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ABSTRACT
Mobile ad hoc networking (MANET) has become an excit-
ing and important technology in recent years because of the
rapid proliferation of wireless devices. MANETs are highly
vulnerable to attacks due to the open medium, dynamically
changing network topology, cooperative algorithms, lack of
centralized monitoring and management point, and lack of a
clear line of defense. In this paper, we report our progress in
developing intrusion detection (ID) capabilities for MANET.
Building on our prior work on anomaly detection, we in-
vestigate how to improve the anomaly detection approach
to provide more details on attack types and sources. For
several well-known attacks, we can apply a simple rule to
identify the attack type when an anomaly is reported. In
some cases, these rules can also help identify the attackers.
We address the run-time resource constraint problem using
a cluster-based detection scheme where periodically a node
is elected as the ID agent for a cluster. Compared with the
scheme where each node is its own ID agent, this scheme
is much more efficient while maintaining the same level of
effectiveness. We have conducted extensive experiments us-
ing the ns-2 and MobiEmu environments to validate our
research.

1. INTRODUCTION
In recent years, with the rapid proliferation of wireless de-
vices, e.g., mobile laptop computers, PDAs, and wireless
telephones, the potentials and importance of mobile ad hoc
networking have become apparent. A mobile ad hoc net-
work (MANET) is formed by a group of mobile wireless
nodes often without the assistance of fixed network infras-
tructure [20]. The nodes must cooperate by forwarding
packets so that nodes beyond radio ranges can communicate
with each other. There are a number of important MANET
applications, e.g., battlefield operations, emergency rescues,
mobile conferencing, home and community networking, and
sensor dust [20].

MANETs are much more vulnerable to attacks than wired
(traditional) networks due to the open medium, dynam-
ically changing network topology, cooperative algorithms,
lack of centralized monitoring and management point, and
lack of a clear line of defense. There are recent research ef-
forts, e.g., [29, 10], in securing the ad hoc routing protocols
(e.g., [13, 21, 14, 22]). Most of these are prevention tech-
niques. Experience in security research in the wired environ-
ments has taught us that we need to deploy defense-in-depth
or layered security mechanisms because security is a process
(or a chain) that is as secure as its weakest link [26]. In ad-
dition to prevention, we also need detection and response, as
well as security policies and vulnerability analysis. Although
many intrusion detection (ID) techniques have been devel-
oped in the wired networks, the vast differences in MANET
require that we design new intrusion detection architectures
and algorithms.

In this paper, we report our progress in developing ID capa-
bilities for MANET. We first give an overview of the main
ideas and results.

First, it is often very hard to distinguish between intrusions
and legitimate operations or conditions in MANET because
of the dynamically changing topology and volatile physical
environment. Intrusion detection thus requires extensive ev-
idence gathering and comprehensive analysis. Building ef-
fective ID models requires a systematic approach. In prior
work [11], we developed a learning-based algorithm for au-
tomatically computing anomaly detection models based on
the correlations among a large set of features. In this pa-
per, we discuss further how to provide detailed information
about intrusions from anomaly detection. We show that, for
several (well-known) attacks, we can apply a simple rule to
identify the attack type after an anomaly is reported. In
some cases, these rules can also be used to identify where
the attacking node(s) is(are).

Second, intrusion detection in MANET must be carried out
in a distributed fashion because of the absence of infrastruc-
ture and fixed topology. In our architecture, a detection
agent runs on each “monitoring” node to detect local intru-
sions, and collaborates with other agents to investigate the
source of intrusion and coordinate responses. A MANET
node typically has limited battery power, thus it is not ef-
ficient to always make each MANET node the monitoring
node for itself, especially when the threat level is low. In
this paper, we describe a cluster-based detection scheme



where a cluster of neighboring MANET nodes can period-
ically, randomly and fairly elect a monitoring node for the
entire neighborhood.

The rest of the paper is organized as follows. In order to
put our research into proper context, we first briefly discuss
how intrusion detection can complement other security tech-
nologies in MANET. We then give an overview of our prior
work in anomaly detection and discuss how to apply rules
on detecting attack types in Section 3. We present a cluster-
based intrusion detection scheme in Section 4. Related work
is discussed in Section 5.

2. MOTIVATIONS AND ASSUMPTIONS
Intrusion prevention measures, such as authentication and
encryption, e.g., [29, 10, 31, 3], can be used as the first
line of defense against attacks in MANET. However, even
if these prevention schemes can be implemented perfectly,
they still cannot eliminate all attacks, especially the internal
or insider attacks. For example, mobile nodes (and their
users) can be captured and compromised. The attacker can
then obtain the cryptographic keys. There are many other
internal attack methods, including using worms and viruses
that propagate within MANETs.

Intrusion detection and response presents a second line of
defense. Given that new vulnerabilities will continue to be
discovered and that our adversaries will continue to invent
new attack methods, especially for a relatively new tech-
nology such as MANET, we as researchers must focus on
developing effective detection approaches. As discussed in
Section 1, according to the characteristics of MANET, we
need to develop a systematic approach for building detec-
tion models, identify attacking source to facilitate response
actions, and design a distributed and efficient IDS architec-
ture. Although we currently focus on the ad hoc routing
protocols, and different network layers may use different au-
dit data and have different performance and efficiency issues,
we believe that in general, the same principles apply to the
problems of building ID models for other layers.

It is well understood that for the wired environments we
need to deploy defense-in-depth or layered security mecha-
nisms. The same principle applies to MANET because not
a single approach can solve all MANET security problems.
However, it is not realistic to have all security mechanisms
activated at all time because of the resource constraints in
MANET. Instead, we need to study the resource consump-
tion characteristics of the security mechanisms, and develop
strategies for activating the appropriate mechanisms accord-
ing to run-time requirements. For example, rather than us-
ing an always-on cryptography-based prevention technique,
periodic intrusion detection (analysis) may be a better strat-
egy to defend against attacks that occur infrequently.

In our current research, we make the following assump-
tions. First, an attacker may try to compromise not only
the MANET routing protocols but also the IDS itself. Thus,
the IDS must detect problems in its own operations. Sec-
ond, although our ID algorithms and protocols do not rely on
other security mechanisms, authentication (based on cryp-
tography or human interaction) and encryption mechanisms
are necessary in many situations in order to respond to at-

tacks (e.g., re-authenticate in order to exclude a compro-
mised node) or raise the security level (e.g., switching to an
authenticated protocol if suspicious activities are detected).
Third, in most cases, the attacker does not want to take the
risk of being detected, especially if effective response actions
can take place. Thus, an effective and robust IDS is a good
deterrent to attackers. Fourth, we can make intrusion de-
tection efficient because running an ID module only at the
clusterhead periodically can still capture sufficient anomaly
evidences for many attacks. In short, we are taking an op-
timistic approach in which we develop effective, robust, and
efficient ID algorithms and protocols to detect attacks, and
invoke other security mechanisms only when necessary (and
possible).

3. LOCAL INTRUSION DETECTION TECH-
NIQUES

In this section, we summarize our prior work in anomaly
detection and discuss further how to find out attack types
and sources for some known attacks after an anomaly is
reported. Let us first describe some attacks in MANET and
the intrusions used in our experiments.

3.1 Attacks in MANET
From the point of view of intrusion detection and response,
we need to observe and analyze the anomalies due to both
the consequence and technique of an attack. While the con-
sequence gives evidence that an attack has succeeded or is
unfolding, the technique can often help identify the attack
type and even the identity of the attacker.

Attacks in MANET can be categorized according to their
consequences as the following:

1. Blackhole: All traffic are redirected to a specific node,
which may not forward any traffic at all.

2. Routing Loop: A loop is introduced in a route path.

3. Network Partition: A connected network is partitioned
into k (k ≥ 2) subnetworks where nodes in different
subnetworks cannot communicate even though a route
between them actually does exist.

4. Selfishness: A node is not serving as a relay to other
nodes.

5. Sleep Deprivation: A node is forced to exhaust its bat-
tery power.

6. Denial-of-Service: A node is prevented from receiving
and sending data packets to its destinations.

Some of the common attacking techniques are:

1. Cache Poisoning: Information stored in routing tables
is either modified, deleted or injected with false infor-
mation.

2. Fabricated Route Messages: Route messages (route re-
quests, route replies, route errors, etc.) with malicious
contents are injected into the network. Specific meth-
ods include:



(a) False Source Route: An incorrect route is ad-
vertised into the network, e.g., setting the route
length to be 1 regardless where the destination is.

(b) Maximum Sequence: Modify the sequence field in
control messages to the maximal allowed value.
Due to some implementation issues, a few proto-
col implementation cannot effectively detect and
purge these “poluted” messages timely so that
they can invalidate all legitimate messages with a
sequence number falling into normal ranges for a
fairly long time.

3. Rushing: This can be used to improve Fabricated Route
Messages. In several routing protocols, some route
message types have the property that only the mes-
sage that arrives first is accepted by a recipient. The
attacker simply disseminates a malicious control mes-
sage quickly to block legitimate messages that arrive
later.

4. Wormhole: A tunnel is created between two nodes that
can be utilized to secretly transmit packets.

5. Packet dropping: A node drops data packets (condi-
tionally or randomly) that it is supposed to forward.

6. Spoofing: Inject data or control packets with modified
source addresses.

7. Malicious Flooding: Deliver unusually large amount of
data or control packets to the whole network or some
target nodes.

The above lists are by no means complete. Simulating a
realistic attack involves selecting a technique(s) that will
lead to a consequence(s). This is a non-trivial task. In our
experiments, we implement and use the following intrusions:

1. Intrusion I: Blackhole and Sleep Deprivation using False
Source Route and Maximum Sequence and Rushing.
The attacker broadcasts a falsified source route of length
1 from the victim to any node. The advertisement
is rushed and tagged with Maximum Sequence to de-
feat valid route messages from the victim. The conse-
quences are that the victim node becomes a blackhole
and is in sleep deprivation because it receives and for-
wards all traffic.

2. Intrusion II: Selfishness and Denial-of-Service using
Packet Dropping. The malicious node selfishly drops
packets and as a result, some node(s) suffers from
Denial-of-Service.

3. Intrusion III: Sleep Deprivation using Malicious Flood-
ing. The victim is in sleep deprivation because it is
flooded by a large amount of packets.

4. Intrusion IV: Routing Loop using Spoofing. The at-
tacker spoofs some route advertisement messages to
create a routing loop.

The logic behind our selection is as follows. They involve
most of the attack techniques list above and we can imple-
ment under a simulation environment, and they are realistic

and relative complete intrusion scenarios each of which in-
cludes both one or more attack consequences and attack
techniques. Note that although real attack scenarios and
intrusion traces are much preferred for research purposes,
they are not currently publicly available yet since MANET
is still an experimental environment. We look forward to
every such possibility and hopefully real data traffic can be
integrated into our platform for evaluation soon.

3.2 Anomaly Detection
In our prior work [11], we proposed a learning-based ap-
proach for constructing anomaly detection models for
MANET routing protocols. We believed that strong feature
correlation exists in normal behavior, and that such correla-
tion can be used to detect deviations caused by abnormal (or
intrusive) activities. We developed a cross-feature analysis
anomaly detection approach that explores the correlations
between each feature and all other features. This approach
computes a classifier Ci for each fi using {f1, f2, . . . , fi−1,
fi+1, . . . , fL}, where {f1, f2, . . . fL} is the feature set. Ci

can be learned from a set of training data. It predicts the
most likely value of fi based on the values of other fea-
tures. The original anomaly detection problem, i.e., whether
a record is normal or not, is solved as follows. Given a
record x =< v1, v2, . . . , vL >, first apply each Ci to compute
pi(vi|v1, v2, . . . , vi−1, vi+1, . . . , vL), i.e., the probability of vi

given the values of other features. Then compute the aver-

age probability
P

i
pi

L
and compare it with a threshold. An

alarm is raised if it is lower than the threshold because it im-
plies the record is highly unlikely. Obviously, the threshold
value determines the false alarm rate. We use a validation
data set and a criteria on false alarm rate, e.g., ≤ 1%, to set
the threshold.

In our study, we define a total of 141 features, which is
listed in Appendix A. We did not rely on knowledge of
attacks because our goal is to detect anomalies caused by
known or new attacks. These features capture the basic
view of network topology and routing operations, as well as
traffic patterns and statistics. In addition, we include the
feature “absolute velocity” which characterizes the physical
movement of a node.

Table 1: Experiment Parameters

Parameter Value/Choice

Classifier C4.5 [25]
Execution Time (Training) 10000s
Execution Time (Testing) 1000s
Feature Sampling Interval 5s
Node Movement Model Random Way-Point Model
Peak Movement Speed 5 ∼ 40m/s
Topology 500m × 1500m
Transmission Range 250m
Maximum Bandwidth 2Mb/s
Maximum Connection 10

We conducted experiments using the ns-2 simulator [9]. For
brevity, we only summarize results on one routing protocol,
namely, the Ad Hoc On-demand Distance Vector (AODV)
protocol [22]. The parameters in our experiments are listed



in Table 1. We use trace data of normal runs for training
the anomaly detection models. We then run the attacks and
collect the trace data for evaluating the models. For exam-
ple, if in one simulation the total running time is 10,000
seconds, and the sampling rate, by which the feature values
are computed, is 5 seconds, then the trace data has 2,000
data points or events. Each event is labeled as normal or
abnormal according to when and for how long an attack is
running (and how long the effect lasts). When evaluating
an anomaly detection model, we compute how many abnor-
mal events are correctly identified (i.e., the detection rate)
and how many normal events are incorrectly identified as
anomalies (i.e., the false alarm rate). In our experiments,
an anomaly detection model computes features and detects
anomalies on each node locally. As long as there is one de-
tector (on one node) identifies an abnormal event, we count
it as a anomaly alert (true detection or false alarm) for the
MANET. The intuition is that when there is an intrusion,
we need to have at least one node that detects the anomaly.
Later in the paper, we will discuss how the MANET nodes
can cooperatively identify the attack type and attacker.

Table 2: Experiment Results: Anomaly Detection
Only

Attack Detection Rate False Alarm Rate
Intrusion I 85% 0.97%
Intrusion II 98% 0.89%
Intrusion III 99% 0.95%
Intrusion IV 87% 0.98%

The detection results are shown in Table 2. Our anomaly
detector has better performance on Intrusion II and Intru-
sion III because their attack techniques are very blatant and
the consequences are very obvious. Whereas for Intrusion I
and Intrusion IV, the techniques for creating blackhole and
routing loop are more subtle, and the consequences are less
observable.

3.3 Identifying Attack Types
It is essential that an IDS not only detects an anomaly
but also identifies the attack type and the attacker when-
ever possible. Without them, it is hard to determine how
to respond meaningfully without interrupting normal com-
munication. Here we propose an approach to obtain these
information after anomalies have been discovered through
anomaly detection. The basic idea is to determine the de-
tailed attack information from a set of identification rules,
which are pre-computed for known attacks. We are going to
show that rules are available for a lot of well-known attacks.

First of all, these rules may involve more features other than
those have already been computed and used in anomaly de-
tection. One may point out these rules can be applied in
parallel with anomaly detection to save computation time,
the extra cost to compute these features may defeat this
“optimization” as they are fairly expensive. As a result,
they should only be computed after an anomaly is reported,
which should be rare.

For each attack, we call the node that runs the correspond-
ing detection rule the “monitoring” node, and the node

whose behavior is being analyzed (i.e., the possible attack-
ing or misbehaving node) the “monitored” node. For attacks
related to Packet Dropping, the monitoring node is a 1-hop
neighborhood of the “monitored” node. Both the attack
type and the attacker can be identified because the monitor-
ing node can overhear traffic within its 1-hop neighborhood.
For Blackhole attacks, the monitoring node is also the mon-
itored node because the detection rule relies on information
that is available only on the node (obviously, if an attacker
has full control of the node, then the detection modules can
be disabled unless they run on some tamper-resistant de-
vice). For Flooding and Maximum Sequence attacks, only
the attack type, but not the attacker, can be identified by a
monitoring node.

We now describe some notations of statistics (features) used
in these rules. We use M to represent the monitoring node
and m the monitored node.

• #(∗,m): the number of incoming packets on the moni-
tored node m.

• #(m,∗): the number of outgoing packets from the mon-
itored node m.

• #([m],∗): the number of outgoing packets of which the
monitored node m is the source.

• #(∗,[m]): the number of incoming packets of which the
monitored node m is the destination.

• #([s],m): the number of incoming packets on m of
which node s is the source.

• #(m,[d]): the number of outgoing packets from m of
which node d is the destination.

• #(m,n): the number of outgoing packets from m of
which n is the next hop.

• #([s],M,m), the number of packets that are originated
from s and transmitted from M to m.

• #([s],M,[m]), the number of packets that are originated
from s and transmitted from M to m, of which m is
the final destination.

• #([s],[d]), the number of packets received on the moni-
tored node (m) which is originated from s and destined
to d.

These statistics are computed over a feature sampling inter-
val, denoted as Ls. In addition, we often need the same set
of statistics that are computed over a longer period. These
longer-term statistics can be computed directly from basic
features by aggregating them in multiple feature sampling
intervals. We use FEATUREL to denote the aggregated
FEATURE over a long period L. We always assume that
time interval L is multiples of Ls, for simplicity. For ex-
ample, the notion #L

(∗,m) are computed by summing up all
#(∗,m) in L/Ls rounds of feature sampling intervals.

We also need finer-grained statistics on specific types of
packets, e.g., the number of certain route control messages.



These specific statistics are denoted by appending a predi-
cate to the corresponding feature. For instance,
#(∗,m)(TYPE=RREQ) represents the number of incoming
RREQ (route request) packets on the monitored node m.

Below we describe the identification rules for several well-
known attacks.

Unconditional Packet Dropping Monitor the statistics
FP (Forward Percentage)

FPm =
packets actually forwarded

packets to be forwarded
=

#L
(m,M) − #L

([m],M)

#L
(M,m) − #L

(M,[m])

over a sufficiently long time period L. FP determines the
ratio of forwarded packets over the packets that are trans-
mitted from M to m and that m should forward. If the
denominator is not zero and FPi = 0, the attack is detected
as Unconditional Packet Dropping and m is identified as the
attacker.

Random Packet Dropping Monitor the same statistics
FP as Unconditional Packet Dropping. If the denominator
is not zero and FPm is less than a chosen threshold εF P
(εFP < 1) but not zero, the attack is detected as Random
Packet Dropping and node m is identified as the attacker.
Note that we cannot use εF P = 1 since there is a small
chance that packets are dropped due to some topology and
buffering reasons (overloaded buffer, routes no longer valid,
etc.) Therefore, εFP is chosen so that 1 − εFP is equal to
the upper bound of dropping rate that can be tolerated.

Selective (Random) Packet Dropping Monitor the
statistics LFP (Local Forward Percentage)

LFPs
m =

packets from source s actually being forwarded

packets from source s to be forwarded

=
#L

([s],m,M)

#L
([s],M,m) − #L

([s],M,[m])

over a sufficiently long time period L for each source s. If
the denominator is not zero and the statistics is zero (un-
conditional dropping), the attack is unconditional Packet
Dropping targeted at s. Likewise, if the LFP is less than
εLFP (εLFP < 1), the attack is random Packet Dropping
targeted at s. In either case, m is identified as the attacker.

Blackhole Monitor the statistics GFP (Global Forward
Percentage)

GFPM =
#L

(∗,M) − #L
(∗,[M])

P

i∈N(M)

#L
(i,M) −

P

i,j∈N(M)

#L
(i,[j]) − #L

(∗,[M])

over a time period of L. The numerator is the total number
of packets that are received by M and M should forward.
The denominator is the total number of packets sent by M ’s
1-hop neighborhood (N(M)) and are not destined for an-
other neighbor or M . If all such packets are being absorbed
by M for a sufficiently long period, or more precisely, if the
denominator is not zero and GFP = 1, then an blackhole is
detected and M is identified as the attacking or misbehav-
ing node. Note that the statistics must be collected on M
locally. The detection of blackhole may be infeasible if M
is malicious and the attacker has total control of M so that

the detection modules can be disabled. However, in some
other situations, such as Intrusion I, where the blackhole
is actually a passive victim of sleep deprivation attack, the
node can use this rule to detect the blackhole condition and
initiate appropriate response actions.

Malicious Flooding on specific target Monitor the to-
tal number of #L

([m],[d]) over a period of time L for every des-
tination d. If it is larger than threshold MaxCount (which
should be a system parameter based on the upper bound of
normal traffic volume), the attack is a Malicious Flooding.

Maximum Sequence Monitor MSC (Maximum Sequence
Counter)

MSC(TYPE=t)
s

= #L
([s],∗)(TYPE=t, SEQ=MAX SEQ)

for every source s and message type t over the period of L.
MAX SEQ is specific to each routing protocol. Typically,
if the field is 32-bit long, the maximal value is 232 − 1 =
4294967295. If MSC for any source s is not zero, the attack
is detected. Note that an alarm can be triggered imme-
diately as long as the condition holds, even before L has
elapsed. There is a small chance that the maximum se-
quence number is used in normal processing. However, the
chance is so small (even if 1000 control message is sent per
second, 50 days are needed before the maximal sequence
number is reached) that a false alarm under this case can
perhaps be tolerated. Note that our implemention currently
can only detect an attack with the unique sequence number
MAX SEQ. A smarter variation of this attack can be im-
plemented in such a way that a fairly large sequence num-
ber, but not MAX SEQ, is used. A even much smarter one
may involve using a series of “large” sequence numbers that
are continuously changed over time, in order to evade de-
tections. To detect them, we need to have a self-adjusting
non-determinstic rule that can detect “unusually” large se-
quence values, based on historical statistics. The work, as
well as other rules to detect a series of more complicated
types of attacks, is still in progress.

In our experiments, all period L is set to be 5 × Ls and
Ls is 5 seconds. We set εFP and εLFP to be 0.90. The
MaxCount used by Malicious Flooding detector is set to be
1000 packets.

For the Packet Dropping and Blackhole attacks, the above
rules can identify not only the attack type but also the at-
tacking or misbehaving node because the monitoring node
can overhear traffic within its 1-hop neighborhood. For
the other two attacks, the attacking node cannot be reli-
ably identified because packets from remote nodes may be
spoofed. In general, attacker identification is a very hard
problem and remains an open research issue.

These identification rules is activated only when some anomaly
has been observed by the anomaly detection model. First of
all, If an alert is produced by the anomaly detection model,
it is labeled with as UNKNOWN. The alert is then relabeled
with the corresponding attack type(s) if an identification
rule applies. Otherwise, it remains to be UNKNOWN.

We show the performance of the new scheme in Table 3.
Here, the definition of detection rate is changed slightly due



to the use of attack type labels. Detection rate is the per-
centage of attacks detected and labeled correctly by the mis-
use detection model. Partial detection rate is the percentage
of attacks detected and labeled as UNKNOWN, i.e., those
detected by the anomaly detection model only. Misclassi-
fication rate is the percentage of attacks that are labeled
incorrectly by the misuse detection model. We call the sum
of these three measures the overall detection rate. Finally,
we show the false alarm rate.

Table 3: Experiment Results with Identification
Rules, where DR=Detection Rate, PDR=Partial
Detection Rate, MR=Mis-classfication rate,
FAR=False Alarm Rate

Attack DR PDR MR FAR
Intrusion I 78% 7% 0% 1%
Intrusion II 91% 6% 1% 1%
Intrusion III 98% 0% 1% 1%
Intrusion IV - 87% 0% 1%

We can see that in the new scheme, the overall detection
rate, i.e., the sum of the first three columns, is always the
same as the detection rate of anomaly detection model alone
(see Table 2). This is not surprising because the rules are
used to (further) identify the attack type only after an anomaly
is detected. The overall detection rate is not changed be-
cause no additional attacks will be detected. We can see
that most of the well-known attacks have been detected.

4. CLUSTER-BASED INTRUSION DETEC-
TION

So far in the paper we have assumed that each MANET node
is a monitoring node that runs some ID models. MANET
nodes typically have limited battery power, thus it is not effi-
cient to make each MANET node always a monitoring node,
especially when the threat level is low. Instead, a cluster of
neighboring MANET nodes can randomly and fairly elect a
monitoring node, the clusterhead, for the entire neighbor-
hood. In other words, the responsibility of intrusion detec-
tion is shared among nodes in the cluster. In this section,
we present cluster formation algorithms and cluster-based
intrusion detection schemes.

4.1 Cluster Formation Protocols
A MANET can be organized into a number of clusters in
such a way that every node is a member of at least one
cluster. A cluster is defined as a group of nodes that are
close to each other. The criteria of ‘close’ is that a node in
the cluster, the clusterhead, has all other members, known
as citizens, in its 1-hop vicinity. As a special case, a node
that cannot be reached by anyone else (or under other spe-
cial circumstances as described below) forms a single node
cluster, or SNC. The size of a cluster is defined as the num-
ber of nodes in the cluster (including both clusterhead and
citizens) and is denoted as SC .

It is imperative that clusterhead assignment be fair and se-
cure. By fairness, we mean that every node should have
a fair chance to serve as a clusterhead. Note that fairness
has two components, fair election, and equal service time.

We currently do not consider differentiated capability and
preference (such as criteria based on network or CPU load,
unless they can be verifiable) and assume that every node
is equally eligible. Thus, fair election implies randomness
in election decision, while equal service time can be imple-
mented by periodical fair re-election. By security, we mean
that none of the nodes can manipulate the selection process
to increase (or decrease) the chance for it (or another node)
to be selected. Obviously, if randomness of the election pro-
cess can be guaranteed, then security is also guaranteed.

Although there are other cluster formation protocols avail-
able, they do not satisfy our requirements discussed above.
For example, the Leader Election (or cluster organization)
algorithms in [28, 2] choose either a common evaluation
function or node-specific utility functions to compute a score
for every node, and the node with maximal score is elected
as the clusterhead. They do not guarantee the random se-
lection of clusterheads. They may allow a node to advertise
a high score for itself, unless care is taken to make the eval-
uation process verifiable and with non-repudiation.

We use several techniques to guarantee the fairness and se-
curity of the election process. Firstly, each node i con-
tributes a random value Ri to the input. Then a com-
mon selection function is used by all nodes to compute a
integer from 0 to SC − 1 from a total of SC inputs. The
output of the election function must have a uniform dis-
tribution in [0, SC − 1]. The selection function we use is
simply the modular Exclusive OR (or XOR) function, i.e.,

f(R0, R1, R2, ..., RSC−1) = (
LSC−1

i=0 Ri) MOD SC . A nice
property of XOR is that as long as one input is random (i.e.,
from a “well-behaving” node), the output is random. The
random values are fully exchanged within the cluster (clique)
and the selection function is computed in a distributed man-
ner, i.e., on each node, to decide the clusterhead. This guar-
antees that the same clusterhead be computed by all cluster
members.

Before we describe our clustering formation protocols, we
state a few assumptions about the MANET environment.

• Each node contains a unique and ordered identifier.

• All links are bidirectional.

• Every node can overhear traffic within its transmis-
sion range (this is a common requirement by MANET
monitoring schemes, e.g. [18]).

• Neighbor information is always available. Usually this
is implemented by periodically broadcasting HELLO
messages and listening to the neighbors’ response. Given
the assumption, we can obtain the number of neigh-
bors of node i. Let us denote the value to be Ni.

• A secure, fast and reliable node to node communica-
tion infrastructure is available. The infrastructure has
to be light-weighted because MANET nodes are of-
ten resource-constrained. Recently, efficient protocols
for MANET are proposed, such as TESLA [23], which
carries only symmetric cryptographic functions. These
protocols make certain assumption that loose synchro-
nized clocks are available.



Figure 1 shows a finite state machine demonstrating the
states of the MANET nodes and the state transitions that
are enabled by the cluster formation protocols.
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Figure 1: Finite State Machine of the cluster forma-
tion protocols

Initially, all nodes are in an INITIAL state. They tem-
porarily assume themselves SNCs, so that they can do intru-
sion detection for themselves, just as in the per-node based
approach. We perform an initial clusterhead setup round,
which is composed with two protocols: Clique Computation
and Clusterhead Computation.

Clique Computation Protocol A clique is defined as a
group of nodes where every pair of members can commu-
nicate via a direct wireless link. Note that the definition
of a clique is stricter than the definition of a cluster. The
clique requirement can be relaxed right after the clusterhead
has been computed. That is, only the clusterhead needs to
have direct links with all members. We use the cluster for-
mation algorithm from [15] to compute cliques. Once the
protocol is finished, every node is aware of its fellow clique
members. We denote the clique containing i as CLi, i.e.,
∀j ∈ CLi, CLj = CLi. We define CL′

i = CLi − {i}.

Once the Clique Computation Protocol has finished, all nodes
enter CLIQUE state.

Clusterhead Computation Protocol The purpose of
this protocol is to randomly select one node in the clique as
the clusterhead. Without loss of generality, we discuss the
behavior on the i-th node.

1. Generate a random integer Ri.

2. Broadcast a message ELECTION START=(IDi,
HASH(IDi, Ri)) to CL′

i. HASH is a common hash
function. A corresponding timer T1 is setup.

3. On Receiving all ELECTION START from CL′

i, broad-
cast the message ELECTION=(IDi, Ri) to clique CL′

i.

4. If T1 is timeout, every node for whom
ELECTION START has not be received is excluded
from CLi.

5. On Receiving ELECTION from node j, verify its hash
value matches the value in the ELECTION START
message from j. Store Rj locally.

6. If all Rj from CL′

i have arrived, compute H=SEL(R0,
R1, R2, ..., RSC−1) where SEL is the selection function.
Determine the clusterhead H as the h-th node in the
clique since all IDs are ordered.

7. If H 6= i (i.e., as a citizen), do the following.

(a) Send ELECTION DONE to H.

(b) Wait for ELECTION REPLY from H, then enter
DONE state.

8. Otherwise, as a clusterhead, H performs following.

(a) Setup a timer T2.

(b) On Receiving ELECTION DONE, verify it is from
CL′

i.

(c) If T2 is timeout, citizens from whom
ELECTION DONE has not be received are ex-
cluded from CLi. Broadcast ELECTION REPLY
to CL′

i and enter DONE state.

Once the clusterhead is determined, it copies the clique
member list to a citizen list CTC . The suffix C denotes
the current cluster controlled by the clusterhead.

Cluster Valid Assertion Protocol All nodes should per-
form this assertion periodically in DONE state. There are
two parts in this protocol.

1. Since the network topology tends to change in an ad
hoc network, connections between the elected cluster-
head and some citizens nodes may be broken from time
to time. If a link between a citizen Z and a cluster-
head H has been broken, Z will check if it is in another
cluster. If not, it enters LOST state and activates the
Cluster Recovery Protocol. Also, Z is removed from
H’s citizen list CTC . If there is no more citizens in
cluster C, H becomes a citizen if it belongs to another
cluster. Otherwise, H enters LOST state and activates
the Cluster Recovery Protocol.

2. Even if no membership change has occurred, the clus-
terhead cannot function forever because it is neither
fair in terms of service and unsafe in terms of the long
time single-point control and monitoring. We enforce
a mandatory re-election timeout, Tr. Once the Tr ex-
pires, all nodes in the cluster enters the INITIAL state
and start a new clusterhead setup round. If the clique
property still holds, the Clique Computation step can
be skipped.

Cluster Recovery Protocol In the case that a citizen
loses its connection with previous clusterhead or a cluster-
head loses all its citizens, it enters LOST state and initiate
Cluster Recovery Protocol to re-discover a new clusterhead.
Again, without loss of generality, we discuss the behavior on
the i-th node.

1. A request message ADD REQUEST=(IDi) is broad-
cast with a timer T3.



2. A clusterhead H receives the request and replies
ADD REPLY=(IDH) only after a short delay Td (0.5s
in our implementation). The delay is introduced in
hope that a connection has been stable for Td can re-
main to be stable for a fairly long time.

3. Node i replies the first ADD REPLY it received, i.e.,
ADD ACK=(IDi). And enters DONE state. Addi-
tional ADD REPLYs are ignored.

4. On Receiving ADD ACK, H adds i into its CTC .

5. If T3 is timeout and no ADD REPLY is received, there
is no active clusterhead nearby. Node i enters INITIAL
state to wait for other lost citizens to form new cliques
and elect their new clusterheads.

4.1.1 Discussion
Since clusters can overlap, a node can belong to multiple
clusters. Therefore, the notation CLi of node i can actually
take multiple values. For simplicity of the protocol descrip-
tion, we use the singular form but keep in mind that a node
in mulitple clusters should perform the Clusterhead Com-
putation Protocol for each of its clusters independently.

In the Clusterhead Computation Protocol, we assume the
topology remains static during computation. In a mobile
environment, this assumption does not always hold. A rem-
edy is for each cluster member to monitor the neighbor-
hood actively. Once a link is broken, a REPAIR message is
broadcast by both ends of the link, and all other nodes in
the cluster will be aware of that. All nodes in the cluster
then re-enter INITIAL state and restart the protocol Clique
Computation.

We require that nodes have direct links to each other (i.e.,
they are in a clique) in the cluster formation process. This
is intentional so that spoofed messages can be detected and
contested because the nodes can overhear each other. When-
ever such dispute arises, the nodes can switch to a more
secure way (e.g., authenticated) to exchange messages.

Finally, our protocols are meant to be a framework that can
be customized according to operational conditions and secu-
rity needs. For example, a malicious node has a 1

SC
chance

to be elected as the clusterhead. It can then launch certain
attacks without being detected because it is the only node
in the neighborhood that is supposed to run the IDS and
its IDS may have been disabled already. If this chance is
not acceptable, multiple rounds of clusterhead computation
can be used to elect multiple clusterheads, each running a
separate IDS to monitor the cluster. The extreme is to run
an IDS on each node. It is obvious that there is a tradeoff
between efficiency and security. We plan to further investi-
gate how to dynamically adjust the number of clusterheads
(or monitoring nodes) according to resource constraints and
potential threats.

4.1.2 Security Concerns
As an approach dedicated to detect malicious behavior, our
protocol itself has to be secure as well. In addition to conven-
tional attacks such as man-in-the-middle and replay attacks
(which are addressed by enforcing a secure communication

channel and sequence numbers verifiable by neighbors), we
have also addressed following specialized attacks with spe-
cial consideration.

• Defending against delayed random value distri-
bution: In order to prevent a malicious node from
manipulating the election outcome, e.g., by sending
its random number only after it receives the random
numbers from all other nodes, the exchange of ran-
dom numbers among the nodes proceeds in two rounds.
First, each node computes a random number and its
hash using a common hash function, then sends out
only the hash value. Second, only after receiving all
hash values from all other nodes, a node sends out
the actual random number. A multi-round process for
exchanging the random numbers, which corresponds
to Steps 1 through 4 in the Clusterhead Computation
Protocol, is used to prevent cheating.

• Defending against intentional timeout for cer-
tain advantages: In the Cluster Recovery Protocol,
the new member will not have a chance to be elected as
a clusterhead in the beginning unless a new re-election
period occurs (or if the clusterhead leaves the area).
This is intentional so as to reduce the chance that
change of clusterhead occurs too often. However, the
property involves a fairness issue. A node can refuse
to acknowledge being elected as a clusterhead in the
cluster computation stages but later on dispatches an
ADD REQUEST to join the cluster. In this way, it
will be exempted from serving as a clusterhead (a spe-
cial type of Denial-of-Service). A similar attack works
in the opposite way. An attacker can refuse to take the
responsiblity as a citizen (or non-clusterhead member)
by repeated timeout until the compromised node is
elected as a clusterhead. This gives the attacker the
advantage of a clustehead but not willing to conform to
a citizen’s liability when other nodes are clusterheads.
To defeat both of these attacks, we add a retreating
suspicion counter in the cluster computation protocol
which counts how many times an elected node refuses
to respond. If it happens more than certain times
(three in our experiments), the node is excluded from
further clusterhead computation and an exception is
reported about the misbehavior of that node.

4.2 Detection Schemes
Using the cluster formation protocols described above, a
clusterhead is selected to perform IDS functions for the
whole cluster. It instructs the cluster citizens on how the
feature computation is to take place. Note that every node
is still required to act as a clusterhead sometime, thus it is
still necessary to have the trained IDS models pre-installed
on all nodes.

There are several schemes on how and where features are
computed and transmitted.

LFSS (Local Feature Set Scheme) For each feature
sampling period, a randomly selected cluster member (which
can be the clusterhead itself) is requested to transmit its
whole feature set to the clusterhead.



CLFSS (Clusterhead-Assisted Local Feature Set
Scheme) This is a modified version of LFSS. In LFSS, fea-
ture computation is still done on citizens nodes. In order
to reduce the burdens on citizen nodes and the traffic over-
head, the clusterhead can help compute some of the features,
more specifically, traffic-related features (please refer to the
appendix for the details of these features). In general, the
clusterhead overhears incoming and outgoing traffic on all
members of the cluster. Corresponding traffic-related fea-
tures are computed in the same way as a local node does,
as if the cluster is a large node as a whole, where, neverthe-
less, internal packets (from one cluster member to another)
do exist and should count. Traffic-related features involving
packet counts (66 out of 141 features totally) are normalized
by averaging on the cluster size. The citizens (more pre-
cisely, one citizen at a time according to the LFSS scheme)
are still responsible for computing and transmitting route
and location related features to the clusterhead. The clus-
terhead then evaluates the IDS model based on the revised
feature set. We note that it takes significant computational
effort to obtain these traffic-related features. Therefore, the
overall cluster-wise feature computation costs can be signif-
icantly reduced because the vast majority of features are
traffic-related features.

4.2.1 Results
We conducted experiments with different density and move-
ment rates using ns-2 and the MobiEmu [30] software, which
emulates a wireless ad hoc network on a local area network
and thus enabling application-level programs and the mea-
surement of CPU usages. The following criteria are then
measured.

1. CPU Speed-up: How much of the total CPU usage
is reduced in comparison with the per-node based IDS
approach? The total CPU usage of a cluster-based IDS
includes the amount of CPU cycles in all nodes of the
cluster. The three factors consuming the CPU cycles
are 1) cluster formation protocols; 2) feature compu-
tation; and 3) IDS computation (on the clusterhead
only). Whereas for the per-node based IDS, the to-
tal CPU usage includes feature computation and IDS
computation on all nodes.

2. Network Overhead: How much overhead does the
communication in the cluster formation protocol and
feature exchanges between the clusterhead and the cit-
izens add to normal traffic?

3. Accuracy: How does the cluster-based detection
schemes perform in terms of accuracy? Is it better
or worse compared with the original per-node based
algorithm?

The results of CPU Speed-up, in terms of
CPU cycles in per-node based approach
CPU cycles in cluster-based approach

, and network over-

head, in term of kilobytes transmitted in the whole network,
are shown in Figures 2 and 3, respectively. We measure CPU
usage by executing the UNIX command “time”. Results on
detection accuracy for Intrusion I (Blackhole) are shown in
Figure 4, in terms of detection rate where the false alarm

rate is 1%. Detection results for other three intrusions are
not shown due to space limit, but they have similar patterns
as Figure 4.

We can see that CLFSS is significantly superior in terms of
CPU usage and network overhead than LFSS. Its detection
accuracy is around 84%, which is just a little worse than
LFSS and a little worse than the per-node based anomaly
detection scheme (87%, see Table 2). The accuracy fig-
ure shows that the performance of CLFSS is more sensi-
tive to mobility than the LFSS and the per-node based
scheme. This is a natural result since we use aggregated
traffic-related features, but route and location related fea-
tures still involve one of the cluster members only at each
period. In a highly dynamic scenario, it is more likely the
correlation among these patterns are not as regular as that
in a per-node based scheme. However, even under a reson-
ably high mobility level (40m/s), the detection rate is still
higher than 80%. Considering the significant performance
benefit from both CPU usage and network overhead, it is
clear that overall, CLFSS is a far better approach than the
others.
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Hierarchial network is an effective way to group (or clus-
ter) a large number of nodes in a network. Distributed
algorithms to form clusters have been studied extensively,
e.g., [2, 15, 28]. Most of these approaches have the draw-
back that the clusterhead computation can be easily manip-
ulated (cheated) to elect an arbitrary compromised node.
Nevertheless, the head-less cluster formation and mainte-
nance protocol [15] does not have such problem. We use
this cluster formation scheme as the basis of clique com-
putation protocol because the clique structure allows us to
effectively compute a selection function on random inputs
from each member.

Although there are secure routing approaches in wired net-
works, such as [6, 27], they usually come with large com-
munication overhead and do not work well in MANET be-
cause of its dynamically changing network topology. Sev-
eral researchers have recently proposed new secure routing
protocols or security enhancement for existing protocols for
MANET. Zapata [29] proposes the use of asymmetric cryp-
tography to secure the AODV protocol [22]. Hu et al. [10]
consider the problem of avoiding expensive public key com-
putation in authentication in Ariadne, a secure version of
the DSR protocol [13]. It primarily uses TESLA [23] an ef-
ficient broadcast authentication protocol that requires loose
time synchronization, to secure route discovery and mainte-
nance. To use TELSA for authentication, a sender generates
a hash chain and determines a schedule to publish the keys
of the hash chain. The key required to authenticate a packet
will not be published before the packet has arrived at the
receiver so that an adversary cannot have captured the key
and forged the packet. This is the same underlying broad-
cast authentication protocol that we currently use.

Even if the above prevention schemes are perfect and imple-
mented correctly, there are still internal and insider attacks
that utilizes software vulnerability (e.g., viruses and worms)
and social engineering. A compromised node is an insider,
with all the necessary cryptographic keys, and can launch
many attacks. Thus, intrusion detection is still needed as a
second line of defense.

As to intrusion detection in wired environments, since its

early introduction [1, 8], it has received increasing interests
from researchers and even vendors. The representative mis-
use detection systems are IDIOT [17] and STAT [12], which
use Colored Petri Nets and State Transition Diagrams, re-
spectively, to represent and pattern-match known intrusions.

In protection of routing protocols, Mittal and Giovanni [19]
suggests the use of sensors present on links to utilize topol-
ogy information to detect routing-based attacks. A MANET
cannot learn topology information in advance, thus, this
technique cannot be directly applied to wireless networks.
Cheung and Levitt [7] proposed a detection-response ap-
proach to network monitoring. Their scheme also requires
topology information to predict the expected behavior. Thus,
it is not practical in MANET. Wu et al. [24] proposed an ap-
proach to protect OSPF protocol using statistical anomaly
detection. Although their work is specific to link-state pro-
tocols, the basic principle to detect intrusions with anomaly
detection applies to wireless networks as well.

Researchers have begun to investigate detection and response
schemes for MANET.

SPARTA, suggested by Krugel et al. [16], builds IDS based
on mobile agents. It also features an event definition lan-
guage (EDL), which describes multiple-step correlated at-
tacks from an intrusion specification database. However, we
have not seen details on how these specifications are gener-
ated and used for well-known routing attacks.

Watchdog and pathrater approach, discussed by Marti et
al. [18], introduces two related techniques to detect and iso-
late misbehaving nodes, which are nodes that do not forward
packets. In the “watchdog” approach, a node forwarding a
packet verifies the next hop also forwards it. If not, a failure
tally is incremented and misbehavior will be recognized if
the tally exceeds certain threshold. The “pathrater” module
then utilizes this knowledge of misbehaving nodes to avoid
them in path selection. The approach is limited in several as-
pects. First of all, overhearing does not always work in case
of collisions or weak signals. Secondly, pathrater actually
awards the misbehaving node, if its motivation comes from
selfishness, i.e., not “serving” others can reduce its battery
power consumption. It does not prevent the misbehaving
node from sending or receiving its own packets.

CONFIDANT [4] extends Marti’s approach in numerous
ways. Misbehaving nodes are not only excluded from for-
warding routes, but also from requesting their own routes.
Also, it includes a trust manager to evaluate the level of trust
of alert reports and a reputation system to rate each node.
Only reports from trusted sources are processed. However,
trust management in MANETs has not been well studied
yet. For example, it is not clear how fast the trust level can
be adjusted for a compromised node, especially if it has a
high trust level initially.

Buttyan et al. [5] suggests the use of tamper-resistant hard-
ware on each node to encourage cooperation. Nodes are as-
sumed to be unwilling to forward packets, unless it is stim-
ulated. In this approach, a protected credit counter runs
on the tamper-resistant device. It increases by one when
a packet is forwarded. It refuses to send its own packets



if the counter is smaller than a threshold n. Public key
technology is used to exchange credit counter information
among neighbors and verify if forwarding is really success-
ful. The scheme has a few strong assumptions, including
tamper-resistant hardware and public key technology, which
may not be widely available in MANET.

6. CONCLUSION
In this paper, we have reported our progress in developing
intrusion detection techniques for MANET. Building on our
prior work on local anomaly detection, we further investi-
gated how to provide more accurate information on attack
types when an anomaly is found. We have presented a set
of rules that can identify the attack type of several well-
known attacks. In some cases the rules can also identify the
attacking or misbehaving nodes. Our experiments showed
that these rules are highly accurate on identifying the cor-
responding attacks.

In order to address the run-time resource constraint prob-
lem, we have developed a cluster-based detection approach.
The idea is to elect a node, the clusterhead, to perform IDS
functions for all nodes within a cluster. We presented clus-
ter formation protocols that achieve fairness and security
in clusterhead election. We evaluated two feature computa-
tion schemes. Our experiment results showed that, when the
MANET mobility is low, the best scheme reduces host CPU
utilization by up to 29% while maintaining the same level
of detection performance as the original per-node detection
scheme.

6.1 Future Work
We need to guarantee that the IDS cannot be compromised,
or at the least, attacks against the IDS can be detected.
This is particularly important when using the cluster-based
detection approach. If a compromised node happens to be
elected as the clusterhead, it can launch attacks without
being detected because it is the only node that should run
an IDS and its IDS may have been disabled already. A
solution may be to use a tamper-resistant device to protect
the IDS on each node. We will further investigate this issue.

Attacker identification is another important issue. For some
known attacks, the attacking or misbehaving node can be
identified by its neighbors. However, the general problem
is very challenging. This problem can be partially solved
by enforcing authentication on all packets. However, some
routing related attacks can still be launched without the
need to hide or spoof because by the time an anomaly is
reported, it may already be too late to correlate the anoma-
lous behavior with packets received before. We will build
on our current work and develop a better and more general
solution.
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APPENDIX
A. SELECTED FEATURES
The features (used in classification) constructed in our ex-
periments belong to two categories, non traffic-related and
traffic-related. All non traffic-related features are detailed
in Table 4 and the meaning of each feature is further ex-
plained in the “Notes” column. These features capture the
basic view of network topology and route fabric update fre-
quency. They are calculated based on the scenario and mo-
bility scripts and the trace log file.

All traffic-related features are collected under the following
considerations. Packets come from different layers and dif-
ferent sources. For example, it can be a TCP data packet
delivered from the originator where the feature is collected.
It can also be a route control message packet (for instance, a
ROUTE REQUEST message, used in AODV and DSR), which is
being forwarded at the observed node. We can then define
the first two aspects of a traffic-feature as, packet type, which
can be data specific and route specific (including different
route messages used in AODV and DSR), and flow direction,
which can take one of the following values, received (ob-
served at destinations), sent (observed at sources), forwarded
(observed at intermediate routers) or dropped (observed at
routers where no route is available for the packet). We do,
however, exclude the combination that data packets can be
forwarded or dropped since it would never appear in a real
ns-2 trace log. Routing protocols in MANET usually encap-
sulate data packets by adding particular headers with rout-
ing information at the source node and unpack them at the
destination. Therefore all activities (including forwarding
and dropping) during the transmission process only involve
“route” packets. Also, we need to evaluate both short-term
and long-term traffic patterns. In our experiments, we sam-
ple data in three predetermined sampling periods, 5 seconds,
1 minute and 15 minutes. Finally, for each traffic pattern,
we choose two typical statistics measures widely used in lit-
erature, namely, the packet count and the standard devia-
tion of inter-packet intervals. Overall, a traffic feature can
be defined as a vector < packet type, flow direction, sam-
pling periods, statistics measures >. All dimensions and
allowed values for each dimension are defined in Table 5.
For instance, the feature to compute the standard deviation
of inter-packet intervals of received ROUTE REQUEST packets



every 5 seconds can be encoded as < 2, 0, 0, 1 >. Overall, we
have (6× 4− 2)× 3× 2 = 132 traffic features, where 6, 4, 3,
2 are the number of packet types, flow directions, sampling
periods and statistics measures, respectively.

For all continuous features or discrete features with infinite
value space, we discretize them using a frequency-bucket
scheme. We divide the value space of a continuous feature
into a fixed number of continuous ranges (buckets), so that
the frequencies of occurrences of feature values dropped in
all buckets are equal. Then a continuous feature can be
replaced by the index of its corresponding bucket. This
approach guarantees that the chances of appearance of all
possible labels (after discretization) in a feature are approx-
imately the same. A pre-filtering process using a small ran-
dom subset of normal vectors is necessary to retrieve the
frequency distribution of all continuous features. In our ex-
periments, we choose the bucket number to be 5.

Table 4: Topology and route related features

Features Notes

time ignored in classification. Only for reference
velocity node movement velocity (scalar)
route add count routes newly added via route discovery
route removal count stale routes being removed
route find count routes in cache with no need to re-discovery
route notice count routes added via overhearing
route repair count broken routes currently under repair
total route change route change rate within the period
average route length average length of active routes

Table 5: Traffic related features

Dimension Values

Packet type data, route (all), ROUTE REQUEST, ROUTE
REPLY, ROUTE ERROR and HELLO messages

Flow direction received, sent, forwarded and dropped
Sampling periods 5, 60 and 900 seconds
Statistics measures count and standard deviation of inter-packet

intervals


