
The Byzantine Agreement Protocol Applied to Security

by

David M. Toth

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

December 2004

APPROVED:

Professor Fernando C. Colón Osorio, Thesis Advisor

Professor Stanley M. Selkow, Thesis Reader

Professor Michael A. Gennert, Head of Department

 2

Abstract

Intrusion Detection & Countermeasure Systems (IDCS) and architectures

commonly used in commercial, as well as research environments, suffer from a number
of problems that limit their effectiveness. The most common shortcoming of current
IDCSs is their inability to tolerate failures. These failures can occur naturally, such as
hardware or software failures, or can be the result of attackers attempting to compromise
the IDCS itself. Currently, the WPI System Security Laboratory at Worcester
Polytechnic Institute is developing a Secure Architecture and Fault-Resilient Engine
(S.A.F.E.), a system capable of tolerating failures.

This system makes use of solutions to the Byzantine General's Problem,
developed earlier by Lamport and others. Byzantine Agreement Protocols will be used to
achieve consensus about which nodes have been compromised or failed, with a series of
synchronized, secure rounds of message exchanges. Once a consensus has been reached,
the offending nodes can be isolated and countermeasure actions can be initiated by the
system.

We consider the necessary and sufficient conditions for the application of
Byzantine Agreement Protocols to the intrusion detection problem. Further, a first
implementation of this algorithm will be embedded in the Distributed Trust Manager
(DTM) module of S.A.F.E. The DTM is the key module responsible for assuring trust
amongst the members of the system. Finally, we will evaluate the DTM, as a standalone
unit, to ensure that it performs correctly.

 3

Acknowledgements

 I would like to thank the people who have made this thesis possible. I would like
to thank my advisor, Professor Fernando C. Colón Osorio, for piquing my curiosity about
his project, S.A.F.E., and for giving me a chance to work on it. I have learned a great
deal from him about both my thesis topic and academia. Thanks to Professor Stan
Selkow for volunteering to be the reader. I would like to thank Frank Posluszny, Mike
Voorhis, Jesse Banning, Chuck Wilcox, Randy Robinson, and King Lam for their
technical assistance and for helping me get a hold of the significant amount of hardware I
needed. Thanks are also in order to Chris O’Connor and Tom Collins, who gave me the
opportunity and ability to do some important testing on modern hardware in the ADP lab.
I would like to thank my friends, family, and professors for their support. Most
importantly, I want to thank my wife, Laura, without whose support, understanding, and
sacrifices, I could not have ever done this thesis.

 4

Contents
1 Introduction.. 6

1.1 Definition of Intrusion Detection.. 6
1.2 Criteria for Robust Intrusion Detection Systems .. 6
1.3 Current State of Intrusion Detection Systems (IDSs) ... 7
1.4 Related Work .. 8
1.5 Our Work .. 10
1.6 Fault Tolerant Systems ... 11
1.7 The Byzantine Generals Problem ... 11
1.8 Terminology.. 12

2 The DTM ... 14
2.1 Requirements .. 14
2.2 The Signed Message Algorithm.. 15

2.2.1 Assumptions... 15
2.2.2 Formal Definition Of The Signed Message Algorithm 16
2.2.3 Explanation Of How The Signed Message Algorithm Works......................... 16
2.2.4 Theorem: The Signed Message Algorithm Solves The Byzantine Generals
Problem... 17

2.3 How The DTM Works .. 18
2.3.1 General Concept... 18
2.3.2 Assumptions For The DTM... 18
2.3.3 Parallel Implementation of the Signed Message Algorithm............................ 19

2.4 Denial Of Service Attack Prevention.. 20
3 Experiments ... 21

3.1 Rationale For Design Of Experiments.. 21
3.1.1 Trust Domain Model.. 21
3.1.2 Capability Matrix ... 22
3.1.3 Security Policy ... 23
3.1.4 Test Case Matrix .. 24

3.2 Experimental Setup... 25
3.3 Experiments to Evaluate the DTM ... 25
3.4 Experiments to Evaluate S.A.F.E. .. 26

4 Experimental Results and Analysis ... 28
4.1 Results... 28
4.2 Analysis... 30

4.2.1 Analysis Of Testing The DTM .. 33
4.2.2 Analysis Of Testing S.A.F.E. ... 35
4.2.2.1 Results... 35
4.2.2.2 Resource Utilization.. 36
4.2.2.3 Scalability Analysis .. 36

5 Conclusions And Future Work .. 40
5.1 Conclusions... 40
5.2 Future Work .. 40

7 References.. 43
Appendix A - Functional Specification .. 45
Appendix B - Architectural Specification... 47

 5

Appendix C - Design Specification .. 51

 6

1 Introduction

1.1 Definition of Intrusion Detection

Intrusion detection is the ability to detect security breaches. Intrusion detection
systems (IDSs) are useful in detecting successful breaches of the security systems present
on a computer system, monitoring attempts to breach said security, and collecting
information to allow the system to launch successful countermeasures. A successful
countermeasure, within this context, is defined a set of actions taken by the system under
attack to prevent the system from being compromised. We define a compromised system
in this work as the opposite of a secure computer system, which is defined by Garfinkel
and Spafford as "a system that can be depended upon to behave as it is expected to" [GS
91].

A more formal definition of Intrusion Detection is "the problem of identifying
individuals who are using, or attempting to use a computer system without authorization
(i.e., crackers) and those who have legitimate access to the system but are abusing their
privileges (i.e., the insider threat)” [BI 94, BA 98]. In the last decade, two models of
Intrusion Detection have been widely accepted [DE 87]. These are anomaly detection
and misuse detection. Anomaly detection consists of monitoring system behavioral
statistics and flagging behavior that is statistically abnormal with respect to normal
system operation. Some examples of anomalies are a sudden spike in CPU usage or a
login at a time when the system is normally idle. Misuse detection attempts to discover
attacks that exploit weaknesses in the security of a system. These weaknesses include
buffer overflow attacks, holes in default system configurations such as unnecessarily
open ports, and design flaws such as those in the TCP/IP protocol.

1.2 Criteria for Robust Intrusion Detection Systems

Amongst the most important considerations and limitations present in the design
of all such systems are the following set of problems.

1. Feature Selection And Pattern Categorization

In both anomaly and misuse Intrusion Detection Systems, the optimal set of
system parameters to be monitored (anomaly detectors) or design rules (signatures) to
be matched (misuse detectors) are often assumed, a priori. Optimal is defined as
maximum discrimination between intrusions and normal system behavior while
minimizing the set of system parameters monitored.

2. Adaptation

Systems have been built and deployed that deal very effectively with threats or
intrusions previously reported or categorized. However, when previously unseen

 7

threats appear, the systems perform poorly. For example, in the 1999 DARPA - Off-
Line Intrusion Detection Evaluation, it was reported that the systems under test failed
to detect an attack in 17.2 % of the cases due primarily to lack of in-depth analysis of
protocols, or because signatures of old attacks did not generalize to new attacks [LI
99, HA 01].

3. Fault Tolerance And Resistance To Subversion

Computers fail due to accidental or malicious activities. The system being
designed must be able to recover from the traditional forms of failures such as crashes
and software failures, as well as being able to protect itself from deliberate attempts
to compromise it.

4. Performance

The system must impose minimal overhead on the computers it is protecting
while running, and must be capable to sustain its performance characteristics under
increasing loads and changes in the patterns of usage.

Each of the problems mentioned needs to be addressed in order to create a robust IDCS.
It is clear from previous research and the evaluations performed, that in general, intrusion
detection systems built on a distributed architecture, perform better than centralized
systems [HA 01]. Spafford summarizes the advantages and disadvantages of distributed
versus centralized systems [SP 00]. In this research, we have built a prototype of an
IDCS based on a distributed architecture.

1.3 Current State of Intrusion Detection Systems (IDSs)

There are currently many commercial and open source IDSs and IDCSs available,
such as Snort, Tripwire and Bro. It is clearly well beyond the scope of this work to
present a survey of them, although such documents exist [TA 04, BU 02, AX 00, AC 99].
Instead, we give a brief description of how some of the well-known IDSs and IDCSs
work.

Snort monitors network traffic and alerts the user whenever there is traffic that
matches one of the rules the user has configured Snort to use [KO 03]. To render Snort
inoperable and thus useless, an attacker must simply compromise Snort, because there is
nothing protecting Snort. This can be done either by damaging or disabling the program,
or with a denial of service (DOS) attack, by simply flooding the host Snort is protecting
with packets.

Tripwire, which has both commercial and open source versions available,
monitors file attributes that are expected to stay constant, such as the size and signature of
binary files [TW 04]. While Snort runs continuously once it has been started, Tripwire
does not. Tripwire must be run periodically, by running it manually or setting up a cron
job or equivalent script to run it periodically. Tripwire is resource intensive enough that
it cannot just be run every few minutes, so it is not constantly monitoring the system.

 8

Thus, a computer that Tripwire is protecting can be compromised, and this will remain
undetected by Tripwire until it is run again. Like Snort, because nothing is protecting
Tripwire, it can be specifically targeted and compromised.

Bro is a stand-alone UNIX-based system that attempts to detect intrusions by
monitoring network traffic [PA 99, BI 04]. It observes all the network packets and, like
Snort, it uses rules that the administrator creates to detect intrusions [BI 04]. Because it
is watching the network traffic, it can be crippled by flooding the network with traffic,
which renders it unable to examine all the traffic [PA 99]. Bro is also vulnerable to
attacks directed against the system where it is running, and furthermore, it is vulnerable
to two computers networked together and working together to try to compromise it [PA
99].
 The state of the art IDSs and IDCSs are clearly inadequate, as the flurry of both
commercial and academic activity continues in the area. All the available systems we are
aware of suffer from shortcomings similar to those in Snort, Tripwire, and Bro. The
systems do not protect themselves from attack, do not learn how to prevent new attacks
that are devised, and consume so much of a computer’s resources that they prevent work
from being done. Due to these shortcomings, we are attempting to create a framework
for an IDCS that addresses the shortcomings of the currently available systems.

1.4 Related Work

The WPI System Security Research Lab is currently developing an innovative
IDCS called S.A.F.E. The purpose of S.A.F.E. is to use proven techniques from the areas
of distributed processing, computer architecture, and clustering algorithms, to build a
framework for a viable, real-time IDCS that can perform in large networks of computers
without significantly affecting the performance of the computers it is protecting. S.A.F.E.
attempts to remedy the main problems with current IDSs. When completed, S.A.F.E. will
be able to learn and adapt, thereby detecting new types of attacks that have not been
identified and publicized. It will be fault tolerant and able to withstand attacks directly
against itself, to protect itself from being compromised or disabled. S.A.F.E. has been
designed to work on computers capable of running the Java 2 Standard Edition (J2SE)
runtime environment from Sun Microsystems. This allows S.A.F.E. to run on computers
with the Windows, Linux, Solaris, and MacOS operating systems, as well as any others
that have J2SE runtime environments from Sun Microsystems. We provide a brief
overview of the S.A.F.E. system and one of its major components, the Secure Host
Manager (SHM), but our focus is on the portion of S.A.F.E. that needs to be completed -
the Distributed Trust Manager (DTM). The architecture of S.A.F.E. is shown in figure 1.

 9

Figure 1. S.A.F.E. Architecture

S.A.F.E. is composed a set of hierarchical components, as shown in Figure 2 and

described in [CO 02].

Figure 2. S.A.F.E. Component Hierarchy

Each component provides services to the components above them in the hierarchy. The
lowest level component is the probes. Above the probes is the Event Generator Object
(EGO). Above the EGO is the Secure Host Manager (SHM), and above the SHM is the
highest-level component in the hierarchy, the Distributed Trust Manager (DTM). The
probes gather information and events from the system by monitoring the output of a
variety of intrusion detection systems and log files, such as Snort, Tripwire, and the
syslog file on Linux. The probes then provide this data to the EGOs. The EGOs function
as a data abstraction layer. They collect the data from the probes, filter it, convert it into
a platform independent format, and provide the aggregated, filtered data to the SHM, by
putting the data into the Event Queue. In addition to this, the EGOs start and stop the
probes.

The SHM provides intrusion detection for the host it monitors. Part of the SHM,
the Analysis Engine pulls the data from the Event Queue, processes it, and determines the
probability that an intrusion has occurred based on the data. The probability falls into

 10

one of three ranges. In the lowest range, the SHM is sure that the data does not represent
an attempt to compromise the host. In the middle range, the SHM is unsure whether the
data represents an attempt to compromise the host. In the highest range, the SHM is sure
the host has been compromised. The probability generated by data is sent to the DTM for
further evaluation. If the probability is in the third range, the SHM also sends a “last
gasp” message to the DTM. Once it sends the “last gasp” message, the SHM stops the
EGOs, stops processing data from the EGOs, and launches countermeasures to restore the
node to a healthy state. The SHM also provides the ability to learn from previous attacks
and non-attacks to improve its intrusion detection capabilities. The SHM uses
information it gets from new data sets that it retrieves from the EGOs to modify the rules
it uses to generate the corresponding probabilities to make them more accurate.

The DTM’s purpose is to create and maintain a network of trusted computers.
Because computers can be compromised and their status can change over time, a
computer can be removed from a Trust Domain and new computers are allowed to join a
Trust Domain. If any DTM receives a probability from an SHM that is in the second or
third ranges, it shares this information with the other DTMs. If the value was in the third
range, the computers in the Trust Domain remove the computer that has been
compromised from the Trust Domain. If the value was in the second range, all the DTMs
test the host that sent the value. If the host passes the tests, it is deemed uncompromised
and nothing happens. If the host fails the tests, it is deemed compromised and removed
from the Trust Domain.

S.A.F.E. is a real time, distributed system based on the concept of autonomous
agents, similar to the architecture proposed in the AAFID system [BA 98]. Prior research
on S.A.F.E. addressed the first two problems. The research presented in this thesis
demonstrates that it is possible to design and implement a distributed IDCS that imposes
minimal overhead on the computers in the system and tolerates hardware and software
failures. In addition to this, this research demonstrates that a distributed IDCS can be
built such that compromising fewer than half the nodes participating in the system does
not prevent the IDCS from functioning correctly. S.A.F.E. conceptually addresses all the
problems that currently plague available IDCSs, and it is the first IDCS we know of that
does so.

1.5 Our Work

 The focus of this research was to design a DTM that addressed the third and
fourth criteria for robust IDCSs and could be seamlessly integrated with the existing
architecture of S.A.F.E. This would complete the framework for S.A.F.E., making the
S.A.F.E. framework the first we know that would address all four criteria required to
build a robust IDCS. In order to do this, we felt it was critical that the DTM must be a
distributed system, so there would be no single point of failure that could bring down the
entire system. In order to make the DTM fault tolerant and able to withstand attacks, we
examined how other fault tolerant systems had been built in the past, to learn what
techniques could be used.

 11

1.6 Fault Tolerant Systems

 Because of the frequency of hardware and software failures and the consequences
resulting from those failures, systems that are able to tolerate such failures, called fault
tolerant systems, became important. The key to building fault tolerant systems is to
design them in such a way that some small number of failures does not cause the entire
system to fail in such a way that the system cannot recover from the failures. Redundant
hardware can be used to provide fault tolerance for a system, where individual devices
fail. For example, while a computer with only one hard disk will lose all its data and be
unable to function if the hard disk dies, a computer with RAID can reconstruct all the
data and continue to function even if one of the hard disks in the array dies. An
important concept is that if there are n of one type of component, a properly designed
system will be able to tolerate n-1 of those components failing and still operate correctly.
Many different fault tolerant systems have been built. For example, VAXclusters have
addressed the problem of fault tolerance using redundant hardware [SN 91]. Lampson
discusses how to create fault tolerant systems using deterministic finite automata [LA
96]. However, sometimes just having redundant hardware is not enough to make a
system fault tolerant. In some cases, a part of the system will fail in such a way that the
system cannot detect that it has failed, and thus two redundant parts of the system will
have a different state. When the system then needs to determine what the state is, it will
be unable to do so. This problem requires a mechanism to arrive at a consensus of what
the correct state is. Once consensus has been achieved, the redundant parts can be
synchronized and faulty ones can be removed and replaced, if necessary, allowing the
system to continue functioning. In their paper, “The Byzantine Generals Problem”,
Lamport et al cast the problem of achieving consensus as an easily understandable
military problem [LL 82]. In the context of this problem, Lamport et al explain how the
uncompromised participants can achieve consensus using two different algorithms [LL
82]. These consensus algorithms can be used to build fault tolerant hardware and
software systems [LL 82]. We concluded that one of the solutions to the well-known
Byzantine Generals Problem was the most appropriate one to use, and we designed and
implemented the DTM using this algorithm.

1.7 The Byzantine Generals Problem

The Byzantine Generals Problem is a well-known problem where generals
commanding groups of one army have surrounded the enemy army, and the generals
must decide what to do [LL 82]. However, the only means they have of communicating
with each other is by using messengers [LL 82]. Complicating the situation is the
possibility that some of the generals may actually be traitors [LL 82]. According to
Lamport et al, the generals need “an algorithm to guarantee that

A. All loyal generals decide upon the same plan of action.

The loyal generals will all do what the algorithm says they should, but the
traitors may do anything they wish. The algorithm must guarantee condition A
regardless of what the traitors do.

 12

The loyal generals should not only reach agreement, but should agree upon a
reasonable plan. We therefore also want to ensure that

B. A small number of traitors cannot cause the loyal generals to adopt a bad

plan” [LL 82].

Condition B is not addressed, since a small number of traitors can only cause an action to
be chosen if the other generals are almost evenly split, in which case, it is not fair to
conclude either action is bad [LL 82].

To solve the problem and achieve consensus, there needs to be an algorithm that
always works, and in order to satisfy the first condition, each of the loyal generals must
have the same information [LL 82]. Lamport et al further define the problem as

“Byzantine Generals Problem. A commanding general must send an order to his
n-1 lieutenant generals such that

IC1. All loyal lieutenants obey the same order.
IC2. If the commanding general is loyal, then every loyal lieutenant obeys the

order he sends” [LL 82].

Lamport et al refer to IC1 and IC2 as “interactive consistency conditions”, and observe
that when the commanding general is loyal, “then IC1 follows from IC2” [LL 82].

Lamport et al devised two solutions to this problem – the Oral Message algorithm
and the Signed Message Algorithm [LL 82]. Each of these algorithms has advantages
and disadvantages. The Oral Message algorithm requires that more than 2n messages be
sent to achieve consensus, if there are n generals, and it only works if the number of loyal
generals is more than twice the number of traitorous generals [LL 82]. The Signed
Message Algorithm, in contrast, only requires sending O(n2) messages to achieve
consensus, and works regardless of the number of traitorous generals [LL 82]. The
Signed Message Algorithm requires a greater number of necessary conditions to be met
in order to operate correctly than the Oral Message Algorithm does. However, it is
significantly faster than the Oral Message Algorithm, and the extra requirements are not
problematic in our system, so we elected to use the Signed Message Algorithm. We
explain the Signed Message Algorithm fully in section 2.

1.8 Terminology

Throughout this paper, we will refer to some terms, which we define here. We
will also use the words computer, host, node, and system interchangeably. We say that
a computer is compromised if the S.A.F.E. software (described later) installed on it is not
functioning correctly. A computer that is not compromised will be referred to as
uncompromised. A Trust Domain is a set of computers that can communicate with
each other and believe that each other are not compromised. A signed message is a piece
of data that is created and then signed by the creator in such a way that the contents of the
message cannot be changed without the recipient of the message being able to tell that the
contents were changed. The signature of the message creator, hosti, is a set of text that

 13

can only be created by hosti. However, every other hostz can verify whether a message
was signed by hosti. A message that is forged is a message that is created by a hosti and
then signed so the message appears to have been created by hostz. A message that has
been tampered with is a message whose contents were created by hosti and then changed
by some other host, hostz. A signature is a sequence of some number of events, e1, e2, ...,
en, that represent a possible attack on a computer system. Each event is a single action,
such as an attempt to login to a computer or an attempt to gain administrative privileges
on a system. The events in a signature need only to occur in the correct order, but not
immediately following each other, to represent a potential attack. This is because some
attacks happen over time, and because other users may make legitimate requests of the
system in between the events in an attack.

 14

2 The DTM

The DTM is responsible for forming and maintaining Trust Domains. A Trust
Domain is a set of nodes that share a charter and a security policy, and which behave
consistently and according to the security policy. A node can be any device with a
sufficient amount of computing capability to carry out the necessary tasks of the DTM.
Thus, although our work has been with Trust Domains composed of Intel®-based
personal computers, we envision Trust Domains composed of many different devices,
including workstations, routers, and even members of a distributed database. The nodes
in the Trust Domains work together to keep compromised nodes from joining trust
domains, and to detect and remove any nodes that become compromised after joining the
Trust Domain.
 The objectives of the DTM are analogous to those of the generals in the Byzantine
Generals Problem. The nodes in the Trust Domain are analogous to the generals. The
nodes must work together to decide whether to allow another node to join the Trust
Domain, while the generals must collaborate to decide whether to attack or retreat. There
may be nodes in the Trust Domain that are compromised, just as there may be some
generals that are traitors. We also assume that a node that does not participate in the
process of achieving consensus is compromised. Thus, a node in the Trust Domain that
experiences a hardware or software failure and is unable to participate in the process is
analogous to a general who does not participate in the process of achieving consensus
either by not sending messages or because his messenger was prevented from reaching
the other generals. In addition to just concluding whether to allow a node to join a Trust
Domain, the nodes in the Trust Domain must also discover and remove any compromised
nodes, or traitors. This is an extension to the Byzantine Generals Problem, but due to the
similarities between how the DTM and the generals must achieve consensus, we believed
that we could adapt a solution to the Byzantine Generals Problem for use by the DTM.
However, in addition to these objectives, there are some other requirements that the DTM
must satisfy to be usable.

2.1 Requirements

There are many requirements that the DTM must satisfy in order to be effective.
The DTM must protect itself from attacks, or else an attacker could disable S.A.F.E. like
many other IDCSs and render it useless. The DTM protects itself by trying to maintain at
least a simple majority of uncompromised hosts in a Trust Domain. The hosts in a Trust
Domain decide whether to admit new hosts or remove current hosts from the Trust
Domain. In order to do this, the DTM needs all the uncompromised hosts to agree on the
actions to take. Thus, the DTM needs to use a consensus algorithm.

The DTM must be fault tolerant in order to work in a realistic environment. We
define a fault as a host in a Trust Domain going offline because of a hardware, software,
or power failure, a host becoming unreachable because of a network failure or
congestion, or a host being compromised by an attacker.

 15

It is important that the DTM not have a central server or component because a
central server would be a weak link in the armor of S.A.F.E. A central server could be
attacked and either compromised or subjected to a denial of service attack, rendering
S.A.F.E. inoperable and useless.

It is crucial that an implementation of the DTM be neither CPU intensive nor
network intensive. If the DTM consumes too much CPU time or network bandwidth,
then it will not be useful because it will prevent the system from performing its normal
tasks or will take too long to allow new systems to join a Trust Domain.

S.A.F.E. must be scalable to allow enough computers to join Trust Domains and
communicate with each other so that a large number of computers can talk to each other
and determine whether another computer is trustworthy.

When a computer, ci, tries to join a Trust Domain or a computer already in a Trust
Domain is suspect (ways of determining a suspect node will be described later in section
2.3.3), the DTMs running on the other computers in the Trust Domain send signatures to
ci. Each signature represents a false positive, a false negative, or an actual attack and has
a probability associated with it. The probability is the likelihood that the signature
(regardless of whether it is a false positive, false negative, or an attack) is an attack. Each
computer that is not compromised knows the probability that corresponds to the
signatures it sends. If the S.A.F.E. software on ci is not compromised, then for each
signature it receives, ci will be able to determine and return the correct probability that
the signature was an attack to the sender of the signature. If the S.A.F.E. software on ci is
compromised, then ci should be unable to determine the correct probability except with
rare exceptions where it makes a lucky guess. Therefore, the DTMs must prevent
compromised computers from being able to collect the data the DTMs use to test if a host
has been compromised. This is discussed in more detail in the future work section.

2.2 The Signed Message Algorithm

2.2.1 Assumptions

 We claimed that a variant of a solution to the Byzantine Generals Problem,
specifically Lamport et al’s Signed Message Algorithm, would allow the DTM to achieve
consensus. There are several assumptions that are required for the Signed Message
Algorithm to work [LL 82]. The assumptions are:

• All messages are delivered to the intended recipient.
• The recipient of a message can tell who sent it.
• The absence of a message can be detected.
• Any tampering with a message can be detected and no loyal general’s signature

can be forged.
• Anyone can verify the authenticity of a general’s signature. [LL 82].

 16

2.2.2 Formal Definition Of The Signed Message Algorithm

 Before defining the Signed Message Algorithm formally, Lamport et al define a
function choice(V), where V is a set [LL 82]. “If the set V contains a single element v,
then choice(V) = v” [LL 82]. If V = Ø, then choice(V) returns a default value, and
choice(v1, v2, ..., vi) for i ≥ 2, can be defined to deterministically return any of the vi or
the default value [LL 82]. Lamport et al formally define the Signed Message Algorithm
as

“Algorithm SM(m).

Initially, Vi = Ø.

(1) The commander signs and sends his value to every lieutenant.
(2) For each i:

(A) If Lieutenant i receives a message of the form v:0 from the commander
and he has not yet received any order, then
 (i) he lets Vi equal {v};
 (ii) he sends the message v:0:i to every other lieutenant.
(B) If Lieutenant i receives a message of the form v:0:j1:...:jk and v is not in
the setVi, then
 (i) he adds v to Vi;
 (ii) if k < m, then he sends the message v:0:j1:...:jk:i to every lieutenant

other then j1,...,jk.
(3) For each i: When Lieutenant i will receive no more messages, he obeys the order

choice(Vi)” [LL 82].

2.2.3 Explanation Of How The Signed Message Algorithm Works

Perhaps one of the best features of the Signed Message Algorithm is that it functions
even if some of the hosts in the system are compromised. In fact, for the Byzantine
Generals Problem, the algorithm works even if all but one of the hosts are compromised,
and it works trivially if all of the hosts are compromised. This is not sufficient for
S.A.F.E., however, and we give more restrictive assumptions about the number of
compromised hosts in sections 2.3.2 and 2.3.3. In the Signed Message Algorithm, one of
the hosts acts as a leader and sends an order to the other hosts. Whenever a host receives
a message, it checks the message to determine if the message has been forged or
tampered with. The DTM is able to determine whether a message has been forged,
tampered with, both forged and tampered with, or neither. However, the DTM is unable
to gain any additional information beyond this, so it treats any message that has been
forged, tempered with, or both, in the same manner, and discards it without doing any
further processing. If the message has not been forged or tampered with, the receiver
takes the order and puts it in its list of orders received. Then the receiver signs the
message with his own signature and forwards it to all the hosts whose signature is not on
the order. If a host receives a message with an order that is already in his list, he ignores
the message. When no more messages will be received, the hosts all choose an order

 17

from the list of orders they have received using this method. If only one order has been
received, that order is chosen. If more than one order has been received, a previously
designated default order is chosen.

Because any order that reaches a loyal general will be forwarded to all other
generals who have not seen the order, all the loyal generals will have the same set of
orders to choose from, and thus choose the same order to obey. While the Signed
Message Algorithm satisfies the requirements to achieve consensus, if the “commander”
from Lamport et al’s Signed Message Algorithm is compromised, it may cause the wrong
answer to be the one reached by consensus because the uncompromised hosts will all
agree on whatever order the leader sends. This clearly does not satisfy our requirement
that uncompromised hosts must be admitted into the Trust Domain and compromised
hosts must not be admitted into the Trust Domain. If the Signed Message Algorithm can
be used to accomplish our goals, it must be modified.

2.2.4 Theorem: The Signed Message Algorithm Solves The Byzantine
Generals Problem

 Lamport et al present the following theorem:

“Theorem 2. For any m, Algorithm SM(m) solves the Byzantine Generals Problem if
there are at most m traitors” [LL 82].

In order to prove this, one just needs to prove that both IC1 and IC2 hold [LL 82].
Lamport et al begin by proving IC2 holds [LL 82]. There are two possible cases. The
commander can either be loyal or a traitor. We note that IC2 from section 1.7 can be
rewritten as p → q. Thus, if the commanding general is not loyal, then p → q is satisfied
trivially. Therefore, we must just show that if the commanding general is loyal, then all
the loyal lieutenants obey the commanding general’s order [LL 82]. We assume the
commanding general is loyal [LL 82]. Then in step 1 of SM(m), the commanding
general sends the signed order v:0 to each of the other generals [LL 82]. In step 2A,
every general will receive the order v. Since no general can forge messages, no general
will be able to receive any other order v’:0 in step 2B [LL 82]. Thus, in step 3, each
general will only have one order to choose from, so choice(Vi) will return the same order,
v, for each general i [LL 82]. Thus, all the loyal generals will follow order v, which is the
order the commanding general sent, and thus, IC2 is satisfied [LL 82].
 Now, the only thing remaining is to prove that IC1 always holds [LL 82]. As
stated in section 1.7, if IC2 holds and the commanding general is loyal, then IC1 follows
from it, so it is sufficient to show that IC1 holds when the commanding general is not
loyal [LL 82]. We assume the commanding general is not loyal. Since the choice
function always returns the same value if Vx = Vy, then we must just show that for any
two loyal generals x and y, that Vx = Vy [LL 82]. This amounts to showing that if general
x receives a correctly signed order o in step 2, then general y receives the correctly signed
order o in step 2 [LL 82]. Assume that loyal general x receives the correctly signed order
o in step 2A [LL 82]. Then general x will sign the message and forward it on to all other
generals, so general y will receive the order [LL 82]. Assume that general x received the

 18

correctly signed order o in step 2B [LL 82]. Then, since forged or tampered messages
can be detected, and are thus discarded, either general y has already received the message
and has signed the message that was sent to general x, or else general x sends the
message to general y because general x can tell that general y has not signed the message
[LL 82].

2.3 How The DTM Works

2.3.1 General Concept

We have established a basic algorithm for the DTM to use in order for the DTM
to satisfy the given requirements. When a new host tries to join a Trust Domain, it sends
a message to the members of the Trust Domain. The members of the Trust Domain all
verify that the new host is running an operating system that is updated with any required
patches and has the latest version of the S.A.F.E. software installed. If the new host
meets these minimum requirements, the members of the Trust Domain interrogate the
new host to ensure that the S.A.F.E. software has not been compromised. The results of
these interrogations are then shared with the other members of the Trust Domain and the
members of the Trust Domain reach a consensus on whether to admit the new host into
the Trust Domain. Finally, as described in section 2.3.3, the DTM tries to detect and
remove any hosts that have become compromised since they joined the Trust Domain.
The DTM needs a method of achieving consensus, and we believe that this may be done
using a variant of a solution to the Byzantine Generals Problem. We also must make
some assumptions, to get the initial version of the DTM implemented.

2.3.2 Assumptions For The DTM

 In order for the concept of a Trust Domain to work, we must assume that it can be
started with an uncompromised host. We assume that a system administrator starts the
S.A.F.E. software on a host that is known to be uncompromised. We also assume that the
system administrator starts the S.A.F.E. software on two additional uncompromised hosts
and has them join the Trust Domain. These first 3 computers form the foundation of the
Trust Domain. We also assume that compromised hosts cannot return the correct
probability corresponding to signatures sent to them by uncompromised DTMs, except in
extremely rare instances. The existence of a scheme to keep the data used to test if
computers are uncompromised is assumed. Such schemes are discussed in the future
work section. We also assume that a majority of hosts in a Trust Domain are not
compromised. We define a simple majority of hosts in a Trust Domain to be 1 +
Floor(n/2), if there are n hosts in a Trust Domain. This is a critical assumption. If the
number of compromised hosts in a Trust Domain exceeds the number of uncompromised
hosts, then the compromised hosts have taken over the Trust Domain. In this case, the
compromised hosts can prevent the uncompromised computers from being able to restore
the Trust Domain to a state where the majority of the computers are uncompromised.
We provide a mechanism to attempt to prevent the number of compromised systems from

 19

growing too large, by trying to detect and remove compromised hosts from the Trust
Domain.

2.3.3 Parallel Implementation of the Signed Message Algorithm

Running n instances of the Signed Message algorithm in parallel allows us to
detect compromised hosts within the trust domain, as described below, and it achieves
consensus about whether to let a host join the trust domain. This method requires O(n3)
messages to be sent, where n is the number of hosts in a Trust Domain. By limiting the
number of hosts in a Trust Domain to 16 at any time, O(n3) is a manageable number of
messages, as demonstrated by the resource utilization data in section 4.1. Scalability of
S.A.F.E. to allow it to function in a network of several thousand computers is discussed in
section 6.

In addition to just achieving consensus which one execution of the Signed
Message Algorithm can do by sending O(n2) messages, the parallel version guarantees
that compromised nodes are not admitted to a trust domain, which can happen if the
decision is based on one execution of the Signed Message Algorithm. The guarantee is
only valid as long as a simple majority of the hosts in the trust domain are not
compromised, which is one of our assumptions.

Compromised hosts in a trust domain are detected by using the parallel version of
the Signed Message Algorithm, assuming that a majority of the hosts within the trust
domain are not compromised. This result is because there are only a limited number of
possible events that can occur when the Signed Message Algorithm is run.

If the “commander” from Lamport et al’s Signed Message Algorithm is not
compromised, then after running the Signed Message Algorithm in parallel, all hosts that
are not compromised know that the leader is not compromised, because the leader sent
the correct conclusion that all hosts that are not compromised determined.

If the leader of an execution of the Signed Message Algorithm is compromised, then
it can send:

• 0 messages to all uncompromised nodes - All uncompromised nodes assume node

compromised or dead (same treatment as compromised).

• 1 message to only some uncompromised nodes – The uncompromised nodes
detect there’s a compromised node in the system and send a message to other
nodes accusing the suspected compromised nodes. The accused nodes are then
tested and are determined to be compromised or uncompromised.

• 1 message to all uncompromised nodes - All uncompromised detect message is
wrong and host is compromised if it contradicts the majority. If message does not
contradict the majority, this cannot be detected yet unless the node sends a
different message to at least 1 compromised node that forwards the message to at
least 1 uncompromised node. Although this node should be removed, it is not
currently causing damage, so it is not a critical problem.

 20

• 2 (or more) different messages to some uncompromised nodes - All
uncompromised nodes see contradictory instruction and know node is
compromised.

2.4 Denial Of Service Attack Prevention

 As stated earlier, a requirement of the DTM is that it consumes few enough
system resources, such that it does not prevent the system it's protecting from operating
normally. If DTM is constantly checking hosts that are trying to join a Trust Domain,
then it will be using a lot of CPU time and network bandwidth. Therefore, a
compromised host that continuously tries to join a Trust Domain will cause all the
systems in the Trust Domain to spend significant amounts of CPU time and network
bandwidth needlessly. In order to prevent this, DTM has a set of configurable
parameters. These parameters allow the system administrator to specify how many
attempts a host can make to join a Trust Domain in an amount of time, such as three
attempts in 5 minutes, before additional requests from that host are considered a denial of
service attack. Once a request to join a Trust Domain is deemed a denial of service
attack, all subsequent requests to join made by that host are ignored for a specified
amount of time, which is also configurable by the system administrator.
 The implementation of the DTM is such that an uncompromised node will not
send multiple join requests in rapid succession. When an uncompromised node tries to
join a Trust Domain, it sends a single join request using UDP and waits for a response.
The only reason that there would be no response is if the network is unreachable due to a
severed communication link, the UDP packet was not received, or the network is so
congested that a single UDP packet gets stuck in a queue and is not processed for a long
time. If there is no response in a configurable amount of time, the S.A.F.E. software
terminates because it assumes that it will not receive a response. In this case, the
administrator will have to start the S.A.F.E. software again to have the computer retry to
join the Trust Domain. If there was no response because of a severed communication
link or because the packet was not received, then restarting the S.A.F.E. software and
trying to join the Trust Domain again will not cause multiple requests to be sent because
the previous ones were never received. If the request was not received in time because it
sat in a queue too long, then the network is likely horribly congested and the
administrator will be likely busy trying to relieve the congestion and not restarting the
S.A.F.E. software, as S.A.F.E. will not be a priority in that case.

 21

3 Experiments

In our experiments, it was unnecessary to actually attack and compromise
computers or the software running on them. We could test both the DTM and S.A.F.E.
by emulating attacks on computers and having them emulate being compromised.
Because of this, we did not actually attack or compromise nodes. Therefore, it should be
understood that our results do not conclusively prove that our implementation works.
However, our results should provide a good indication of whether the implementation
worked. We still use the words attack and compromise in our descriptions of the
experiments, results, and analysis, but it should be understood that we mean an emulated
attack and an emulated compromise.

3.1 Rationale For Design Of Experiments

3.1.1 Trust Domain Model

We have constructed a model, M = {C, Cnew, P, X, α}, for a Trust Domain. This
model allows us to reason about the correctness of the Distributed Trust Manager (DTM).
One potential side benefit of the model is that it will allow us to identify holes in our
design validation and testing of the DTM. The basic components of our model, C, P, X,
and α are defined below.

C = {c1, c2, c3, ..., cn}, for some finite integer n, is the set of nodes in the Trust
Domain. While n could be very large, for practical purposes associated with the
implementation of DTM, we will limit n to 16.

Cnew = cj | cj C, which is a node that is trying to join a Trust Domain. The state,
w, of Cnew is unknown at the time that Cnew declares its intention to join a Trust
Domain. That is, Cnew may be a node whose behavior is in accordance with the
Trust Domain admission and security policies (“uncompromised node”) or it may
be compromised.

α = {α1, α2, α3, ..., αm} is the set of actions that a node may perform. A node is
essentially a deterministic finite automaton. Thus, it has a finite set of states, a
finite set of input symbols, and a transition function that causes the node to move
from some state si to some state sj (si may be sj) based on the input it receives
[HM 00]. The transition function is analogous to the set of actions a node may
take based on the input the node receives. Since the input alphabet is finite and
the number of states is finite, the set of actions, α, which a node may take, is
finite.

 22

P = {p1, p2, p3, ..., pk} is a security policy, which describes the acceptable
behaviors of a computer in the Trust Domain. Each pi is a rule composed of a
subject, an object, and an action that the subject may perform on the object. We
note that security policies are rarely defined completely, as it is difficult to list
every possible rule that is acceptable. Thus, we accept that we will have to add
new rules to the policy as new acceptable actions that a computer may perform on
an object are discovered. It should be clear that P ⊆ α. We also note that
⌐P U P = α.

X is a capability matrix, which indicates what actions the subjects can perform on
the objects and/or on each other. The subjects here are the nodes. The objects are
the data and the services running on the nodes. X[i][j] = {(n, {αi Є α | ci can
perform actions αi to object n on computer cj})}. In other words, for each object
n on computer cj, X[i][j] gives the set of actions that computer ci can do to object
n on computer cj.

We added code to the DTM to allow us to emulate nodes being compromised
during the experiments. During the trials, each compromised nodes could assume
any of the compromised behavior patterns, which are discussed in the following
paragraphs and shown in table 5. There are two characteristics of compromised
nodes. The first characteristic is how they behave when they are the
“commander” of the Signed Message Algorithm. The second characteristic is
how they behave when they are a “lieutenant” in the Signed Message Algorithm.

We define the set of leader behavior patterns to be the set L = {Leader Behaves
Normally, Leader Sends No Messages, Leader Sends All Hosts Wrong Messages,
Leader Sends Some Hosts Wrong Messages, Leader Sends Some Hosts Right
Messages, Leader Sends Some Hosts Wrong & Right Messages, Leader Sends All
Hosts Wrong & Right Messages}.

We define the set of follower behavior patterns to be the set F = {Follower
Behaves Normally, Forwards No Messages, Forwards Some
Messages, Forwards Messages to Some Hosts}.

Since each node will act as a leader in one instance of the Signed Message
Algorithm and as a follower in the other instances, the set of possible behavior
combinations is the Cartesian product of the sets L and F. The Cartesian product
L x F consists of 28 behavior combinations, one of which is the node behaves
correctly as a both a leader and follower. Hence, the number of compromised
behavior patterns that a single node can exhibit is (7 x 4) – 1 = 27.

3.1.2 Capability Matrix

We constructed a capability matrix, using the subjects, objects, and behaviors in

the Trust Domain. The capability matrix was then used to define the security policy, P.

 23

This, in turn, allowed us to construct a test case matrix, which enumerates the test cases
we needed to perform.

Figure 3 Capability Matrix for Computers in a Trust Domain

3.1.3 Security Policy

We define several variables and constants that are necessary to define the security
policy, P. The variables are:

osi = the operating system version on computer i
safei = the S.A.F.E. version on computer i

 responsei,x = the response computer i gives to computer x in the Trust Domain
when it is interrogated

opinioni,x = the belief of computer x in the Trust Domain about whether computer
i is compromised

 majorityi,x = the majority belief of the computers in the Trust Domain about
whether computer i is compromised after the parallel Signed
Message Algorithm has been completed

 messageTamperedi = whether message i has been tampered with

The constants are:

osT = the minimum acceptable version of the operating system for a node to join
Trust Domain T.

safeT = the minimum acceptable version of S.A.F.E. for a node to join Trust
Domain T.

 responsec = the correct response computer to an interrogation
 compromised = the majority belief that the computer trying to join the Trust

Domain is compromised
 uncompromised = the majority belief that the computer trying to join the Trust

Domain is not compromised

p1: Given a node, ci ∈ Cnew, that is attempting to join a Trust Domain, T, then, if the value
of osi < osT, ci is not allowed to join Trust Domain T.

 24

p2: Given a node, ci ∈ Cnew, that is attempting to join a Trust Domain, T, then, if the value
of safei < safeT, ci is not allowed to join Trust Domain T.

p3: Given a node, ci ∈ Cnew, that is attempting to join a Trust Domain, T, and a node cx in
Trust Domain T, then, if the value of responsei,x != responsec, then opinioni,x =
compromised (ci is deemed compromised by cx).

p4: Given a node, ci ∈ Cnew, that is attempting to join a Trust Domain, T, and a node cx in
Trust Domain T, then, if the value of responsei,x == responsec, then opinioni,x =
uncompromised (ci is deemed uncompromised by cx).

p5: Given a set of nodes, c1, ..., cx, in a Trust Domain T, a node ci not in Trust Domain T,
and majorityi,x == compromised, cx does not open a socket connection to ci (thus not
allowing ci is to join Trust Domain T).

p5: Given a set of nodes, c1, ..., cx, in a Trust Domain T, a node ci not in Trust Domain T,
and majorityi,x == uncompromised, cx opens a socket connection to ci (thus allowing ci is
to join Trust Domain T).

p6: Given nodes cx and cy in Trust Domain T, and cx receives message i from cy, such that
messageTamperedi == true, cx discards message i as if it was never received.

3.1.4 Test Case Matrix

 We have several test objectives. Our first objective is to ensure that computers in
a Trust Domain behave in accordance to the security policy, P, and the capability matrix,
X. We are trying to ensure that all the behaviors in ⌐P are not allowed. Finally, we seek
to update P and ⌐P continually, moving all actions from ⌐P to P, if the actions are not
destructive to the functioning of the Trust Domain. In figure 4, we give a test case matrix
designed to demonstrate a set of test cases that must be run to verify that the DTM
functions correctly. However, the matrix is intended to serve as an example only. It is
not complete and thus not sufficient.

 25

No Hosts in Trust Domain
are Compromised

Some Hosts in Trust
Domain are Compromised

Keeps Compromised Hosts
From Joining

Detect and Remove Nodes that
Become Compromised After
Joining

Stop Repeated Attempt to Join
DOS Attack

Allow Uncompromised Nodes to
Join

Measure Resource Utilization

Figure 4 Test Case Matrix

3.2 Experimental Setup

 The hardware used to evaluate both the DTM and S.A.F.E. was a set of 10
computers with the following CPUs:

• 5 Intel® Pentium® 3 450 MHz processors
• 3 Intel® Pentium® 2 400 MHz processors
• 1 Intel® Celeron® 466 MHz processor
• 1 Intel® Celeron® 400 MHz processor

All of the computers had 128 MB of RAM, except one of the computers with an Intel®
Pentium® 3 450 MHz processor, which had 320 MB of memory. Each computer was
directly connected to a 16-port NETGEAR EN116 10BASE-T Ethernet hub. Neither the
hub nor any computer was connected to any other network. All but one computer ran the
Debian Linux version 3.0 operating system without a window manager, the J2SE
1.4.2_04 from Sun Microsystems, Snort 1.8.4-beta1, and S.A.F.E. 1.0. The other
computer, which was the one with 320 MB of RAM, ran Microsoft Windows 2000, the
J2SE 1.4.1_02 from Sun Microsystems, and S.A.F.E. 1.0. This computer ran the GUI
that was used to test the DTM. In a production environment, no GUI would be
necessary.

3.3 Experiments to Evaluate the DTM

Due to time constraints, it was clear that only a subset of the test cases could be

run, and they could only be run a limited number of times. Because of this, we
acknowledge that the testing was not as thorough as it should be and the results are not

 26

statistically significant. Therefore, the results will only give a rough indication as to the
feasibility of the DTM. We chose to test these features of the DTM, as they were the
ones the model and requirements indicated were crucial.

1. Whether uncompromised hosts were allowed to join the Trust Domain.

 2. Whether compromised hosts were not allowed to join the Trust Domain.
3. Whether hosts that became compromised after joining the Trust Domain were
detected and removed from the Trust Domain based on information gained when
new hosts tried to join the Trust Domain.
4. Whether a compromised host was prevented from being able to cause a Denial
of Service attack by repeatedly trying to join the Trust Domain after being
rejected.
5. What the CPU utilization of the systems in the Trust Domain was just to run
the DTM.

To test the effectiveness of the DTM, a test harness was used. This allowed us to emulate
computers becoming compromised using a GUI. The “compromised” computers
behaved in one of the 27 compromised computer behavior patterns given by the model.
The behavior of each compromised computer was chosen randomly from the set of
possible behaviors, using the GUI.

The resource utilization of the DTM was measured on an unloaded system that
was only running the S.A.F.E. software, Snort, and top, a performance-monitoring tool.
First, top was started and began to produce output. Then S.A.F.E. was started. top
measured the resource utilization of the computer every second and printed the results to
a log file. The log file was analyzed later, and the maximum amount of memory that the
DTM used was calculated by subtracting the amount of memory used when S.A.F.E. was
not running from the maximum amount of memory used when S.A.F.E. was running.
The percent of CPU utilization was calculated by averaging the amount of CPU
utilization while S.A.F.E. was running. The measurements were recorded for a computer
with an Intel® Pentium® 3 450 MHz processor, which was not running the GUI.

3.4 Experiments to Evaluate S.A.F.E.

 In order to evaluate S.A.F.E., its performance was compared to that of Snort 1.8.4-
beta1. Using Snot 0.92a, 10 signatures were sent to a computer running Snort, to see how
Snort would respond to the signatures. Next, a Trust Domain of nine computers running
S.A.F.E. was formed, and three nodes were selected at random to emulate the behavior of
a compromised node. Then a signature was sent to one of the uncompromised nodes and
the results were observed and recorded. This procedure was repeated 3 times for each
signature. In each trial, the behavior of the compromised nodes was selected by having a
random number generator pick the behavior from the set of possible behaviors. In these
trials, when the SHM received the signatures, if they represented a likely attack, the SHM
sent a message to the DTM. After that, if the signature was an attack, the SHM was set to
behave as that particular node was compromised instantaneously.

 27

The 10 signatures that were used were determined by members of the WPI
System Security Research Lab Research Group, in an attempt to create realistic attacks.
The signatures were designed to emulate attacks on a computer. Each signature falls into
one of three categories. Signatures are either clearly not an attack, clearly an attack, or it
is unclear whether they are an attack. A low threshold and a high threshold separate the
different types of signatures. Three of the signatures emulated an unsuccessful attack,
and thus, they were assigned a probability less than the low threshold. Three of the
signatures emulated a successful attack, and were assigned a probability greater than the
high threshold. Four of the signatures emulated an attack that might be a successful
attack or a failed attack. These were assigned a probability between the low and high
thresholds. The assigned probabilities were .1, .9, and .5 respectively, which are
arbitrarily chosen values that fall within the appropriate ranges When the signatures that
were not definitely failed or successful attacks were sent, the tests were done twice. The
first time they were done as if the attack had not been successful. The second time they
were done, the SHM on the computer that had been “attacked” emulated being
compromised.

 28

4 Experimental Results and Analysis

4.1 Results

 The results of the experiments are shown in Tables 1, 2, 3, and 4 and Chart 1.
Table 1 shows how successful the DTM was for each test.

Table 1 Results of Testing the DTM

 Table 2 gives the approximate resource utilization of the DTM during 5 trials.

Trial RAM consumed by S.A.F.E. (MB) Average CPU Utilization (%)
1 21.527 6.9
2 21.441 6.9
3 20.949 6.9
4 21.672 7
5 20.91 6.9

Table 2 - Resource Utilization of the DTM

Table 3 shows the approximate resource utilization of S.A.F.E. when it was run
for a Trust Domain of 9 nodes and was attacked with each of the signatures.

 29

 Table 3 - S.A.F.E.’s Resource Utilization

Table 4 shows the approximate time it took for the computers in the Trust Domain to
determine whether the S.A.F.E. on the node that was attacked was compromised.

Table 4 - Time to Determine Whether an Attack Compromised the S.A.F.E. Software

Chart 1 is a high-level illustration of how the DTM spends the time it takes to determine
if a node is compromised. For clarity, only 3 of the 9 nodes in the system are shown.

 30

Chart 1 – How the DTM’s Time is Spent

4.2 Analysis

 In order to interpret the results of testing the DTM correctly, it is crucial to
understand the model of a compromised node that was used in the tests. Two models of
compromised nodes were used in the testing. In the unit testing of the DTM, a
compromised node consisted of an uncompromised SHM and a compromised DTM. In
the testing of S.A.F.E., the model of a compromised node consisted of a compromised
SHM and an uncompromised DTM.

The model of a compromised node we used for the testing of the DTM differs
from an uncompromised node in one or two ways. Each node acts as a leader and as a
follower in the Signed Message Algorithm. A compromised node is one that does not act
correctly as a leader, a follower, or both in the Signed Message Algorithm. In section
3.1.1, the ways that a node may behave as a leader and as a follower are specified. These
behaviors allow us to construct the matrix in Table 5, where the entry in the ith row and jth
column of the matrix indicate one possible way a compromised node behaves. A node is
assigned to behave as a compromised node in the Signed Message Algorithm by
randomly selecting the compromised behavior. Once a node is assigned to be
compromised, it behaves as specified in table 5, and its behavior does not change with
time. Therefore, once a node has been assigned to behave as a compromised node with
leader behavior i and follow behavior j, it will not adopt any different behavior in the
future. Because of this, once a node has been compromised, it will behave as a
compromised node with its specified behavior until it is removed from the Trust Domain
or the Trust Domain is destroyed. In addition to this, the compromised nodes in the
current model follow the same code as the uncompromised nodes in every other way.

 31

This means the compromised nodes will allow or deny a node to join a Trust Domain
based solely on the majority opinion. This does not give the compromised nodes the
ability to do anything but the same thing as the majority. In fact, the compromised nodes
even count their own vote as it should be counted, even if this contradicts the message
they send to other nodes. This is a very restrictive model and is not realistic, but it is well
beyond the scope of this thesis to develop a better model, and it is left for future students
to do. We do, however, provide some suggestions for what a more accurate model
should allow.

A more accurate model should allow compromised nodes to behave any possible
way at any time. Therefore, a better model should not have the compromised nodes
using almost exactly the same code as the uncompromised nodes, as our model does.
Rather, it should allow compromised nodes to use specially written code that allows
compromised nodes to change their behavior at any point in time and to collaborate with
other compromised nodes. The model of a compromised node that we used when testing
the DTM was limited to having only the DTM function incorrectly. However, any or all
of the components of S.A.F.E. (and in any combination) should be able to function
incorrectly in an accurate model. Simply put, a more accurate model of a compromised
node should include the ability to do anything to fool uncompromised nodes and cause
problems in a Trust Domain.

We suggest that when a more accurate model is developed, the developer should
bear in mind that the goal of a compromised computer may not be just to destroy a Trust
Domain. Instead, it may be trying to fool uncompromised computers into letting it access
their resources. In this case, compromised computers may attempt to let uncompromised
computers into the Trust Domain, as long as the compromised computers still will
outnumber the uncompromised computers. In this instance, the compromised computers
will be trying to keep the Trust Domain intact as long as possible to have the greatest
opportunity to exploit their access to the uncompromised computers.

 32

Table 5 - The Possible Behaviors of a Compromised DTM in the Signed Message Algorithm

The model of a compromised node for the tests of S.A.F.E. was also a very

simplistic one, and thus, future work should include studying it and developing it
properly. We needed to use a test harness to test S.A.F.E. so that we did not have to
compromise the systems that S.A.F.E. was running on. However, the test harness forced
us to define the behavior of a compromised node. In testing the DTM, we had showed
that a node with a compromised DTM would be detected. In testing S.A.F.E., we needed
to verify that a node whose SHM has become compromised would be detected. Thus,
while a node that was actually compromised might have a compromised SHM or DTM
(or both), to perform the tests that would show whether S.A.F.E. worked correctly, we
needed to have a compromised SHM. In our test harness, a compromised SHM would
process every signature as an uncompromised SHM would, but it would return a different
probability to the DTM than an uncompromised SHM would. For example, if an
uncompromised SHM would return .5 for a signature, a compromised SHM would return
some number not equal to .5 for the same signature. Although the model is simple, the
compromised behavior selected for the SHM was carefully chosen from the set of
possible behaviors. It is important to note that a compromised node in a Trust Domain
will almost always be detected and removed if the node is accused by the uncompromised
nodes. Thus, a compromised node must attempt to avoid being accused. When the
compromised SHM, which has not yet been accused, receives a set of events that
constitute the signature of a potential attack, it must return a probability that an attack has
occurred to the DTM with which it communicates. If it returns a value that indicates it
was definitely compromised or may have been compromised, then it sends a message
requesting help, which results in the consensus algorithm being invoked. Then the
computers in the Trust Domain will retest the node and discover it has been
compromised. For example, an attacker that is trying to remain undetected will return

 33

only probabilities below the threshold where it is deemed that the node may have been
compromised. We give the following example to help clarify.

In this context, assume computer C1 is a compromised node in Trust Domain TDa
and C1 conforms to the model of a compromised node that we have specified. Assume
that the low threshold for a signature is .2 and the high threshold for a signature is .8.
This means that any signature that causes an uncompromised SHM to return a probability
below .2 is not an attack. Any signature which causes an uncompromised SHM to return
a probability greater than or equal to .8 is an attack. Any signature which causes an
uncompromised SHM to return a probability greater than or equal to .2 and less than .8
may be an attack. C1 receives a signature that may be an attack with probability .5. If
C1’s SHM sends a response of .5 to the DTM it communicates with, that DTM will
instruct the other DTMs in TDa to retest C1. They will discover that C1 compromised and
remove it from the Trust Domain. If C1‘s SHM sends a response of .9 to the DTM it
communicates with, the DTM will inform the other DTMs in the Trust Domain that C1 is
compromised and they will remove it from the Trust Domain. Thus, C1‘s SHM sends a
response of .1 to the DTM it communicates with. That DTM believes that the SHM is
not compromised and does not alert the DTMs on the other computers in the Trust
Domain. Thus, C1 has avoided being removed from the Trust Domain. It should be
noted, however, that an attacker will almost always be caught eventually, if it returns an
incorrect probability when it is retested.

4.2.1 Analysis Of Testing The DTM

In this first implementation of the DTM architecture and concepts, the

functionality of the DTM was designed to accomplish the following four tasks correctly:

1. Allow uncompromised hosts to join a Trust Domain.
2. Keeps compromised hosts from joining a Trust Domain.
3. Detect and remove hosts that have become compromised after joining a Trust

Domain.
4. Prevent a class of Denial of Service attacks where a compromised node

continuously attempts to join and Trust Domain.

The results in table 1 indicate how well the DTM performed these tasks. There are two
distinct sets of results in Table 1. The first set is the results obtained when there was a
majority of uncompromised computers in the Trust Domain (shaded blue in Table 1),
which is a fundamental assumption we stated in section 2.3.2. These results are
consistent with our expectations and indicate that the DTM performed correctly for the
four tasks. These results are also the crucial set, as they are relevant in support of our
hypothesis. The DTM performed perfectly during the testing when the Trust Domain
contained a majority of uncompromised nodes, leading us to believe that the Byzantine
Agreement Protocol can be successfully applied to the computer security field in the area
of intrusion detection and countermeasures systems.

 34

The second set of results was obtained when there was a majority of compromised
computers in the Trust Domain (shaded red in Table 1). These results indicate what may
occur if our fundamental assumption in section 2.3.2, that the majority of nodes in a Trust
Domain are not compromised, is violated. We believed that if there is a majority of
compromised hosts in a Trust Domain, it has been taken over by compromised computers
and may no longer function correctly. The second set of results does satisfy the
preceding claim, and thus, these results were consistent with our expectations.

If the majority of hosts in a Trust Domain were compromised, then our claim that
the Trust Domain might not function correctly would imply that

1. Uncompromised hosts might not be allowed to join a Trust Domain.
2. Compromised hosts might be allowed to join a Trust Domain.
3. Hosts that become compromised after joining a Trust Domain might not be

detected and removed.
4. Repeated attempts to join a Trust Domain might not be prevented.

It is important to note that a Trust Domain may function correctly even if there

are more compromised nodes than uncompromised ones, and thus, there were successes
in some trials. This is due to the restricted model of a compromised node, discussed in
the beginning of this section. However, if model of a compromised node had allowed the
compromised nodes to collaborate intelligently, which may have included
communicating with other compromised nodes, they could consistently prevent a Trust
Domain from functioning correctly.

In our experiments, we also considered the case where the majority of the nodes
in a Trust Domain were compromised, as shown in the red portions of Table 1. In this
case, the experimental data did not support our original hypothesis, which was “if the
majority of nodes in a Trust Domain are compromised, then, an uncompromised node
should be rejected from the Trusted Domain while a compromised node should be
allowed to join.” At first, this seems to be an irreconcilable result. However, upon
further reasoning it becomes clear that the results are consistent with the experimental
design. A key element of the experimental design is the definition of compromised node
behaviors. In our limited experimentation, the behavior of a compromised node was
restrictive, in the sense that it simply provided faulty answers (i.e. the SHM provided
wrong probabilities) or good answers statically. In addition, a compromised node was
defined in such a way that SHM was the only misbehaving component, and not DTM.
Clearly this is a very restrictive model of an attacker. On the other hand, if the attacker’s
model incorporates behavior such as “a compromised node will allow all requesting
nodes in”, then compromised nodes will have become members of a Trusted domain in
all cases. The key lesson that this limited experimentation provided was to highlight the
importance of clearly articulating and modeling the attackers’ behaviors. Such modeling
needs to be incorporated as a major element of this work, but it is clearly beyond the
scope of this Thesis. For more information about this, the reader is encouraged to refer to
recent works that address the problem of modeling attackers.

We expected that the one type of denial of service attack that the DTM can
prevent would not be prevented by a Trust Domain with a majority of computers that are
compromised. However, this expectation was not met. The key reason here is that the

 35

model of a compromised node is too simplistic. Even when a node is compromised it
continuous to execute the denial of service attack prevention strategy unchanged, and
therefore, it will still work correctly.

The performance results in table 2 show that the DTM used a small amount of the
available RAM on the computer. The most memory that the DTM ever used was just less
than 22 MB, and thus just less than 17 % of the 128 MB of installed RAM. The DTM
also used only 7 % of the CPU time on the computer, on average, while it was running.
This seems like an acceptable value compared to other well known Intrusion Detection
Systems, like Bro, which can consume a gigabyte of RAM and cause average CPU
utilization values of 60% [DR 04].

It would have been desirable to do significantly more testing. Comprehensive
testing of the system would include testing all the features of the DTM with all possible
numbers of computers in a Trust Domain (3, 4, 5, ..., 16). It would have also have
included a more significant number of trials for each test. All the different combinations
of behaviors of compromised nodes should be tested. In addition to this, the DTM should
be tested with compromised nodes that are specifically designed to prevent the DTM
from functioning correctly. The testing was all done manually, which is very time
consuming. In the future, an automated testing solution, such as Expect
(http://expect.nist.gov), should be used. An automated testing tool would allow
significantly more tests to be run in less time, thus providing results that are much more
statistically significant. It would also ensure that tests are reproducible. Automated
testing should also be used to test S.A.F.E.

4.2.2 Analysis Of Testing S.A.F.E.

4.2.2.1 Results

 When Snort detects an event that matches one it is configured to detect, it outputs
a number corresponding to the perceived threat level of the event. The value is 1, 2, or 3.
1 corresponded to the highest threat level and 3 corresponded to the lowest threat level.
Thus, when a computer Snort was monitoring was attacked, Snort outputted a value for
each event in the signature. Because this is how Snort works, it only gives an indication
of whether an attack has occurred, and does not indicate whether the attack has been
successful. Therefore, a human must monitor the output of Snort and determine whether
an attack has been successful. This takes time and a human can make a mistake. In
addition, because Snort is monitoring network traffic, it can generate limitless output,
which a human must then analyze.
 Every time a computer in the Trust Domain was attacked, rather than just
outputting a number to a log file like Snort does, S.A.F.E. successfully determined
whether the node had been compromised by the attack. If the computer had been
compromised, S.A.F.E. removed it from the Trust Domain. This was done without
human intervention. Because S.A.F.E. interprets the values that Snort outputs and
automatically tests a node that is attacked, it does not require a human to monitor it.

 36

4.2.2.2 Resource Utilization

While S.A.F.E. was running, our measurements using top indicated it used less

than 10% of the CPU time on each computer and used about 22 MB of RAM. In one
trial, SAFE appeared to use about 32 MB of RAM. However, this occurred only in a trial
that was run immediately after the computers were rebooted. More trials were performed
and they all produced results consistent with all the other trials. Finally, the computers
were all rebooted again, and one more trial was run. In this case, again, S.A.F.E.
appeared to use about 32 MB of RAM. Running one final trial and examining the status
file in each directory for the three processes that S.A.F.E. uses indicated that the resident
set size of the memory for S.A.F.E. actually was about 32 MB. We note that there was a
significant amount of unused memory (more than 30 MB), so we are confident that all of
S.A.F.E.’s memory consumption was indicated by the resident set size. This leads us to
believe that S.A.F.E. really does use about 32 MB of RAM. This also suggests that our
measurements for the memory consumed by S.A.F.E. in section 4.2.1 also were incorrect
and should have been approximately 32 MB of RAM. We suggest a more accurate tool
be used to measure the exact amount of memory used. However, we are confident that
the 32 MB is an accurate estimate of the memory used by S.A.F.E. We believe our
measurements were inaccurate because top only gives the memory usage of the 20
processes consuming the most CPU time. Further analysis of the output showed that only
two of S.A.F.E.’s three processes were being shown by top. We point out that more
memory may be consumed by S.A.F.E. when the maximum number of nodes (16) join a
Trust Domain. Extrapolating from the numbers in the resident set size of the DTM
process, we expect that no more than 10 MB of additional memory would be required for
this situation. This is because the DTM appears to use 10 MB of memory with 9 nodes in
the Trust Domain, and the memory usage of the DTM scales linearly with the number of
nodes in a Trust Domain, due to the way it is implemented.

4.2.2.3 Scalability Analysis

One of the requirements for S.A.F.E. is that it must be scalable. In this research,

we focused on the scalability within a Trust Domain. We established that a Trust
Domain should work with 16 nodes in section 2.3.3, and we discuss the scalability of
S.A.F.E. to thousands of nodes in section 5.2, based on the assumption of 16 nodes per
Trust Domain. In order to conclude that a Trust Domain is scalable to 16 nodes, we
needed to show that S.A.F.E. functioned efficiently enough to be a potentially viable
IDCS when there were 16 nodes in a Trust Domain. This means that the DTM must be
able to efficiently determine whether a node will or will not be admitted into a Trust
Domain. It also requires that the nodes in a Trust Domain be able to, in an acceptable
amount of time, retest any node that may have become compromised. The definition of
“acceptable” should be based on information in the fields of cognitive science and
computer security. This information should include how long a wait that users will
tolerate and the rate at which a compromised node will damage the other nodes in a Trust
Domain. While we do not have formal definitions for what values are acceptable, we

 37

believe that for our purposes, 60 seconds and 30 seconds are acceptable amounts of time,
respectively in the context of S.A.F.E. We note that the algorithm to retest a node is the
same as the algorithm to determine whether a node should be admitted into a Trust
Domain, and for simplicity, we will refer to it as Algorithmtest henceforth.

Our first measurements of how long Algorithmtest took to run were so poor, that
we were only able to run the tests for a Trust Domain with nine nodes. The average time
it took to run Algorithmtest was 174 seconds. One factor that contributed to this was that
the nodes in a Trust Domain must be synchronized at several points during Algorithmtest.
In order to avoid the synchronization problem during development of the DTM, we had
introduced code that forced the DTM to sleep at two points during the Algorithmtest.
During our first measurements, these times were 60 seconds and 90 seconds,
respectively. This allowed all the nodes in the Trust Domain to stay synchronized
enough for the algorithm to work correctly. Eventually we concluded that these delays
were not caused by the DTM, and that there must be a problem with how the SHM was
implemented, causing it to take significantly longer to process a signature than it should.
This delay caused the need for long sleep times in the DTM. We modified the SHM to
remove the performance impediments, decreased the times that the DTM sleeps, and then
measured how long it took for Algorithmtest to run.
After reducing the sleep times from 60 seconds to 7.5 seconds and from 90 seconds to 11
seconds, Algorithmtest only took 31 seconds with nine nodes in the Trust Domain. Chart
2 shows a high-level view of how the DTM used the time to run Algorithmtest. We
believe that we can reduce the sleep times even more and still have Algorithmtest function
correctly.

Chart 2 – How the DTM’s Time is Spent

 38

However, it should be noted that in our proof-of-concept implementation, three features
are not implemented. These features will increase the amount of time that it takes the
DTM to determine if a host is compromised. The first feature that is not implemented is
the signing (and verification of signatures) of messages. According to professor Berk
Sunar of WPI, signing and verifying the signature of a message should take only
milliseconds on an Intel® Pentium® 4 processor, and therefore, this will not constitute a
factor of any importance in the implementation of the algorithm. The second feature is
ensuring the node being tested is running software that is acceptably patched, including
an operating system. This event only occurs when a node attempts to join a Trust
Domain, and therefore it should not be a significant factor in the dynamic nature of the
algorithm and/or affect scalability.

The third feature is sending multiple signatures, instead of just one, to determine
if a host is compromised. This feature will increase the time it takes to determine
whether a host is compromised. This is because all the signatures must be processed by
the SHM, so the SHM becomes a bottleneck for performance, as it functions as a queue
serviced by a single server. The increased number of signatures it must process will
cause the DTMs on different hosts to get further out of synchronization than they already
are, necessitating a new way to determine when all hosts are ready or a high sleep time so
all hosts are ready to proceed to the next step. However, we are unsure how much
additional time this will add. This is the critical factor. However, it is factor that could
be managed by using design trade-offs. For example, the larger number of signatures and
classes of signatures that are used, the more accurate the determination as to the
trustworthiness of a node will be. Therefore, if you were to statistically measure the
accurate assessment vs. number of signatures, and define a confidence interval, then,
SAFE should be able to manage the scalability nicely.

Although the time required to perform the Signed Message Algorithm and
propagate accusations will increase as the number of nodes in the Trust Domain increases
to 16, we do not believe that this would have as large an impact on the time it takes to
determine whether a host is compromised. The queuing problems will outweigh this.
Future work should include running tests to determine exactly how much time it would
take to determine whether a node is compromised if there are 16 nodes in a Trust
Domain.

We also note that S.A.F.E. was tested on a system running nothing else. Running
a benchmark on the system at the same time as S.A.F.E. would be a much more realistic
test. We did not do this because the computers we had were so old that it was clear this
would cause even more problems. However, since the DTM must send O(n3) messages
over the network when it tests a node, a benchmark that put traffic on the network card
would have been a good choice, because the DTM is neither CPU bound nor disk I/O
bound, but rather network bound. The network traffic of the benchmark may cause
delays in the sending and receiving of messages, which will negatively affect S.A.F.E.’s
performance. This would cause the nodes to get further out of synchronization with each
other, and it could cause good nodes to be removed from the system because they may
not respond quickly enough to messages.

Even with the additional time that will be required for a node being tested to
perform the tasks that have not been implemented yet, we believe that the number of
nodes in a Trust Domain will scale to 16. We believe that the additional computations

 39

that must be performed will add very little processing time. At the same time, over half
of the time to determine if a node is compromised is currently spent sleeping, and we
believe that we can reduce that significantly. We believe that there are two ways we can
do this. The first method is to reduce the sleep times as low as they can go, to just before
the point where they would cause the DTM to malfunction. We also could implement
another round of messaging designed to complement the sleep times. Each node could
send a message to all the other nodes when it is ready to proceed. When all the nodes
have reported in, all the nodes could stop sleeping and continue to run the algorithm. The
sleep times could then be used as a maximum amount of time to sleep, in the event that
some node does not send its “ready message.”

 40

5 Conclusions And Future Work

5.1 Conclusions

The WPI System Security Research Lab’s S.A.F.E. project attempts to design an
intrusion detection and countermeasure system that addresses the problems that all IDCSs
we know of suffer from. Previous work addressed the problems of feature selection and
pattern categorization and adaptation. In this work, we have devised a way to attack the
problem of fault tolerance and resistance to subversion. We have designed and created
an implementation that integrates seamlessly into the existing framework of S.A.F.E. Our
test results lead us to believe that the Byzantine Agreement Protocol can successfully be
applied to the domain of computer security in the area of intrusion detection and
countermeasure systems. However, the implementation is far from complete, as the
future work section will discuss. There are several features that need to be implemented
and a great deal of performance tuning to be done. In addition to this, our proof-of-
concept implementation has not been tested thoroughly enough to conclude that it is a
success. The tests merely indicate that it is a good idea conceptually and point out some
potential problems. Our earlier concerns about the scalability of our implementation
were due to faulty experimental data, and we do not believe that they are well-founded.
Indeed, the results described in section 4 suggest, as a first order approximation, that
scalability will not be a problem. Having said this, we still need to complete a significant
set of tasks to unequivocally confirm that scalability is not an issue. These tasks include:
(1) define, design, and implement a more realistic model of an attacker; (2) design and
implement all the missing features of the DTM mentioned in sections 4 and 5.2; (3)
perform a more robust and complete set of functional, performance, and scalability tests.
This testing should be done once the performance tuning suggested in the previous
section is completed.

5.2 Future Work

We have implemented the portion of a basic framework for a distributed intrusion
detection and countermeasures system that deals with fault tolerance and resistance to
subversion, based on a variant of a solution to the Byzantine Generals Problem.
However, our implementation is based on many assumptions that we have made. Also,
significant portions of the system have not been implemented yet. Future work should
address these assumptions and complete the implementation of the DTM. The remaining
tasks range from mundane implementations using existing methods to more innovative
ideas, which require further research. The future work can be classified under several
different problems, such as masquerading, the distribution and protection of sensitive
data, scalability, and implementation issues.

The current implementation of the DTM does not address the problem of
masquerading, where a node intentionally misrepresents itself. Two examples of the
masquerading problem are compromised nodes pretending to be other nodes and groups

 41

of compromised nodes pretending to be Trust Domains. For example, a compromised
host might try to join the Trust Domain repeatedly, using the IP Address of another host
that might want to join the Trust Domain. After some number of unsuccessful attempts,
the nodes in the Trust Domain would deem that the attacking node was trying to cause a
denial of service attack. All subsequent requests from its spoofed IP Address would be
ignored for a period of time. If the host that legitimately was using that IP Address then
tries to join the Trust Domain, its requests would be ignored for a period of time, causing
a true denial of service. A single host or a group of compromised hosts may listen to the
multicast channel for a legitimate Trust Domain and convince a host trying to join that
they are part of the Trust Domain the host is trying to join. If they fool the intended
victim, this could cause a Trust Domain to get out of synchronization.

The problem of distribution and protection of sensitive data is crucial to
S.A.F.E.’s success. This work has assumed the existence of a method that prevents
compromised computers from obtaining the data used to test hosts. Although we gave
some thought to this issue, we did not reach a conclusion on how it should work. Instead,
we present two possible ways to do this, and our reasoning. The data cannot be stored in
a central repository. If it is, then if the host containing that repository became
compromised, all the data would become useless, because compromised hosts would
have access to it. One way to prevent compromised computers from obtaining the data is
to generate the data as it is needed and delete it immediately after it has been used. In
order to generate the data dynamically, each host would have to have a method of
generating the data such that no duplicate signatures are created by multiple nodes. This
could be done using some unique host properties such as the MAC address of the host’s
Ethernet card or IP address. If uncompromised hosts generate the signatures and
corresponding probabilities as they need them and delete them immediately after using
them, then no uncompromised host will have the data. Thus, compromising a host will
not yield any data. Another method is to partition the data such that each host in a Trust
Domain only has a subset of it. Thus, if a host is compromised, there is still more data
that compromised nodes would not know. That data can be used to test new hosts.
Shamir’s secret sharing techniques could be used to do this [SH 79].

It is critical that S.A.F.E. is scalable enough to allow large numbers of computers
to trust each other. We limited the number of hosts in a Trust Domain to 16, in order to
keep the number of messages that need to be sent and thus the time required to decide
whether a host should be allowed to join a Trust Domain, reasonable. In order to allow
many computers to use S.A.F.E, hundreds or thousands of hosts must be able to
communicate. We can address this problem using a hierarchical method, similar to the
techniques used in networking. We can create many Trust Domains with 16 hosts. Each
of these Trust Domains would then elect a leader. The task of leader must be rotated at
various intervals, in case a leader becomes compromised or fails. The leaders of 16 Trust
Domains would form another Trust Domain at the second level of the hierarchy. This
Trust Domain would also have a leader, which would represent it in a Trust Domain at
the next level of the hierarchy, and so on. In this manner, S.A.F.E. can allow 4096 hosts
to work together. 4096 hosts at level 0 form 256 Trust Domains at level 1. The leaders
of these Trust Domains form 16 Trust Domains at level 2, and their leaders in turn form 1
Trust Domain at level 3. To determine whether a host is trustworthy, a message can be
passed up the hierarchy and back down to the leader representing the host in question.

 42

That leader can then pass a message back through the hierarchy to the original sender
with the correct information. However, in order for the leaders of Trust Domains to be
able to form higher level Trust Domains, they will need a way to send their requests to
join these higher level Trust Domains across subnet boundaries. In addition to this, hosts
trying to join a Trust Domain at a level higher than level 1 will need to be able to
discover the Trust Domain they are trying to join, or have a well-known location of that
Trust Domain. If the location is well known, it will have to be given to the program as a
command line argument or hard coded in the program. A well-known location is easily
attacked and disabled by a denial of service attack, so the location needs to be discovered
at runtime or passed as an argument. Because passing the argument may require human
intervention in what we would like to be an automated process, it is desirable to have the
location discovered at run time. This may be accomplished using overlay networks.

Finally, several implementation issues need to be addressed in the future. One
task is to implement signed messages using well-known cryptography techniques. This
will involve using public key cryptography to encode and decode each message sent by
the parallel version of the Signed Message Algorithm that the DTM uses. This will
ensure that the hosts be able to detect if a message was tampered with. Another task that
needs to be completed is to query the operating system and installed software on the host
trying to join. We believe that a method similar to those used by Windows Update or
Linux’s update program can be used to accomplish this. A shortcoming of the current
implementation is that hosts must be in the same subnet to join a Trust Domain at level 1.
This is because multicasting, as well as broadcasting, can only occur within a subnet.
Thus, because hosts currently use multicast as the way to send their request to join a
Trust Domain, only hosts in the same subnet as the host trying to join can receive the
message. A timer-based mechanism to retest all the hosts in a Trust Domain at a
configurable interval should also be implemented. The only concern is how to prevent
multiple requests to retest the hosts based on the timer. We believe that this could be
addressed using the same method we use to prevent the one specific type of denial of
service attack that DTM prevents. Finally, the Trust Matrix should be expanded for
different host and network based services, as well as subjects within a node. This would
allow nodes to communicate with certain services on other nodes, if they felt the services
were trustworthy. At the same time, they could choose not to communicate with services
they felt were untrustworthy.

Acknowledgement:

This work was supported in part by a grant from the Acumen Consulting Group, Marlboro, Massachusetts.

 43

7 References

[AC 99] Julia Allen, Allen Christie, William. Fithen, John McHugh, Jed Pickel, and Ed
Stoner, “State of the Practice of Intrusion Detection Technologies,” CMU/SEI,
Pittsburgh, PA, Tech. Rep.-028, 1999. [Online]. Available:
http://www.sei.cmu.edu/pub/documents/99.reports/pdf/99tr028.pdf

[AX 00] Stefan Axelsson “Intrusion Detection Systems: A Taxonomy and Survey,” Dept.
of Computer Engineering, Chalmers University of Technology, Sweden, Tech. Rep. No
99-15, March 2000 [Online]. Available:
http://citeseer.ist.psu.edu/cache/papers/cs/13832/http:zSzzSzwww.ce.chalmers.sezSzstaff
zSzsaxzSztaxonomy.pdf/axelsson03intrusion.pdf

[BA 98] Jai Balasubramaniyan, Jose Omar Garcia-Fernandez, Eugene Spafford, and
Diego Zamboni, “An Architecture for Intrusion Detection using Autonomous Agents,”
Department of Computer Science, Purdue University, Coast TR 98-05, 1998. [Online].
Available:
https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/98-05.pdf

[BI 94] Biswanah Mukherjee, Todd L. Heberlein, and Karl N. Levitt. “Network Intrusion
Detection,” IEEE Network, vol. 8(3), pp. 26-41, May/June 1994. [Online]. Available:
http:\\www.ieee.org

[BI 04] Bro Intrusion Detection System – Bro FAQ. [Online]. Available”
http://www.bro-ids.org/FAQ.html

[BU 02] Pedro Bueno. “Paranoid Penguin: Understanding IDS for Linux,” Linux
Journal, vol. 2002 Issue 97, May 2002. [Online]. Available:
http://www.linuxjournal.com/issue/97

[CO 02] Fernando C. Colon Osorio, “An Overview of Intrusion Detection &
Countermeasure Systems – Research Directions.” [Online]. Available:
http://www.cs.wpi.edu/~fcco/IDCS-10212002.ppt

[DE 87] Dorothy Denning, “An Intrusion Detection Model,” IEEE Transactions on
Software Engineering, vol. 13 (2), pp. 222-232, Feb. 1987.

[DR 04] Holger Dreger, Anja Feldmann, Vern Paxson, and Robin Sommer, “Operational
Experience with High-Volume Network Intrusion Detection,” in Proceedings of the 11th
ACM Conference on Computer and Communications Security, 2004, pp. 2-11.

[GS 91] Simson Garfinkel and Gene Spafford, Practical Unix Security. Sebastopol,
California: O'Reilly and Associates, 1991.

[HA 01] Haines, Joshua W., Lee M. Rossey, Richard P. Lippmann, and Robert K.
Cunningham, “Extending the DARPA Off-Line Intrusion Detection Evaluations,” in

 44

Proceedings of the DARPA Information Survivability Conference and Exposition
(DISCEXP II), 2001. [Online]. Available: http://www.ll.mit.edu/IST/pubs/discex-jhaines-
2001-final.pdf

[HM 00] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman, Introduction to
Automata Theory, Languages, and Computation, 2nd ed. Boston: Addison Wesley,
2001.

[LA 96] Butler W. Lampson, “How to Build a Highly Available System Using
Consensus” in Lecture Notes in Computer Science vol. 1151, 1996, pp. 1-17. [Online].
Available: http://research.microsoft.com/lampson/58-Consensus/Acrobat.pdf

[LI 99] Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, and
Kumar Das, “The 1999 DARPA Off-Line Detection Evaluation”.

[LL 82] Leslie Lamport, Robert Shostak, and Marshall Pease, “The Byzantine Generals
Problem,” ACM Transactions on Programming Languages and Systems, vol. 4(3), pp.
382-401, July 1982. [Online]. Available: http://portal.acm.org/dl.cfm

[KO 03] Jack Koziol, Intrusion Detection with Snort. Indiana: SAMS Publishing, 2003.

[PA 99] V. Paxson, "Bro: A System for Detecting Network Intruders in Real-Time",
Computer Networks, vol. 31(23-24), pp. 2435-2463, Dec. 1999. [Online]. Available:
http://www.icir.org/vern/papers/bro-CN99.html

[SH 79] Adi Shamir, “How to Share a Secret,” Communications of the ACM vol. 22 (11),
1979, pp. 612-613. [Online]. Available:
http://portal.acm.org/citation.cfm?id=359176&coll=portal&dl=ACM

[SN 91] William E. Snaman, Jr., “Application Design in a VAXcluster System” Digital
Technical Journal of Digital Equipment Corporation vol. 3 (3), 1991, pp. 16-26.
[Online]. Available: http://www.hpl.hp.com/hpjournal/dtj/vol3num3/vol3num3art2.pdf

[SP 00] Eugene H. Spafford and Diego Zamboni, “Intrusion Detection Using
Autonomous Agents”, Computer Networks, vol. 34, pp. 547-570, Oct. 2000. [Online].
Available: http:\\www.sciencedirect.com

[TA 04] Talisker Security Wizard. [Online]. Available:
http://www.networkintrusion.co.uk/N_ids.htm

[TW 04] Tripwire Open Source, Linux Edition FAQ. [Online]. Available:
http://www.tripwire.org/qanda/index.php

 45

Appendix A - Functional Specification

DTM Functional Specification

1. This Document:

This document describes the functional requirements for the Distributed Trust
Manager (DTM). In addition to functional requirements, this document lists
assumptions that must be made in order to implement DTM in a reasonable
amount of time. These assumptions might be good to address as part of a
dissertation.

2. Functional Requirements:

Version 1.0 (Masters Thesis)

• DTM must be able to communicate with SHM using a well defined protocol.
• All members of a Trust Domain will query a new system that requests to join

the Trust Domain.
• A new system will be allowed to join a Trust Domain, if and only if all

members of a Trust Domain agree it should be allowed to join.
• The systems in a Trust Domain will detect nodes in the Trust Domain that

have been compromised and remove them from the Trust Domain.
• DTM will run on any computer with an operating system supporting Java

1.4.1 or better.

Version 2.0
• The first node brought up will create a Trust Domain and provide a

mechanism for other nodes to locate the Trust Domain.
• DTM will allow the creation of additional Trust Domains when the number of

systems exceeds the allowed number for a trust domain.
• Trust domains must be able to communicate with each other.
• Nodes in a Trust Domain wishing to determine if a node in another Trust

Domain will be able to determine whether the node is trustworthy by the
leaders of the trusted domains communicating.

• A mechanism to “elect” a leader must exist.
• The task of being a leader will be rotated.
• There will be a way for test data to be distributed amongst the nodes of a trust

domain.

3. Assumptions:

The following assumptions are made. These should be addressed in a future
phase of the project, if it continues.

 46

• We assume that all messages are signed. However, we do not implement the
cryptographic algorithms required to actually sign the messages.

• We assume that DTM will work on any computer with an operating systems
that support Java 1.x.y or better. However, we will only test it on the
following operating systems:
o Debian Linux

• We assume that the method of checking system requirements of a node trying
to join a Trust Domain exists.

• We assume that the first 3 nodes that form a Trust Domain are
uncompromised.

• We assume that the countermeasures that bring a system back to a good state
after it has been compromised exist and work.

 47

Appendix B - Architectural Specification
DTM Architecture Specification

1. This Document

This document describes the architecture for the Distributed Trust Manager
(DTM) and the reasoning for the architectural decisions. In addition to
architectural decisions and the reasoning for them, this document lists
assumptions that must be made in order to implement DTM in a reasonable
amount of time. These assumptions might be good to address as part of a
dissertation.

2. Architecture

 A. S.A.F.E. Architecture

The S.A.F.E. architecture imposes some requirements on the way DTM
works, and thus the DTM architecture. The S.A.F.E. architecture is
described below, so that its impacts on the DTM architecture can be seen.

S.A.F.E. consists of 5 major components: probes, Event Generator Objects
(EGOs), the Secure Host Manager (SHM), the Event Queue (EQ), and the
Distributed Trust Manager (DTM). Each system with the S.A.F.E.
software installed on it has 1 instance of each of these modules. The
probes collect events that occur on the system and the EGOs convert those
events into a common format and put them into the EQ. The DTM also
can put data into the EQ. SHM retrieves events from the EQ and
processes them. Based on the events the SHM retrieves, it may output a
message to the DTM on the system.

 48

S.A.F.E. Architecture

 B. DTM Architecture

The DTM architecture specifications are listed in the order that they will
come into play when the DTM is started.

A broadcast channel exists for each trust domain. Each node in a trust
domain listens to the broadcast channel. When a node requests to join the
trust domain, it will send a message in on the broadcast channel and all
(uncompromised) nodes must react by querying the node. A mechanism
must exist for the nodes to ignore repeated requests from a node such that
if it floods the channel with requests, it does not impede normal work from
being done. This means, however, that it could still cause a denial of
service attack by sending multiple requests as fast as it can. If a multicast
channel was not used, a leader would have to be contacted to initiate the
allow/deny mechanism. A compromised leader could ignore requests
from nodes to join the trust domain or cause the other nodes to keep
querying a “potential node”, thus not getting any useful work done. This
will be implemented using Java’s MulticastSocket class, which was
designed for this purpose.

 49

New Host Requests to Join Trust Domain

Instances of the DTM must talk to each other directly in order to
implement Lamport et al.’s Signed Message Algorithm. This is
accomplished by using sockets to simulate a direct connection.

The DTM must also listen to the SHM on the same host. The DTM
establishes a socket connection to the SHM on the same host and
communicates with the SHM using a predefined protocol that has been
detailed in the SHM documentation.

The DTM must be able to put events into the Event Queue. The DTM
establishes a socket connection to the Event Queue on the same host and
communicates with the Event Queue using a predefined protocol that has
been detailed in the Event Queue documentation.

 50

Host x interrogates Host y

3. Assumptions:

The following assumptions are made. These should be addressed in a future
phase of the project, if it continues.

• When the DTM is started on a host, it is given a parameter to indicate that it
should create a trust domain or join an existing trust domain. If it is given a
parameter instructing it to join an existing trust domain, then it is also given a
parameter indicating which trust domain to join. This allows us to not use the
wireless technique of searching for a trust domain the way a wireless device
searches for a network when it’s started. This way of doing things means that an
administrator will need to initiate the creation of trust domains, and that trust
domains cannot be automatically created. When a trust domain contains the
maximum number of hosts, when a new host requests to join the trust domain, it
will be told it cannot join. When this happens, the administrator will have to tell
the DTM to create a new trust domain.

 51

Appendix C - Design Specification

DTM Design Specification

1. This Document:

This document describes the design for the Distributed Trust Manager (DTM). In
addition to the design of the DTM, this document lists assumptions that must be
made in order to implement DTM in a reasonable amount of time. These
assumptions might be good to address as part of a dissertation.

2. Design:

The design of the DTM is intended to be modular, so individual pieces can be
easily replaced if needed, as the project matures and evolves. In order to
accomplish this, the DTM was designed using standard object oriented design
techniques. Design decisions were required to implement several of the
functional requirements of the DTM. Those decisions and the reasoning behind
them are described below. The appropriate design diagrams are shown after the
rational for design decisions.

Requirements

Requirement: A host must be allowed to request to join a trust domain.

Decision: When a trust domain is created, the host creating it will create a
multicast channel using Java’s MulticastSocket class. All requests to join a trust
domain will be sent to the multicast channel.

Rationale: In order to ensure that a host’s request to join a trust domain is
received by all members of a trust domain, the request must be sent to at least one
uncompromised member of the trust domain. This is because compromised hosts
might ignore the request and never respond to it, thus not allowing an
uncompromised node to join a trust domain. To ensure that an uncompromised
host receives the request, the request must be sent to multiple hosts in the trust
domain. In order to do this, there must either be a well known list of hosts in the
trust domain or a way to ensure that multiple hosts receive the request. Because
trust is not a static thing, hosts will join and be removed from trust domains, and a
well known list would have to be updated frequently. This list would also need to
be stored in a well known location not on any host in a trust domain, since a host
might be compromised and prevent proper access to the list. If the list is
published on a host, it may be subject to attack. Thus, unless the list is specified
as an input file, which requires significant user intervention and work, it is not a
viable solution. We believe that the additional user intervention and work is too

 52

demanding to be useful since the list may have to be updated frequently. Thus we
do not believe that a list is a viable option.
 Another method of ensuring that multiple hosts in a trust domain receive a
request is broadcasting the message to all hosts that might be in a trust domain.
This can be accomplished using broadcast. Broadcasting the message sends it to
all members of a subnet. This limits trust domains to having only hosts in one
subnet, in order to ensure that an uncompromised host receives the request. It
also sends the message to many other nodes that should not receive the message,
using CPU time on hosts that do not need to receive the message to process it.
Multicasting is similar to broadcasting, but allows the message to only go to hosts
that have specifically requested the request. The processing is done at a lower
level in the networking model, thus not consuming as much CPU time to process
unwanted messages. Both broadcasting and multicasting are done using UDP,
which means that some requests may not be received by all hosts in a trust
domain, so a host may have to send more than one request to join. This is a
shortcoming of using these methods, but it is outweighed by the problems of the
well known list technique. Because multicasting is better suited to our needs than
broadcasting, we have decided to use it.

Requirement: Hosts that become compromised after joining a trust domain must
be detected.

Decision: Lamport et al.’s Signed Message Algorithm is run in parallel, with each
host in a trust domain acting as the leader in one run of it.

Rationale: Running the Signed Message Algorithm as specified in the decision
has a cost of O(n3) for one execution of the algorithm, where n is the number of
hosts in the trust domain. This method allows us to detect compromised hosts
within the trust domain, as described below, and it achieves consensus about
whether to let a host join the trust domain. In addition to just achieving consensus
which one execution of the Signed Message Algorithm can do at a cost of O(n2),
the parallel version guarantees that compromised nodes are not admitted to a trust
domain, which can happen if the decision is based on one execution of the Signed
Message Algorithm. The guarantee is only valid as long as a simple majority of
the hosts in the trust domain are not compromised. However, this premise is
reasonable unless a majority of hosts in a trust domain can be compromised after
joining, but before the next time they are tested occurs, which is extremely
unlikely. We have been unable to come up with a less costly algorithm that
achieves consensus that will not allow compromised hosts to join a trust domain
and determine that hosts in a trust domain have been compromised.

Compromised hosts in a trust domain are detected by using the parallelized
version of the Signed Message Algorithm, assuming that a simple majority of the
hosts within the trust domain are not compromised. This is a result because there

 53

are only a limited number of possible events which can occur when the Signed
Message Algorithm is run.

If the leader is not compromised, then after running the Signed Message
Algorithm in parallel, all hosts that are not compromised know that the leader is
not compromised, because the leader sent the correct conclusion that all hosts that
are not compromised determined.

If the leader of an execution of the Signed Message Algorithm is compromised,
then it can send:

– 0 messages to all uncompromised nodes - All uncompromised nodes
assume node compromised or dead (same treatment as compromised).

– 1 message to only some uncompromised nodes – The uncompromised

nodes detect there’s a compromised node in the system and send a
message to other nodes accusing the suspected compromised nodes. The
accused nodes are then tested and determined to be compromised or
uncompromised.

– 1 message to all uncompromised nodes - All uncompromised detect

message is wrong and host is compromised if it contradicts the majority.
If message does not contradict the majority, this cannot be detected yet
unless the node sends a different message to at least 1 compromised node
that forwards the message to at least 1 uncompromised node. Although
this node should be removed, it is not currently causing damage, so it is
not a critical problem.

– 2 (or more) different messages to some uncompromised nodes - All

uncompromised nodes see contradictory instruction and know node is
compromised.

Requirement: There must be a way to select a leader for a trust domain and
rotate the task of being the leader.

Decision: Whenever a leader of a trust domain must be selected, each host in the
trust domain will contribute a random numbers The number from each host will
all be added and the remainder of the sum when it is divided by 255 will be used
to select the IP address of the next leader. The host with the IP address closest to
the remainder will be the next leader. Every time a leader becomes compromised
and is removed from the trust domain, a new leader will be selected. At every n
seconds where n is passed as a command line argument by the system
administrator, the leader will initiate the selection of a new leader. If a leader
does not initiate the selection of a new leader in the specified amount of time plus

 54

some small epsilon, they will be determined to be compromised and removed
from the system and a new leader will be selected.

Rationale: This method of selecting a host is a low cost, random method for
selecting a leader and ensures that the task of leader is rotated.

Requirement: DTM attack data must be distributed to prevent a compromised
host from destroying the security of the entire trust domain.

Decision: When a host is allowed to join a trust domain, it will then generate the
attack data that it will use to interrogate other hosts. The generation will be based
on a seed that is passed as a command line argument when the DTM is started. If
another host in the trust domain is using the same seed, a new one will be
generated for the new host. This will be done randomly by the trust domain by
each host submitting a random number and adding them all together. Collisions
with other existing seeds will be resolved by the same method. Attack data will
be randomly generated after each usage.

Rationale: This method means that no attack data is duplicated. It also does not
require a central repository, so no one host can be compromised and destroy the
security of the entire trust domain. Since the attack data is only used once, no
compromised node can allow other compromised nodes to join the system by
revealing the data to them.

Requirement: DTMs must communicate with other DTMs in the same trust
domain.

Decision: All communication between DTMs in the same trust domain will take
place over sockets.

Rationale: This method ensures that messages are received correctly because it
uses TCP/IP.

Requirement: There must be a way for leaders in different trust domains to
communicate to inquire if a host in the leader’s trust domain is trustworthy.

Decision: We will assume that the leaders of trust domains are well known. This
information will be communicated off-line.

Rationale: In order to proceed with the design of the DTM, we must know
generally how the leaders in different trust domains will communicate with each
other. We could use a centralized location to keep track of the leaders, but this
method is not viable. It allows a simple denial of service attack against the central

 55

location to render it impossible for leaders in different trust domains to
communicate with each other. We could also communicate the information with
a trusted protocol that we could design, but that is beyond the scope of the first
version of the DTM. The other way trust domains could communicate with each
other is using an overlay network. Using overlay networks would allow the
flexibility we need to have changing leaders, but implementing it is beyond the
scope of this project, and will be left for the next version of the DTM.

 56

Object Oriented Design Diagrams

Use Case Diagrams

 57

Sequence Diagrams

Starting DTM (and S.A.F.E.)

 58

Joining a Trust Domain

Communicating Between Trust Domains

 59

State Diagrams

Joining and Maintenance of a Trust Domain

 Querying whether a Node in Another Trust Domain is Trustworthy

 60

Class Diagram

 61

3. Assumptions:

The following assumptions have been made. These should be addressed in a
future phase of the project, if it continues.

We assume that the leaders of trust domains know which hosts are the other
leaders of the other trust domains. We assume that the administrators of trust
domains share this information off-line with a secure method. This assumption
will need to be addressed in a future version of the DTM in order allow trust
domains to communicate with each other with no human intervention.

