parameter
(a) struct CD [size] {

char c; double d}

Option II: Method1 with two parameters

(b) char [size] c; double [size] d;

Option III: Method1 with parameter char [size] c;
(c) Method 2 with parameter double [size] d;

Figure 2. Different Ways of Parameter Passing (a) Option I
(b) Option II (c) Option III.

Option II demonstrates the best performance. Its relative
performance with respect to the most natural Option I increases
with the array size. A performance improvement of over 100% is
observed, for example, for arrays with 1000 or more elements. It
is interesting to note that although at lower array sizes Option III
is inferior in performance to Option I, Option III assumes the
position of the second best performer at higher array sizes.

The rationale behind system behavior is explained with the help
of Table 2 that shows the data alignment specified in CORBA’s
CDR format that is used by the ORB for transferring data over
the wire. Since data types such as long and double have to start
at specific byte boundaries padding bytes may be used between
two different types of data elements. For example, if a double is
to follow a char and the char starts at position 0, the double will
start at position 8 (see Table 2) resulting in padding bytes
between the two elements. Padding bytes do not have any
semantic value but consume bandwidth. By unraveling the
structure, Option II leads to an efficient packing of the elements
of the same type together and reduces the number of padding
bytes. The concomitant savings are two fold: in terms of
communication time as well as in terms of CPU time consumed
in marshalling and unmarshalling. For higher array sizes Option
III performs better than Option I. Although Option III incurs an

additional method invocation overhead, this additional overhead
is offset at higher array sizes by the reduction in the number of
padding bytes. Combining two methods into one makes intuitive
sense during system re-design and modification aimed at
performance improvement. System modification for performance
enhancement is common in the software industry and was
observed by the author in the context of telephone switches built
by Nortel. The relative performances of Option I and Option III
demonstrate that an unexpected result may accrue if this re-
designing operation is not performed carefully. This is discussed
further in Section 5.

Table 2 . CDR Alignment for Primitive Fixed Length Types.

Starting Byte

Boundary

Data types

Multiples of 1 Char, octet, boolean

Multiples of 2 Short, unsigned short

Multiples of 4 Long, unsigned long, float, enumerated

types

Multiples of 8 Long, long, unsigned long long, double,

long double

Figure 3. The Effect of Parameter Passing on Response Time
(Zero Server Execution Time).

The experiments were repeated with nested structures as
argument for the called method. The results confirm that the best
performance is achieved by calling a single method and
unraveling the parameters with an array for each primitive data
component of the structure being sent as a separate parameter.
Due to space limitations the numeric results are not included (see
[23] for details).

4.3 Method Placement

An object can contain multiple methods. Whenever a method is
invoked, the request is steered to the appropriate code
corresponding to the method. The delay experienced in

0%

50%

100%

150%

200%

1 #100 #1000 #5000

Array Size

R
at

io

Left: Option I Middle: Option II Right: Option III

98

dispatching the request is referred to as the method dispatching
latency. Other studies have reported the dependence of this
dispatching latency on the position of the method declaration in
the interface for the object [3, 17]. An investigation of this
relationship is presented in this section. A designer can be faced
with the question of how many methods are to be packed in one
object. For example, given a number of methods it may be
possible to encapsulate all the methods in one object or to pack a
single method in a separate object. Does the packing decision
have a significant impact on performance? We have compared
two systems Model I and Model II. In Model I there are 50
methods packed into a single object whereas in Model II there
are 50 objects each containing a single method. The dispatching
latency for a method with a given position in the interface
definition is plotted in Figure 4 for both Model I and Model II. It
is measured as the response time obtained with a zero server
execution time. The dispatching latency is observed to increase
linearly with the position of the method in the interface. The
slope of the line is small. A similar observation has been made
with a system with 500 methods (see [23] for details). Model I
performs better than Model II. This suggests that a smaller
method dispatching latency is achieved when all the objects are
packed into a single object. Note that this observation is
dependent on the method demultiplexing strategy used by the
ORB product and is likely to vary from one product to another

Figure 4 . Method Dispatching Latency (Zero Server
Eexcution Timnme)

4.4. Packing of Objects and Distribution of Servers
Consider an application consisting of multiple client-server pairs.
The impact of packing objects into servers and distribution of
servers on separate nodes when multiple CPU’s are available are
discussed in this sub-section. How many methods should be
placed in an object? Should a separate server process be used for
each object? How should these servers be distributed among the
computing nodes? In order to investigate these questions we have
constructed four different prototypes for a system. Each client
invokes a separate method and for the data presented in Figure 5,
a method execution consumes 0.03 ms of CPU time. For the
sake of simplicity we assume that each method is invoked by a
distinct client. Each prototype corresponds to a particular mode
that is described next.

♦ Mode I: All methods are placed in a single object.

♦ Mode II: Each method is placed in a separate object. All the
objects are packed into a single server.

♦ Mode III: Each method is placed in a separate object. Each
object is packed into a separate server. All the servers are
allocated to the same node.

♦ Mode IV: Each method is placed in a separate object. Each
object is packed into a separate server with each sever
running on a separate node.

A system with a variable number of clients and servers is
experimented with. The number of workstations used for the
servers is dependent on the mode used. The maximum number of
servers used in this experiment is 15 that is determined by the
number of workstations that are available in our measurement
network. The response time observed for a method invocation in
each of these modes is presented in Figure 5. As expected Mode
IV that maximizes the concurrency of server execution by
allocating each server on a separate node gives rise to the best
performance. The performance differences among the different
options increase with the number of clients in the system. At
higher number of clients Mode III performs the worst whereas
Mode I and Mode II demonstrate a comparable performance.

Figure 5. Effect of Server Packing and Distribution on
Performance (Method Execution Time = 0.03 ms).

One of the reasons for the inferior performance of Mode III is the
additional context switching overhead among multiple processes
incurred in this option. The data presented in Figure 5 indicates
that on a single CPU system, packing multiple objects,
irrespective of their functionalities, into a single server is
attractive for optimizing system performance. This is contrary to
an intuitive placement of functionally unrelated objects into
separate servers. The impact of method placement into objects on
performance is some what secondary. A similar observation is
made for systems with higher server execution times [23].

4.5. Load Balancing
Load balancing refers to the equitable distribution of workload
among multiple instances of system resources. Three types of
load balancing strategies are described in [15]. In network-based
load balancing IP routers and domain name servers can steer
successive requests for a resources to different IP addresses each
of which corresponds to a separate instance of the desired
resource. Load balancing is performed at the operating system
level by migrating processes from a heavily loaded node to a
node that is currently experiencing a lower load [21]. Load
balancing can also be performed at the middleware level by a

15.0

15.5

16.0

16.5

17.0

17.5

1st
method

10th
method

20th
method

30th
method

40th
method

50th
method

la
te

nc
y

(m
s)

Model I Model II

-

100

200

300

400

500

5 # 8 # 10 # 15

No. of Clients

R
es

po
ns

e
Ti

m
e

(m
s)

Mode I Mode II Mode III Mode IV

99

CORBA name service agent that returns separate handles for
different client requests to different instances of a replicated
object. Providing a load balancing service in CORBA is also
discussed in [4, 15]. Load balancing, however, is not a mandatory
component of an ORB. In the absence of such a centralized
service, load balancing may be performed at the application level
for dedicated applications in which multiple clients and servers
cooperate with one another to achieve a common objective.
Examples include telephone switches and various embedded
systems. This section describes a preliminary investigation of
application level load balancing.
Five strategies are investigated to determine the effectiveness of
application level load balancing. The performance evaluation is
done in the context of a system characterized by two classes of
clients busy and non-busy. A busy client operates cyclically; in
each cycle it invokes a method and repeats the cycle as soon as
the results of the method invocation is received. A non-busy
client is similar to a busy client except that its two consecutive
cycles are separated by a think time. The system consists of S
replicated servers and the method invocation can be served by
any one of the S instances. The total number of clients in the
system are C and half of them are assumed to be busy and half
non-busy. The think time is fixed at 500 ms.

The strategies used in this investigation of load balancing are
briefly described.

♦ Strategy 1 (Unbalanced System): Half of the servers is used
by the busy clients whereas the other half are used by the
non-busy clients. This represents the pathological case in
which the load is poorly distributed.

♦ Strategy 2 (Balanced System): Each server instance is used
by one busy and one non-busy client. This is one of the best
possible static load balancing strategy that can be deployed
during system design. However, an exact a priori
knowledge of the workload generated by the clients is
required.

♦ Strategy 3 (Half Dynamic Self Round Robin): The selection
of a server is dynamically performed at method invocation
time by each busy client. A busy client selects a different
server instance for each successive method invocation. Each
non-busy client is statically bound to a fixed server instance.
The non-busy clients are divided equally among the servers.
The server handles are assumed to be acquired by each
client during system initialization.

♦ Strategy 4 (Full Dynamic Self Round Robin): Both busy
and non-buy clients select a server instance dynamically.
Each client uses a local Round Robin strategy and routes
successive method invocations to different servers. The
server handles are assumed to be acquired by each client
during system initialization.

♦ Strategy 5 (Dynamic Central Round Robin): Instead of
performing routing decisions locally, the system uses a
central dispatcher node for determining the server instance
to be used by a client. Each client contacts the dispatcher
that returns a server handle to the client. The dispatcher
uses a Round Robin strategy for selecting the server to be
used by a client.

Experiments are performed for two different systems. The first
system is characterized by C= 4 and S =2 whereas the second is
characterized by C = 8 and S = 4. The experimental results for
the first system with a server execution time of 10 ms are
presented in Figure 6.
The highest system throughput is achieved with Strategy 2 in
which the load is statically balanced a priori. Both the self round
robin strategies perform comparably and occupy the rank next to
Strategy 2. The dynamic self round robin strategies perform
comparably with one another and occupy the rank next to
Strategy 2. It is interesting to note that the worst performance is
achieved by Strategy 5. The extra overhead incurred in getting
the object handle from the dispatcher is one of the reasons for the
inferior performance of the Dynamic Central Round Robin. The
relative performance of the strategies with respect to Strategy 1
are captured in Figure 7 for various server demands. The
rankings among the policies remain the same for different server
execution times. With the exception of Strategy 5, the
throughput for a given strategy such as Strategy 2 decreases
monotonically with server execution times: the highest
throughput is achieved for a server execution time of 10 ms and
the lowest for a server execution time of 120 ms. However, the
performance differences among the strategies seem to diminish at
high server demands. Both the servers in systems characterized
by high server demands are busy most of the time and
comparable performance is achieved by all the load balancing
strategies. Performance of a larger system with C = 8 and S = 4
is presented in Figure 8. Strategy 2 demonstrates the highest
performance improvement. Strategy 5 takes the second position
in terms of performance. The advantage of a centralized load
balancing strategy seems to be observable on larger systems in
which the handle fetching overhead is offset by the performance
improvement produced by load balancing..

Figure 6. Performance of Load Balancing Strategies (C=4,
S=2, Server Execution Time =10 ms, think time = 500 ms).

With the exception of Strategy 5, the throughput for a given
strategy such as Strategy 2 decreases monotonically with server
execution times: the highest throughput is achieved for a server
execution time of 10 ms and the lowest for a server execution.
The data presented in Figure 7 and Figure 8 correspond to fixed
service times. A similar observation regarding the relative
performances of the strategies are made when server execution
times and think times are exponentially distributed (see [23] for
details).

5. Conclusions

-
10
20
30
40
50
60

Case I Case II Case III Case IV Case V

S
ys

te
m

Th
ro

ug
hp

ut
(c

yc
le

s/
se

c)

100

Heterogeneity is natural in distributed object computing systems.
CORBA provides inter-operability in such heterogeneous
environments. Additional overheads incurred in the CORBA
compliant ORB deteriorate system performance. Achieving high
performance in CORBA-based systems by using innovative
client-middleware-agent architecture and by exploiting limited
heterogeneity in systems are discussed in the literature. This
paper focuses on performance optimizations at the application
level. Based on an empirical approach we have investigated the
impact of a number of design and implementation decisions on
performance. The insights gained from the results of our
experiments conducted on a network of sun workstations running
Solaris 2.6 and using the Orbix MT-2.3 middleware have
resulted in a set of guidelines for the system designer and
implementers. These guidelines are briefly summarized.

♦ Connection Setup Latency: The state of the server has a
strong impact on connection setup latency. In resource
constrained systems in which it is not possible to keep all
the servers active maintaining an active state for at least the
popular servers that are used often can lead to a large
reduction in the connection setup delay.
Different modules such as clients and servers are typically
compiled into separate processes. When the client and
server are allocated on the same node, collocating the client-
server pair in the same address space is recommended: an
order of magnitude improvement in performance is achieved
when the client-server collocation is used. Note that an
Orbix binding function was used in name resolution. The
importance of the factors such as server activation and
client-server collocation identified in this study as well as
whether or not additional factors need to be considered in
the context of a system using CORBA naming service for
name resolution warrant investigation.

Figure 7. Performance Improvement for Different Server
Demands (C=4, S=2, think time = 500ms)

Figure 8. Performance Improvement for Different Server
Demands (C=8, S=4, think time = 500 ms).

♦ Parameter Passing: Complex data structures are often
passed between a client and its server. Significant
performance differences are observed among different ways
of parameter passing. The performance differences are
observed to increase with the size of the parameter list.
Unraveling complex structures into the component primitive
types is observed to give rise to the best performance. More
than 100% improvement in performance is observed with
the system investigated in Figure 3. Although the technique
is observed to produce a performance benefit for all
parameter sizes a larger performance benefit is expected to
accrue for communication bound systems characterized by
larger messages exchanged between the client and the
server.

♦ Combination of Methods and Performance Recovery: A
secondary, nevertheless important observation is made in
the context of parameter passing discussed in Section 4.2.
Additional passes through existing code are some times
made for reducing system overheads for improving
performance. Combining multiple methods into one is often
performed during such performance recovery operations for
reducing the method invocation overheads. The empirical
data in Figure 3 demonstrates a non-intuitive result: the
system with two method invocations performs better than
the system with a single method invocation passing an array
of structures when the size of the array is large. The
occurrence of such a non-intuitive result indicates that a
careful consideration of the application is required before
performing such performance operations.

♦ Method Placement: Compared to the other factors method
placement is observed to have the least impact on
performance. The method dispatching latency is reduced by
packing a larger number of methods into an object. The
position of the method in the interface has a small impact on
performance: methods called more frequently should thus be
defined as close to the beginning of the interface
declaration as possible. Note that this observation is
dependent on the search method used by a particular ORB

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

Strgy 1 Strgy 2 Strgy 3 Strgy 4 Strgy 5

Strategy

Th
ro

ug
hp

ut
 Im

pr
ov

em
en

t

1 0 m s 2 0 m s 4 0 m s 6 0 m s 80ms 120ms

0 %

1 0 %

2 0 %

3 0 %

4 0 %

5 0 %

6 0 %

7 0 %

8 0 %

S t r g y 1 S t r g y 2 S t r g y 3 S t r g y 4 S t r g y 5
S t r a t e g y

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t

1 0 m s 2 0 m s 4 0 m s 6 0 m s 8 0 m s 1 2 0 m s

101

product and may/may not be significant in the context of
different products.

♦ Packing of Objects: When all the objects are allocated on
the same CPU the designer should avoid placing the objects
on separate servers. Collocating the objects into the same
server process or packing all the methods into one object
demonstrated a higher performance in comparison to the
system in which a separate process is created for each
object.

♦ Load Balancing: Static load balancing based on a priori
knowledge of client-server workload characteristics
demonstrated the best performance for the workloads used
in our experiments. Although the availability of such a
priori knowledge is possible for dedicated applications it is
unlikely to be available during earlier stages of system
design. Moreover, in many applications a client may not
remain in one “busy” or “non-busy” class and may change
its behavior depending on system state. The dynamic
strategies are useful in such a situation. The local strategies
in which each client selects a server instance independently
using a round robin strategy is preferable for smaller
systems. For more complex systems using a centralized
dispatcher-based global strategy can significantly improve
system throughput.

Although most of the principles underlying system performance
discussed in this paper are general and are expected to hold in
the context of different middleware products, the degree of the
performance impacts of the factors may vary with the middleware
product used. Extending this study on systems using different
middleware products is warranted. We have used fixed and
exponential distributions for the generation of service times.
Using distributions that give rise to more variable service times
forms an important direction for future research. Only two
classes were used in the preliminary investigation of load
balancing presented in this paper. Validation of the conclusions
for systems with more than two classes of clients under different
workload types is required. The results presented in this paper
are based on synthetic workload. Applying the guidelines to real
applications is worthy of investigation.

ACKNOWLEDGMENTS

This work was supported by CITO and Nortel networks. Much of
the motivations for this work came from Brian Carroll and Mark
Christopher of Nortel Networks in Ottawa.

References
[1] I. Abdul-Fatah and S. Majumdar, “Performance Comparison
of Architectures for Client-Server Interactions in CORBA”, IEEE
Trans. On Parallel and Distributed Systems, Vol. 13, No.2,
February 2002, pp. 111-127.
[2] I. Ahmad and S. Majumdar, “Achieving High Performance
in CORBA-Based Systems with Limited Heterogeneity”, Proc.
IEEE International Symposium on Real Time Object Oriented
Computing, Magdeburg, Germany, April 2001, pp. 350-359.

[3] V. Amar, “Benchmark Results”,
www.beust.com/virginia/benchmark, July 2000.

[4] T. Barth, G. Flender, B. Freisleben and F. Thilo, “Load
Distribution in a CORBA Environment”, Proc. International

Symposium on Distributed Objects and Applications (DOA'99),
Edinburgh, UK, September 1999.

 [5] A.S. Gokhale and D.C. Schmidt “Measuring and Optimizing
CORBA Latency and Scalability Over Highspeed Networks”,
IEEE Transaction on Computers, Volume 47, No. 4, April, 1998.
[6] P. Haggerty, K. Seetharaman, "The Benefits of CORBA-
Based Network Management", Communications of the ACM,
Vol. 41, No. 10, October 1998, pp. 73-80.
 [7] Iona Technologies, Orbix Programmers’ Guide, Dublin,
Ireland, 1997.
[8] F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L.C.
Magalhaes, and R.H. Campbell “Monitoring, Security, and
Dynamic Configuration with the dynamic TAO Reflective ORB”,
Proc. IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing (Middleware 2000),
Pallisades, New York April 3-7, 2000. pp.121-143.
 [9] B. Li and K. Nahrstedt, “QualProbes: Middleware QoS
Profiling Services for Configuring Adaptive Applications”, Proc.
IFIP International Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware 2000), Pallisades,
New York April 2000, pp.256-272.
 [10] J.D.C. Little, “A Proof of the Queueing Fdormula L =
lambda W”, Operations Research, Vol. 9, 1961, pp. 383-387.
[11] S. Mafeis, D.C. Schmidt, “Constructing Reliable Distributed
Comunication Systems with CORBA”, IEEE Communications
Magazine, Vol. 35, No. 2, February 1997, pp. 72-78.
[12] S. Majumdar, W.-K. Wu, “CORBA Middleware: a
Performance Perspective” Contract Report for Department of
National Defense, Department of Systems and Computer
Engineering, Carleton University, October 2000.

[13] S. Mishra and X. Liu, “Design, Implementation and
Performance Evaluation of a High Performance CORBA Group
Membership Protocol”, Proc. 7th International Conference on
High Performance Computing, Bangalore, India, December 17-
20, 2000.

[14] Object Management Group, “The Common Object Request
Broker: Architecture and Specification”, 2.3 ed., June 2000.
[15] D.C. Schmidt, O. Othman, C. O’Ryan, “Strategies for
CORBA middleware-based Load Balancing”, Distributed
Systems Online, Vol.2, No.3, March 2001,
http://dsonline.computer.org/0103/features/oth0103_print.htm.

[16] D.C. Schmidt , “Evaluating Architectures for Multithreaded
CORBA Object Request Brokers”, Communication ACM, vol 41
No. 10, October 1998, pp. 54-61.
 [17]] D.C. Schmidt and A. Gokhale, “Evaluating the
Performance of Demultiplexing Strategies for Real-time
CORBA”, Proc. GLOBECOM '97 conference, Phoenix, AZ,
November, 1997.
 [18] E-K. Shen, S. Majumdar and I. Abdul-Fatah, “High
Performance Adaptive Middleware for CORBA-Based Systems”,
Proc. ACM Principles of Distributed Computing (PODC)
Conference, Portland, July 2000, pp. 119-207.
[19] E. Shokri, P. Sheu, “Real-Time Distributed Computing: An
Emerging Field”, IEEE Computer, June 2000, pp. 45-46.
[20] J. Siegel, “A Preview of CORBA 3”, IEEE Computer, May
1999, pp. 114-116.

102

[21] M. Singhal, N. Shivaratri, Advanced Concepts in Operating
Systems, Mc-Graw Hill, 1994.

[22] C.U. Smith, Performance Engineering of Software Systems,
Addison-Wesley, 1990.

[23] W. Tao Application Level Guidelines for Building High
Performance CORBA-Based Systems, M.C.S. Thesis, Dept. of
Computer Science, Carleton University, Ottawa, Canada, May
2002.

[24] S. Vinoski, “CORBA: Integrating Diverse Applications
Within Distributed Heterogeneous Environments”, IEEE
Communications Magazine, Vol. 35, No. 2, February 1997, pp.
46-55.
[25] W.-K. Wu, S. Majumdar, “Engineering CORBA-Based
Systems for High Performance”, Proc. 2002 International
Conference On Parallel Processing (ICPP), Vancouver, August
02 [to appear].

103

