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Abstract

Network Processors (NPs) are promising components to
build a performance-scalable and function-flexible network
systems. A clear trend has been observed that more and
more NPs employ multiple simple processors to run multi-
ple packet processing applications in parallel. The key chal-
lenge for application developers is how to program NPs for
high performance. This paper presents an automated task
scheduling technique based on Simulated Annealing(SA).
By incorporating tasks dependency into scheduling list, SA
can quickly remove the invalid mappings and evolve to the
high quality solutions. Particularly, a transition probabil-
ity is defined to help converge, which is depending on sys-
tem throughput and control parameter ‘temperature’. Our
mapping technique is able to take advantage of task-level
and application-level parallelism to maximize system per-
formance. The simulation results show that this proposed
technique can generate high quality mapping comparing to
other heuristics by mapping some sample network applica-
tions.
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1 Introduction

Network Processors (NPs) are embedded system-on-
chip multiprocessors that are optimized to perform sim-
ple packet processing tasks at data rates of several Giga-
bytes per second. They are the key components to build

1This work was performed while at the Southern Illinois University
Carbondale.

a performance-scalable and function-flexible network sys-
tems. To meet the performance demands of increasing link
speeds and more complex network applications, NPs are
implemented with several dozen of processor cores and run
multiple packet processing applications in parallel. Com-
mercial examples of NPs are numerous [2, 4, 6].

Programming of such heterogeneous multiprocessor sys-
tems is difficult, as the overall performance depends on the
fine-tuned interaction of different system components (pro-
cessors, memory interfaces, shared data structures, etc.).
The main problem is handling the complexity of various,
interacting NP system components, which include multi-
ple multithreaded processing engines, different types of on-
and off-chip memory, and a number of special-purpose co-
processors. This problem is much more difficult than pro-
gramming of conventional workstation or server systems,
because the complexities of these systems are hidden by the
operating system or do not express themselves as drastically
due to their uniprocessor architecture.

Network processing is inherently a dynamic process,
which means easily reprogramming is essential. The main
motivation using network processor (rather than in a faster,
more power-efficient custom logic device) is the need to
change the networking functionality over time. Changing
traffic patterns, new network services and protocols, new
algorithms for flow classification, and changing defenses
against denial of service attacks present the dynamic back-
ground that a programmable router needs to accommodate.
This requires that the router (1) can implement multiple
packet processing applications at the same time, (2) can
quickly add and remove processing functions from its work-
load, and (3) can ensure efficient operation under all cir-
cumstances. In particular, the management of various sys-
tem resources is important to avoid performance degrada-
tion from resource bottlenecks.

To simplify complexity of this programming , a number
of domain-specific programming languages and optimizing



Figure 1. A Sample of Network Applications
in Annotated Directed Acyclic Graphs.

compilers are currently being developed [5, 13, 14]. Most
of these approaches aim at optimizing a single application
(i.e., router functionality) statically for the underlying hard-
ware. In current network processors, most performance crit-
ical tasks are implemented and fine-tuned in assembly (e.g.,
to balance the processing times in each step of a software
pipeline). As a result, slight changes in the functionality can
have drastic performance impacts which require re-tuning.
Due to the necessary fine-tuning of individual application,
it is difficult to integrate and dynamically change multiple
packet processing functions on a single network processor.

Assuming network application (workload) can be repre-
sented as a task graph [12], then the key question is how
to map a task graph onto highly parallel NPs efficiently.
To solve this NP-hard mapping problem [10], in this pa-
per we introduced “Simulated Annealing” algorithm which
can solve the problem of achieving global optimum map-
ping which gives the best throughput of the NP-system.

The remainder of this paper is organized as follows. We
formalize the problem of mapping application task graphs
onto NPs in Section 2. Related work is discussed in Section
3. Section 4 describes our simulated annealing used to map
network processor workload. Results are presented and dis-

cussed in Section 5. Section 6 summarizes and concludes
the paper.

2 Problem Formulation

Packets from network are classified and routed by a
scheduler to one specific processing function, named appli-
cation. This application can be represented by a annotated
directed acyclic graph (aDAG): G = (V, E), where V is a
set of nodes and E is a set of directed edges. A node in the
aDAG represents a processing task and an edge shows the
precedence constraints among the nodes. The 3-tuple value
of a node i shows number of instruction pi, number of mem-
ory reads ri and number of memory writes wi. The weight
of edge eij in the aDAG corresponds to the communica-
tion cost. Figure 1 shows a sample of network applications
in aDAGs. The annotations in a node are the node name
and a 3-tuple (processing/reads/writes). The weight on the
edges is the number of data and control dependencies be-
tween nodes.

Figure 2 shows our parameterized NPs, which consists
of four components: processing elements (PE), shared in-
terconnects (IC), memory interfaces (MI), and hardware ac-
celerators (HA). The key parameters are: the width of the
pipeline (W ), the depth of the pipeline (D), the number
of stages per communication interconnect (I), the number
of memory channels shared by a stage of processing ele-
ments (M ), and the number of hardware accelerators (H)
per stage. These parameters enable us to represent a wide
range of possible NP architectures: parallel multiprocessor
when D equals to 1; pipelined architecture when W equals
to 1; and hybrid architecture. A hybrid architecture when
set W , D, I=1. . . D, and M=1. . . W to any combination of
values.

The system throughput is determined by maximum la-
tency of pipeline and the number of parallel processing
tasks nADAG. The latency of pipeline considers of process-
ing, inter-processor communication, contention on memory
interfaces, and pipeline synchronization effects. With a sys-
tem clock rate of clk, the throughput of the system can be
expressed as

thx =
nADAG · clk

maxD
i=1

(
τcommi + maxW

j=1 (τproci,j + τmemi,j )
)

(1)
Thus the goal of NPs mapping is to maximize number

of aDAGs but minimize the maximum latency of pipeline,
because overall system performance is evaluated how many
packets (it equals to the number of aDAGs mapping to NPs)
are processed during the pipeline stage time. During this
procedure, constraints should be considered, such as limit-
ing instruction memory of each PE and dependency of tasks
in each aDAG.
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Figure 2. Generalized NP Architecture.
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Figure 3. Sample Mapping of aDAG onto NPs
and Coding of the Mapping.

3 Related Work

Recent work in the area focuses on applying higher-
level programming abstractions to simplify code develop-
ment (e.g., domain-specific programming language by Teja
[14], C compiler for IXP by Intel [3]). Other programming
models include NP-Click proposed by Shah et al. [13],
by extending to the Click modular router [8]. The major
drawback is requiring the application developer an in-depth
understanding of the NP system architecture. Ostler and
Chatha [11] presented an automatic ILP-based technique for
application mapping on NPs, however, the effectiveness of
this technique relies on accurate characterizing a process la-
tency and its data size.

Mapping algorithms for assigning task graphs to multi-
processors [9, 1] is conceptually similar to mapping tasks
inside an NP, but there are significant differences in the un-
derlying system architecture. [15] describe a simple ran-
domized algorithm used in run-time system, which does not
have sufficient resource to execute complicated mapping al-
gorithm. However, this algorithm is not scalable for large
space exploration because significant time is spent filter-
ing out invalid mapping that violate dependency violations.
[16] present a heuristic which combines Genetic Algorithm
(GA) and greedy approach to programming a pipelined
NPs. However, their work does not consider memory access
time and communication cost, which can be the bottleneck
of overall system performance.

4 Mapping Algorithm

Our heuristic solution to the mapping problem is based
on Simulated Annealing [7]. The key technique is inspired
from annealing in metallurgy. By analogy with this phys-
ical process, our SA algorithm replaces the current best
mapping with a random solution chosen with a probabil-
ity which is depending on system throughput and control
parameter ‘temperature’.

4.1 Coding of Mapping

Figure 3 (a) shows an instance of a mapping result of
four different aDAGs on a topology with a depth of four
stages and a width of four processing elements. The square
boxes represent the processing elements (PE), the circles
the nodes of the aDAGs and the horizontal bar the commu-
nication channel. The arrows indicate the dependency of
aDAG nodes. This mapping is for illustration purpose, not
necessarily the optimal one.

The coding of m aDAGs mapped to q PEs can be repre-
sented by two dimension array S(m,n):



S(m,n) =




s11 s12 · · · s1n

s21 s22 · · · s2n

...
...

. . .
...

sm1 sm2 · · · smn


 (2)

Migration(Map)1
begin2

a ← ADAG in Map;3
n ← select random node(1,|a|);4
pi ← RandomProc(Map);5
migrate n to pi;6
return Map;7

end8

Exchange(m, f)9
begin10

randomly choose ADAG a in workload;11
index← Select rand(1,|a|);12
for i ← 0 to index do13

O1(i) = m(i);14
O2(i) = f(i);15

end16
for i ← index to |a| do17

O1(i) = f(i);18
O2(i) = m(i);19

end20
return(O1,O2);21

end22

Algorithm 1: Key Operations of SA

where n is the maximum number of nodes among all
aDAGs. There is one to one correspondence between task
node t of aDAG a and a string. The value of each string is
the index of PEs, onto which node t of aDAG a is mapped.

Figure 3 (b) shows the representation of sample map-
ping in Figure 3 (a). In these mapping, m –number of
aDAGs equals to 4; n –maximum number of nodes among
all aDAGs is 8 and q–number of PEs is 16, thus the map-
ping can be represented by a 4x8 array. Each row of this
array represents the mapping of one aDAG, for example, in
row 2 (1, 4, 10, 10, 10, 8, 13,−1) indicates the mapping of
aDAG b in Figure 3(a). Each element of array indicates the
index of PE, onto which node t of an aDAG is mapped. The
index of one PE prw is (r ∗W + w), where W is width of
NPs pipeline. For instance, node 2 of aDAG b, b2 is mapped
onto NPs in row 2 and column 2, with W = 4, its string is
10. Should note, the −1 is to indicate that there is no node
in this position.

Assuming there are no dependency among aDAGs – if
there are constraints between two aDAG, we can merge two
aDAG into one, therefore we can schedule each aDAG in-
dividually and independently. This independency of aDAG
allows us to perform migration and exchange separately for
each aDAG, for example cross point for aDAG a is not nec-
essary same to that of aDAG b. The detail of algorithm is
discussed in the following.

4.2 Simulated Annealing

Simulated Annealing (SA) is imitating nature’s process
of annealing in order to find the approximate solutions to
combinatorial optimization problems. In SA, the through-
put increment is governed by a cooling temperature temp
which varies from given high value to a low value slowly.
At every temperature, a fixed number of minimization steps
are tried. At every minimization step, a new mapping is
chosen and throughput calculated. If new mapping through-
put is better than old mapping throughput then the new map-
ping is accepted at that step. If the throughput is less than
previous mapping then the new mapping is accepted with a
probability by the following equation:

ρaccep = e
−δthx

κ·T (3)

Where κ is the Boltzman’s constant, T is the control pa-
rameter ‘temperature’ and δthx is the difference of system
throughput. This accepting probability prevents the method
from becoming stuck in a local minimum.

SaAnnealing(Map)1
begin2

P1 ← InitialMapping();3
P2 ← InitialMapping();4
bestMap← best among P1,P2;5
C0 ← Performance(bestMap);6
while T > Tf and L > 0 do7

L ← RunsAtGivenT ;8
migorex ← rand();9
if migorex < 0.5 then10
begin11

Map← (P1 orP2);12
NewMap← Migration(Map);13
if (Performance(NewMap) >14
Performance(Map) or rand() < prob)
then

bestMap← NewMap;15
P1 or P2 ← NewMap;16

end17
end18
else19
(O1,O2)←Exchange(P1,P2);20
if (Performance(O1 or O2)21
>Performance(bestMap)) then

bestMap← (O1 or O2);22
end23
(P1, P2)← SelectTopTwo(P1,P2,O1,O2);24
L−−; T = K × T ;

end25
return bestMap;26

end27

Algorithm 2: Main Procedure of SA

The SA starts from stage of “InitialMapping” in Algo-
rithm 2 (lines 3–4) where initial individuals are randomly
generated. Initially the temperature is assigned a value To.
and then the temperature is decreased in steps by forcing



Table 1. System Parameters and Its Values.

Item Symbol Description Default
topology d depth of NPs topology 16

w width of NPs topology 16
i # of stage per interconnect 1
m # memory channel/stage 2
h # accelerator/stage 0

processor f processor clock freq. 600Mhz
c context switching overhead 1
t # of threads per processor 1

memory l size of insturciton store 8K
s memory service time 10

application n # ADAGs to be mapped 100
SA g # of generations 1000

T initial temperature 10000
alpha cooling constant 0-1
k Boltman’s constant 0.95-0.99
pexchange probability of exchange 0.5
pmigration probability of migration 0.5

T = α× Ti. Where α is the cooling constant 0 < α < 1.0.
Ideally there should be infinite number of trials at every
temperature. However in practice the ‘runs at a given tem-
perature’ number is a finite number. This experiment is con-
tinued until temperature is 0.

The main procedure is “Simulated Annealing” in Algo-
rithm 2 (lines 1–27), which provides inputs to three sub-
procedures and calls them. Each mapping is evaluated us-
ing our analytical performance model. If the new mapping
is a better solution in terms of the optimization metric, it is
recorded for comparison to future solutions. At the end of
the mapping process, the best overall mapping is reported.

Initially two parent mappings are generated by mapping
all ADAGs randomly on NP-topology. In each trial step
either migration or exchange operations are performed to
get the new mapping. In migration, Algorithm 1 (lines 1–
8), a processor is chosen randomly and also a random node
in a given ADAG which migrates to another processor so
that the dependency maintains. The exchange operation,
Algorithm 1 (lines 9–22), selects a random ADAG from two
parent mappings and generates two children mappings by
exchanging nodes between them by using random partition.

5 Results
We present and analyze several results obtained by utiliz-

ing the algorithm discussed in Section 4 for mapping repre-
sentative network processing applications onto our general
NP architecture in Figure 2. First, we compare the map-
ping results with different matching algorithms to illustrate
the effectiveness of SA. Then, we evaluate the sensitivity
of system performance to different SA variables. Finally,
we present results showing the impact of applications par-
allel processing on system performance. Table 1 lists key
system parameters and their description. Unless otherwise
specified, default values are used to generate results.
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5.1 Mapping Evaluation

SA is a promising approach to solve the NP complete
problem, however we would like to evaluate how well this
approach works in terms of mapping accuracy and effi-
ciency by comparison to other search algorithms: Exhaus-
tive Search, Randomized Search and Genetic Algorithm.

Exhaustive Search finds the best solution by trying ev-
ery possibility is known as an exhaustive search, direct
search, or the b̈rute force” method. The basic idea of ex-
haustive search is enumerating all the possible mappings
and then evaluating the performance of each valid one. For
the topology with p processing elements, the ADAG to be
mapped consisting of n nodes, with m total same ADAGs to
be mapped, the total number of possible mappings is pmn.
Here our experiment uses pipelined topology (d=2, w=2)
and the number of ADAGs to be mapped is 3 and each
ADAG consists of 5 nodes. The best mapping from Ex-
haustive Search will be upper bound of the system.

Randomized Search achieves a good approximation to
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the best solution by randomly choosing a valid mapping and
evaluating its performance, and then repeating this process
a number of times and picking the best solution that has
been found over all iterations. The intuition behind this is
that any algorithm that does not consider all possible solu-
tions with a non-zero probability might get stuck in a local
optimum. With the randomized approach any possible so-
lution is considered and chosen with a small, but non-zero
probability.

Genetic Algorithm (GA) is inspired by evolution-
ary biology such as inheritance, mutation, selection, and
crossover. GA works with a population of individuals, each
representing a possible solution to a given problem. The
highly-fit individuals are given opportunities to reproduce,
by cross breeding with other individuals in the population;
the least fit members of the population are less likely to get
selected for reproduction, and so die out. A whole new pop-
ulation of possible solutions is thus produced by selecting
the best individuals from the current generation, and mating
them to produce a new set of individuals. This new gen-
eration contains a higher proportion of the characteristics
possessed by the good members of the previous generation.
The weakness of this algorithm is there is no statistical guar-
antee that it converges to a optimum solution.

The comparison between different algorithms shown in
figure 4. We can observe that SA and GA are converging
quicker than random and exhaustive search algorithms. Ex-
haustive search examines all possibilities of mappings and
returns the best one. So the time to converge will increase
exponentially even for small increase in problem size. GA
is converging faster than SA, but GA depends heavily on
population size and it is difficult to determine the size of
population which depends on the size of the problem. So
there is a huge chance that it could converge to local opti-
mum instead of global one.

As we mentioned above, the complexity of exhaustive
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search is O(pmn): p is the total number of processors
(equals to d*w); mn is the total number of nodes of mul-
tiple aDAGs. In Figure 4, we only show a small design with
number of processors equaling to 4. The purpose is to il-
lustrate that our SA algorithm does perform well in term of
efficiency and convergence.

5.2 SA Variables Fine Tuning

Figure 5 shows how our normalized probability is vary-
ing with temperature T . We can observe from this figure,
that the value of probability is close to one at initial high
temperature levels and decreases exponentially as the tem-
perature goes down and come to ‘0’ at final temperature.
Hence at high temperatures, algorithm accepts all mappings
even those which are worse compared to current maximum
value and it starts rejecting these slowly as temperature
and probability is going down and stops at ‘0’ probability
value. The algorithm performs some iterations at this stage
and ends with optimum throughput value. This figure also



shows the value of probability at each run in 10N and points
which are accepted. In 10N , 10 represents the number of
runs at given temperature and N is the total number of tem-
perature levels from initial temperature to final temperature.

Figure 6 shows the current maximum performance at
each temperature and it also shows the worse mappings as
points which are accepted to cross the local optimums with
probability of acceptance. In this figure we can observe
that in the initial iterations algorithm accepts many worse
mappings. As temperature is decreasing algorithm slowly
decreases the number of acceptances, accepting only those
which are close to current maximum and stops at optimum
throughput value.The number of applications used here is
‘6’. Total number of iterations is 10N.

Our algorithm is evaluated as different runs at given tem-
perature of 50N, 30N, and 10N. Figure 7 shows that as the
number of runs increases algorithm reaches to its optimum
value very soon. This is because at each temperature level
the algorithm will get more chance to find best mapping at
that level. But it may not reach the optimum value as lesser
number of runs. So we need to try different number of runs
to get the most optimum value.

Figure 8 shows improving throughput with temperature
for different number of ADAG. The throughput gain is due
to multiple application executing in parallel. This Figure
shows that SA based mapping method can take advantage
of parallel workload to speed up the system throughput.

6 Conclusion

In this work we present a methodology for mapping net-
work applications as a task graphs (aDAGs) onto network
architecture. We solve this NP-complete problem with Sim-
ulated Annealing. By tuning Simulated Annealing param-
eters our algorithm converges to optimum solution quickly.
The mapping quality is evaluated by an analytical perfor-
mance model, which captures the key system aspects of a
heterogeneous network processor system. The results show
the algorithm convergence speed and quality of solution as
compared with other algorithms.

We believe that this methodology poses a promising ap-
proach to managing the complexities of highly parallel, het-
erogeneous network processors and embedded systems in
general. The mapping can be done entirely automatically
from a uniprocessor implementation of an application. It is
conceivable that such functionality will become part of soft-
ware development kits and run-time environments of future
network processors.
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