Evaluating Performance Attributes of Layered
Softwar e Architecture

Vibhu Saujanya SharmaPankaj Jalote Kishor S. Trivedi

1 Department of Computer Science and Engineerirtiaininstitute of Technology Kanpur,
Kanpur, INDIA, 208016
{Vsharma, Jalote}@se.iitk.ac.in
2 Department of Electrical and Computer Engineeribigke University,
Durham, NC 27708, USA
Kst @e. duke. edu

Abstract. The architecture of a software system is the tagHevel of
abstraction whereupon useful analysis of systerpgaties is possible. Hence,
performance analysis at this level can be useful dssessing whether a
proposed architecture can meet the desired perfarenspecifications and can
help in making key architectural decisions. In tipaper we propose an
approach for performance evaluation of softwargesys following the layered
architecture, which is a common architectural stige building software
systems. Our approach initially models the systera ®iscrete Time Markov
Chain, and extracts parameters for constructinglased Product Form
Queueing Network model that is solved using the BRE software package.
Our approach predicts the throughput and the ageragponse time of the
system under varying workloads and also identifietlenecks in the system,
suggesting possibilities for their removal.

1 Introduction

Software architecture is an important phase inwso lifecycle as it allows taking
early design decisions about a system. Moreowsrétso the earliest point in system
development at which the system to be built coddabalyzed [7], [9]. Analysis of a
system at the architectural level enables the ehofcthe right architecture for the
system under consideration, thus saving major piatemodifications later in the
development cycle or tuning the system after depkt.

Out of the various attributes that could be asskgsrformance attributes are most
sought after in any software system. Performancanisumbrella term describing
various aspects, such as responsiveness, throughpuof the system. Assessing and
optimizing these aspects is essential for the smaoid efficient operation of the
software system. There have been many approachgp],[2],[5],[12] for
performance evaluation of software systems, thagadng work being done by C.U.
Smith, [2] which introduced the concept of SoftwBerformance Engineering (SPE).

This is a preprint of our paper published in CBSBZ2 Refer LNCS 3489, pages 66-81.

Layered software architecture is a very prevalefitvare architectural style that is
followed by almost all client-server and web basgdtems. Layered architecture
helps to structure applications that can be decaetgbanto n groups of subtasks in
which each group is at a particular level of aldioa with well-defined interfaces
[8]. Thei™ layer could communicate with only tiiel)™ and the(i+1)" layer. Layered
architecture is widely used in almost all web-basgstems where performance is a
critical factor. Hence, performance analysis oklagl systems is of much importance
to system architects. Moreover as a large numbéayafred systems already exist,
performance predictions with varying number of migeor with the addition or scaling
up of components in the system would be beneftoiadystem administrators, who
manage such systems.

In this paper, we present an approach for perfocmagvaluation of software
systems following the layered architectural stiethe past SPE has been largely seen
as an activity, which requires specialized skillsd an-depth knowledge of both
software architecture and performance modeling.sTdne of the motivating factors
of our effort is to provide an approach that cobkdused by software engineers for
designing new systems and system administratorsvimaking existing systems alike.
The aim of the approach is to output the traditigreformance parameters as well as
suggest to the user bottleneck components that teelee scaled up. Our system thus
removes the performance analyst from the loop at the activities traditionally
performed by him/her are automated.

Our approach consists of modeling the layered so#vgystem as a closed Product
Form Queueing Network (PFQN) [1], and then solvihdor finding performance
attributes of the system. One of our aims is to faskspecifications that are easy to
provide even for someone who is not an expert is fleld. After getting the
specifications we model the system initially as &cibete Time Markov Chain
(DTMC), with each layer in the system, correspogdio a state in the DTMC [13].
This DTMC is then analyzed to find the total seeviequirements of the software
system over the different hardware nodes or mashifbe closed PFQN model is
then constructed using this information along wiitl specifications given by the user.
Modeling machines having limited software resourcegh as threads is also
performed at this stage using a hierarchical agtroa

This closed PFQN model is then fed to SHARPE [1hiclv is a versatile software
package for analyzing performance, reliability geiformability models. The output
from SHARPE is then further analyzed, and the tesihclude the classical
performance metrics such as the throughput andwbege response time along with
information about system bottlenecks and suggestate-ups for them. Along with
these, it predicts the improvement in system paréorce if the suggested scale-ups
are done. This is done by reconstructing the mauefnally, accommodating the
scaled-up components and solving it again, usimg@pproach.

The tool, which we have developed as an implemiemtatf this approach, requires
minimal knowledge of queueing models or any otherfggmance modeling
techniques to use it. The specifications whichreseded could be easily procured and
hence the tool facilitates modeling new systemwelsas helping in scaling existing
systems.

This is a preprint of our paper published in CBSBZ2 Refer LNCS 3489, pages 66-81.

2 Evaluating Performance of Software Architectures

System performance has become a major concerarges complex, mission critical
and real time software systems proliferate in atmals domains. The inherent
structural relationships among the components cheniae the architecture that
software system is following and usually could bessified into some well-known
architectural styles [7], [8]. Since the performarattributes of a software system,
such as number of jobs serviced per second (thpuughthe average response time,
etc. depend both on the time and resources specnputation as well as in the
communication between various components of théesysthe architecture that a
particular system follows has a lot of bearing tsnpierformance. This forms the basis
for the need of evaluating various software architees for their performance
attributes. In practice there are many questiorst th performance assessment
approach should answer. Some of the prominent anes

» What effect would varying the number of clients éan the throughput and the

average response time of a particular system, fagticular architecture is

followed?

* What would be the ideal number of clients the systeould be able to handle

before it saturates?

» Which software component should be allocated tawhardware node?

* What would be the bottlenecks in the system and ¢mvid they be removed?

» What would be the change in the performance ate#ii a system component is

enhanced or scaled up?

In the recent past there have been some effortartsranswering such questions
and concerns regarding software architectures. Ahwooelogical approach for
evaluation of software architectures for perforneanas first proposed by C.U. Smith
in her pioneering work [2] and later with L.G. Viélins [10] and is called Software
Performance Engineering (SPE). Two models repredamtsystem in SPE: the
software execution model and the system executiodein The software execution
model is specified using Execution Graphs (EGs)clwhave nodes representing the
components and arcs representing transitions. y8tera execution model is basically
a queueing network model, which relies on worklpacameters derived from EGs.

Following the SPE approach, Petriu and Wang haee WML activity diagrams
for the software execution model, and UML collaltiora diagrams for the system
execution model [3]. The latter is modeled as aekeg Queueing Network (LQN)
which differs from Queueing Network (QN) modeldfrat servers can become clients
of other servers in the model. An LQN model is esginted as an acyclic graph whose
nodes are software entities and hardware devicdswdiose arcs denote software
requests. Menasc’e and Gomaa proposed a proprietagyage called CLISSPE
(Client/Server Software Performance Evaluation)ffB]the performance assessment
of client server systems. The specifications in &3PE are fed to a compiler which
generates the QN model which is then solved usjpgrformance model solver. Some
authors have also followed a Stochastic Petri idsetd approach [4] for modeling the
systems.

This is a preprint of our paper published in CBSBZ2 Refer LNCS 3489, pages 66-81.

Our approach follows the basic SPE methodology witbcus on layered software
architecture. We represent the software model imgeof a DTMC which is then
transformed into a closed PFQN model. However,Qhe model we propose to use
also models software resource constraints suchmated number of threads at a
particular machine. This allows for a model whisttiosely related to the real system
and its constraints. As the architecture to be yaed has been fixed to layered,
specifying the software system becomes relativiehpke, unlike in other approaches
that follow some proprietary languages. This wa® alne of the aims we set forth
while developing this approach. We also allow asialyof the software model on
different hardware architectures, by letting theruspecify the rating factor of the
hardware under consideration, as compared to therowhich the resource demands
of the components were specified for the specifibitecture.

The inherent simplicity of specification makes gunodel feasible to be used in
practice more effortlessly and even by those welatively little knowledge of
performance analysis techniques. Moreover the closgeling of real systems by our
QN model, and the results we provide to the usetuding the suggested bottleneck
scale-ups and predicted performance improvementhésame, make our approach
well suited to be used for large layered systenth wéal world constraints. We
present the details of our approach in the follgngections.

3 System Model and Assumptions

Our approach assumes that the computer system oodsideration is an interactive
system, wherein the system gives responses taghasi given by the users. Further
this interactive system follows the layered sofwvarchitecture, with each layer
interacting only with the adjacent layers. The usggracts with the first layer, which

passes the request, if needed, to the second lalgih may pass it to the next layer,
and so on. The last layer sends its response bdtdkh then traverses through the
layers, till the user gets the output. In generddyaered software system could be
visualized as in Figure 1.

Client 1

Client 2
: Layer 2—» >Layernl

t
!

The Software System

Fig. 1. The layered software architecture.

Note that different software components which deutst different layers, could be
allocated to different (hardware) machines or sofrthem could be collocated on the
same machine also. A layer acts as a functiondl pnoviding some well defined
services through appropriate interfaces and sommpgtation and some 1/O is done as
the control passes through each software layer. cimputation and 1/0 may be

This is a preprint of our paper published in CBSBZ2 Refer LNCS 3489, pages 66-81.

intermixed and done repeatedly till the layer hampgleted its task. It then either

returns the result, or passes the request to tktdayer either on the same machine or
on a different machine as the case may be. Thegbtraiso be limitations on how

many concurrent pending requests can exist for atatipn on a machine (which

frequently is the case when the software serveither operating system of the

hardware node, limits the number of threads orlawld connections.) We assume
that a software component runs on only one machina time, i.e., there is no

concurrency within a software component. Howevevesal layers could be allocated
to run on a single machine.

To analyze the performance of this architecture,need to specify the average
CPU time for a request in each layer and the aeeli&@ytime, which we call the Disk
time in our model. Note that even though in a laylee CPU work and 1/0 may be
intermixed, for modeling purposes, they can be rasslito occur in an aggregate
fashion, i.e., first all the CPU processing andnttal the I/O processing. This
combination does not affect the performance aralgsid is based on the known
insensitivity result of the product form solutiohadosed networks [1]. The allocation
or deployment of the layers on different hardwawdes is also very important and is
taken as a part of the specifications. The toollccdae used to aid in choosing
different allocations by comparing them.

In addition, we need to model the impact of conmexcbetween the layers that are
allocated on different machines. We capture thistiyy size of the request, the
capacity of the connector, and the probability witiich a request is sent by one layer
to another layer. To model the load on the systeenrequire the range of the number
of clients that the system might be subjectedrt@ddition, an estimate of the number
of requests generated per unit time by each cliendlso needed. Overall, the
following properties about the architecture aredese

* The range of the number of clientscfnin, ncmajkaccessing the system and the
average think time of each cliettt.

The total number of layers in the software systém

The relationship between the machines and the acdtwomponents, i.e., which
software layer is located to which machine and rihenber of machines. Thus
corresponding to each machin@e have a sdt(j) containing indices of the layers
residing orj , 0<j<nm andnmis the number of machines.

The number of CPUs and disks on each of these mexhind thread limitations if
any, ornCPU(i), ndisk(i)and tlim(i).

The uplink and downlink capacities of the connest@onnecting machines
running adjacent layers of the system and the afizbe packets going on these
links or capup(i), capdn(i), psizup(ipnd psizdn(i) where O<i<nm. Note that
capup(l)andcapdn(l)are thetotal uplink and downlink capacities respectively,
of the connector(s) joining all the client to thachines.

The service time required to service one request syftware layer given that it is
using a standard CPU and a standard Disk for thpoge orCPU(i) anddisk(i)
where0<i< nm.

Forward transition probabilitiepy«.1), i.€., the probability that a request being
serviced by layex would need the service of layer+ 1) next.

This is a preprint of our paper published in CBSBZ2 Refer LNCS 3489, pages 66-81.

» The rating factorécj andfdj of the CPU and Disks respectively of each machine,
which are present in the system, with respect wtamdard CPU and Disk as
considered above in 6.

4 Analyzing Performance

For analyzing the performance of a layered softveystem, we follow these main
steps, which are discussed in detail in the ensseegons:

* Constructing the DTMC model.

» Determining the queuing network model parameters.

* Modeling thread limitations.

* Queuing model solution and outputs.

4.1 Constructing the DTM C model

We model the software system following layered #echure using a DTMC [13].
The state of the application at any time is giventhe component or layer in
execution at that time. Moreover, transitions betvestates represent transfer of
control from one layer to the other. Assume that BTMC to be analyzed hds
states. Then the DTMC is characterized Wyl k transition probability matri® =
[pi]. All elements of a row irP add up to one anfi<p;<1. We can calculate the
expected total number of visits to a state j sigrtirom state 1,V [1] by

Vv, =) V,p; +q; where,q; is the probability of starting in state Thus visit counts to a

particular state could be obtained by solving aesgsof (n-1) linear equations. We
can model a layered software system withayers as shown in the Figure 1 using a
DTMC with 2ni+2 states as shown in Figure 2.

Fig. 2. The DTMC model for a layered software system.
The transition from state,S0 S represents a client sending request to the first

layer with probability 1. The completion of a regtle service by the layered system
is denoted by a transition to statg., which is an absorbing state. Note that as the

This is a preprint of our paper published in CBSBZ2 Refer LNCS 3489, pages 66-81.

system is layered in nature, only transitions betweadjacent layers are possible.
There is no incoming edge t@, Svhich is the initial state, and no outgoing efigen
Sn+1, Which is the absorbing state. The statean8 S+ (0O < i< nl) represent control
flow arriving to layer i in the forward and retupaths of the request respectively. In
the forward path, upon receiving service at laye¢heé request can proceed further to
the next layer with probability;pi), or may return with the probability (Jap,).
Also note that we have:

0<piien) <1 0<i<nl

4.2. Determining M odel Parameters
The layer to layer transition probabilities providey the user and shown in Figure 2

can also be seen as ak#2) by (l+2) transition probability matrix of a DTMC with
(2nl+2) states given by:

01 0 0 0 ... 0 0 0 ... 0
00 p2 0 0 ... 1- pr2 0 0 ... 0
00 O ps 0 ... 0 1-pzs 0 ... 0
P={0 0 0 0 0 ... 0 0 0 ... 1
00 0 0 0 ... 1 0 0 ... 0
00 0 0 0 ... 0 1 0 ... 0
00 0 0 0 ... 0 0 0 ... 1

As mentioned in Section 4.1, we could calculate st counts to each of the
statesV(i), by solving the set of linear equations givenha previous section. If we
assume that between each pair of layers an imagic@amnector is present, then
assuming the connectors to be bi-directional, taber of visits to this connector in
the forward and the backward direction would beeas each request going forward
will eventually return. For any layerin the system, the fraction of all the arriving
requests that proceed to the next layer is the seapg.q) in the DTMC as shown in
Figure 2. Hence, the average number of visits tiplank connectod, joining layeri,
to layer(i+1), is given byV(i)pii1). The backward or return visits to the (downlink)
connector will also be the same. Hence, we couldulze the total visits to these
imaginary connectors joining the layers.

However, note that not all of these imaginary catmes are present in the actual
system. The chosen allocation of software layerdifiarent machines determines the
connectors that are present between layers, wigidnladjacent machines. Only these
are the connectors that physically exist and neelet considered in the queueing
model. Hence, we can get the visit count to thénkpand downlink connectors
respectively between machines j-1 and Masnup(j)andVcondn(j) Once the visit
counts for the different layers and the connectoescalculated, the next step is to find
the total service requirements on the actual CRidskisks on the machines as well
as for the connectors that join these machinesaRgmaching (0<j< nm)we have
the total CPU and Disk service requirements given b

This is a preprint of our paper published in CBSBZ2 Refer LNCS 3489, pages 66-81.

tmepu(j) = foi D V(i) xcpu(i)
ioL(j)

tmcediskK j) = fa ZV(i)Xdisk(i)
ioL(j)

The above equation simply states that the total @GPDisk service requirement at
a particular machine is given by the sum of indieid CPU or Disk service
requirements of all the layers present on that inachmultiplied by the rating factor
of that hardware device. For the connedgtarith uplink and downlink capacities
capup(j) andcapdn(j) respectively, we can compute the average delaysedadue to
each request as:

delayug) = psizeup(j} capugj)
delaydiij) = psizedn(j} capdrtj)
where,psizeup(j)and psizedn(j)are the uplink and downlink average packet sizes o
the connectors. Each time the connector is visitegl above delays occur depending
upon whether the request is going from a lower>edemachine to a higher indexed
machine or vice versa. So the total average sereigeirement at connector j would
be given by:
tconup (j) =Vconup(j) [delayup (j)
tcondn (j) =Vcondn(j) [delaydn (j)

The performance model that we generate is a clggeduct form queueing
network wherein queueing stations represent theexiors, CPUs and Disks. This is
shown in Figure 3. The clients are modeled by dmita Server (IS) [11] which
allows a new request to be generated after an geexfitc seconds of the completion
of the previous request. The total number of jobthe closed PFQN is kept same as
the number of clients.

Uplink Connector 1 Machine 1

Disk nm

Downlink Connectonm Downlink Connector 1

| 4

Fig. 3. The closed PFQN model of the system.

The connectors are modeled as FCFS stations [1h]rate as the reciprocal of the
total average service requirements at that connedtoe CPU for a machine is
modeled by an FCFS station with CPU service rat¢himt machine. However, if there
is more than one CPU present at a single machiesgtare modeled as a multiple-
server (MS) [11], with each server in MS having thte as the CPU service rate for
that machine. Thread limited systems are discusseé@tail in the next section. The
disk is modeled by an FCFS station with service sgme as the reciprocal of the
total average disk service requirement at that machf there is more than one disk
present at the machine, then all these disks adeled as separate FCFS stations with
equal probability of transition from the CPU to kacf the disks. These are not
modeled as a multi-server (unlike the case of CPash request would not go to just
any free disk, but is targeted to some specifie,dan a particular disk.

This is a preprint of our paper published in CBSBZ2 Refer LNCS 3489, pages 66-81.

4.3. Modeling Thread Limited Systems

In real systems there exist machines that have ssoftevare resources such as
number of available threads in limited quantity. there is an upper limit on the
number of jobs that a particular machine can haridle can visualize this as in
Figure 4.

__

connectoi o :
Machinei

Fig. 4. Limited threads on a machine.

Here M is the upper limit on the number of jobstiat machine. We use a
hierarchical combination of models so in the uplesel model, the dotted box is
represented a flow equivalent server. The loweellés modeled as a closed form
PFQN. This is done by converting the subset oftleelel, which is shown inside the
dotted region, to an equivalent closed PFQN. The o&the flow equivalent server
then equals the throughput E[T(n)] of this innexQ®; which is directly proportional
to the utilization of the same[1]. The flow equimal server should continue to serve
jobs only until limit M and till this point its ratkeeps on increasing. However, after
this point the rate no longer increases with ineeda the number of jobs, and the jobs
have to wait before getting into this inner PFQNequivalently this thread limited
server. So the rate of the flow equivalent sersejiven by:

flrate(n) =E[T(n)] ifnsM
=E[T(M)] if n>M

Such hierarchical models are easily specified ahted by SHARPE. Note that the
flow equivalent server is represented as a loaémiggnt server (LDS) in SHARPE.

4.4. M odel Solution and Outputs

The performance model would consist of an uppesl IB¥+QN and if flow equivalent
servers are present, some lower level (inner) PF&Ibisg with output statements.
This has to be fed to SHARPE for getting the thigug of the whole system for the
range of clients specified by the user. Other messauch as the average response
times, saturation number and bottlenecks wouldooed using the throughput along
with the specifications provided by the user.

In case of thread limited servers present in ttetesy, each of those will have a
separate PFQN representing the flow equivalenteseand the corresponding LDS
will be present in the top level PFQN. So in geh#dra SHARPE input file will have
the specifications of each of the inner PFQNSs nif, &llowed by the function that
calculates their service rates, and the specifinaif the top level PFQN, followed by
the output section. The model is fed to the SHARIPEBine, which analyzes it and

This is a preprint of our paper published in CBSBZ2 Refer LNCS 3489, pages 66-81.

predicts the throughput of the whole system. Therage throughput at each of the
servers in the model for different number of cléeist also calculated. This is required
as unlike the FCFS or MS, the total service requénets per visit at the LDS change
with varying number of clients in the system. Tiisturn affects the bottleneck
analysis as is explained in the next section.

As part of the outputs, the approach provides lier throughput and the average
response times of the whole system for the rangdierfts mentioned by the user. The
approach also provides the saturation nhumber ofyiseem, which is the number of
clients beyond which the system starts to saturate,the servers in the system start
getting busy almost at all times and server utilara (the probability of finding a
server busy) reaches unity. In practice the systieould be running with the number
of clients below the saturation number. Along wiltlese it provides the bottleneck
analysis as explained in section 5.

5. Bottleneck Analysis

One important part of our analysis is bottlenecklgsis of the whole system. The
bottleneck node of the system is defined as the amevhich the total service
requirement is the largest or the relative utilmat(the probability of finding a server
busy) is the highest. Hence in a closed PFQN,éwtk nodes can be found out even
before solving the queueing network model, by caingathe total service demands
on the various nodes. However, if there is a thieaited server in the network, the
total service requirements at this node is depenaigon the instantaneous number of
jobs on that server (hence the name load depeseevirs). Thus in such networks,
we need the throughput values for the lower levesed PFQN for calculating the
total service requirements at that node for varyingnber of clients from the
SHARPE engine.

Bottleneck nodes are the ones, which are most lfasyhave high relative
utilizations), and most jobs will tend to queueatpthese servers. They will cease to
be the bottleneck if they are scaled up so that tieelonger have the highest total
service requirements (or the highest relative a#ilon). We provide information
about the first as well as the second bottlenedk(she system. In general one can
determine the minimum scaling up factScale(k)of the K' bottleneck by the
formula:

Avg. servicerequiremetsper job of bottleneckk)
Avg. servicerequiremetsper job of bottleneckk-1)

One thing to be noted is that the bottleneck(ghefsystem might change with the
number of clients in the system. This is so, beedhs average service demands and
hence the average service times per job of theadhidenited servers are load
dependent and would change with the number oftslienthe system. Hence, we give
the bottlenecks for the whole range of the clierstsnentioned by the user.

Bottleneck information is then used to analyzedffect of scaling the bottleneck
server up, on the average throughput and averapemse time of the whole system.
This is done by iterating once again through thdopmance model generation phase

Scale(kyx

This is a preprint of our paper published in CBSBZ2 Refer LNCS 3489, pages 66-81.

with the bottleneck node’s service rate scaled yphie suggested value, and then
feeding the model to SHARPE and analyzing througlagain. Thus one can get the
percentage change in system performance for thgeestef scale up, and decide if the
scale up is worthwhile for the system. Bottlenenklgsis gives the user a good idea
of the amount of improvement in system performahbe/she chooses to put in effort
in scaling up / improving the bottleneck of thetsys.

6. An Example

We have implemented our approach as a web basédwbah automates our
approach. The implementation of the tool was pliyrtidone as an undergraduate
project [14], and was extended later on. The taohgletely automates the task of
performance analysis of layered software systentés Web tool is based on cgi
scripting and renders html forms for the user ldrfithe specifications of the layered
system under consideration. The tool then usesspleeifications and constructs a
DTMC internally, representing the software systewalculates the service
requirements and generates a SHARPE input filechvhas the system model as a
closed PFQN. This is then fed to SHARPE, which woak our model solver and
backend. The results from SHARPE are further aealyfor bottlenecks. The scale
up for the primary bottleneck in the system is fduand the QN model is
reconstructed and again fed to SHARPE to get thepsgformance attribute values.

Consider an example of a 4-layered software arctoite. Suppose that the current
plan is to have these 4 layers run on 3 machinis,layer 1 running on machine 1,
layer 2 on machine 2, and layers 3 and 4 on madhinéurther assume that there is a
limit of 25 threads on machine 2. In the baselinedivare configuration that we are
planning for be that each machine has 2 CPUs ardhimes 1 and 2 have 1 Disk
each, while machine 3 has 4 disks available. The alout the software architecture
and the hardware that is being planned is sumnthniz&able 1.

Table 1. Example software and hardware specifications.

Number of Layers 4 Number of Machines 3
Layer 1 runs on Mc 1 Layer 2 runs on Mc 2
Layer 3 runs on Mc 3 Layer 3 runs on Mc 3
No. of CPUs on Mc 1 2 Thread Limit on Mc 1 No
No. of CPUs on Mc 2 2 Thread Limit on Mc 2 25
No. of CPUs on Mc 3 2 Thread Limit on Mc 3 No
No. of Disks on Mc 1 1 No. of Disks on Mc 2 1
No. of Disks on Mc 3 4

Total capacity of connector joining6/512 |Capacity of connector joining Mc |11/1
Clients and Mc 1 Uplink/Downlink Kbps and Mc 2 Uplink/Downlink Mbps
Capacity of connector joining Mc |2/1 Capacity of connector joining Mc |[2/1
and Mc 1 Uplink/Downlink Mbps and Mc 3 Uplink/Downlink Mbps

Now we have to provide the system execution belhastimates. We have taken
the parameters resembling those, which might ckeniae a distributed transaction

This is a preprint of our paper published in CBSBZ2 Refer LNCS 3489, pages 66-81.

processing system following a 4 layered architectiWe take an example of an
ADSL connection between the clients and the systsmis evident from the

asymmetry in the uplink and downlink capacitieshaf link joining clients to machine

1. Further, assume that the client request doeé miuits CPU processing in layers 2
and 3 and does most of its /O operations in laeAlso, assume that 60% of all
requests coming to layer 1 need to go to highesrtafor service and similarly 90 %
and 100 % of the requests which reach layer 2 ams@ectively require service from
higher layers. The values of the relevant pararsetes as in Table 2.

Table 2. Example system execution behavior estimates.

Data packet sizes: (in bytes)

From Client to Mc 1 250 from Mc 1 back to Clienis 0RO
From Mc 1to Mc 2 250 From Mc 2 back to Mc 1 1000
From Mc 2 to Mc 3 250 From Mc 3 back to Mc 2 1000

Times per visit: (in secs)
CPU time/visit of Layer 1| 0.01| CPU timel/visit of Lay2 | 0.03
CPU time/visit of Layer 3| 0.06 | CPU timel/visit of Laye | 0.01
Disk time/visit of Layer 1| 0.02 | Disk time/visit of ar2 | 0.02
Disk time/visit of Layer 3| 0.002 Disk time/visit bhyer 4 | 0.20
Probability of request flow from:
Layer 1 to higher Layers | 0.60] Layer 2 to higheraray [0.90
Layer 3 to higher Layers | 1.00

Suppose we specify to the tool that we want tonese the performance of this
system for 1 to 75 clients, each client having eerage think time of 1 sec and the
rating factor for all the devices as unity. Theltdoes the analysis and gives the
output as in Figure 5 and 6.

Response Time Throughput
1.260¢ 33.618

o Response tine Coec)->
o Throughput Cjobs/sech->

e n SN NNEAREIORONBEETERLE e n SO ANNBARFS0YSHBBEEERRE

Humber of Clients-> Number of Clients->

Fig. 5. Analysis output: The average response time amdigfhput graphs.

From Figure 5, we can see that the model sugdestshe average response time is
quite low initially, but then after around 8 clisrthe average response times starts to
increase very fast. Similarly if we study the thgbput graph, this shows the
throughput constantly increasing with the numbeclats initially, but then almost
becoming constant if the number of clients is iasexdl further, the maximum
throughput of the system being about 34 jobs/sées@& two observations are due to
the same phenomenon of the onset of saturatiolmeo$ystem - in this case occurring
around 11 clients in the system. Below 11 clietiieye are practically no queues at
each of the machines, and so the average respaneeid fairly low, and the

This is a preprint of our paper published in CBSBZ2 Refer LNCS 3489, pages 66-81.

throughput of the system, increases almost lineasiyew clients are added. But as
the number of clients increase further, queueg svabuild up at different service
centers, and jobs have to wait for other jobs tomete service, before they could be
taken up. The servers in these conditions are llspst all the time and server
utilizations (the probability of finding the servieusy) reaches unity. Thus congestion
builds up in the system, and hence the averag®mssptime of the system keeps on
increasing thereon as more and more clients aredadédkecause of the same reason,
the throughput of the system reaches a limitinglleand does not increase after that
(as most of the servers are already busy processithgir limit) and so we get the flat
region in the throughput graph.

The graphs are very useful for a system archite¢hay show precisely how many
clients would the system be able to handle effityerPractically a system should
never be running in a saturated condition as thensystem performance degrades
very fast. These graphs could be used to ascdtiaikind of the average response
times and throughput the system would deliver far $pecified range of clients and
whether that meets the desired performance critgriet. The system architect could
also get an idea about the performance of theraysteconditions of excessive loads.

As shown in the bottleneck analysis in Figure &, titol predicts the primary and
secondary bottlenecks in the system along withnimémum scale-up needed so that
they no longer are the bottlenecks. As mentionetleeaas the bottlenecks in the
system may change upon changing the number oftglierthe system, hence the tool
provides the bottleneck analysis for the whole eaoficlients. In Figure 6, the same is
shown for 43 clients. Moreover the tool iteratesmuphe analysis once more with the
primary bottleneck scaled-up, and then shows thpramements in throughput,
average response time, and saturation number af/giem.

Bottleneck Analysis

Select the no of clients : |43 ¥

1st Bottleneck(s) for 43 clients :
>Server 0 which is the Disk of Machine 3
Scaling Up of 2.885714 times is needed for the above

2nd Bottleneck(s) for 43 clients :
>Server 8 which is the CPU of Machine 3
Scaling Up of 1.487951 times is needed for the above

Performance predictions after ScaleUp

If the Disk of Machine 3

is scaled up 2.885714 times then the Throughput goes from 27.534180 to 33.729431 jobs/sec
This is a 22.500 percent increase

The Response Time changes from 0.561695 to 0.274851 secs
The The Saturation Number of the system changes from 11.111532 to 30.148731

The above predictions hold for 43 clients in the system

Fig. 6. The bottleneck analysis output.

In this example system, we can see the improvemebig scaling the disk of
machine 3, we could get an improvement of more 28265% in the throughput of the
system and about a 50% decrease in average respioeserigure 7 illustrates the
comparative improvements using graphs, showing siysgem throughout and the
average response time variation with load, befackadter the suggested scale-up. We

This is a preprint of our paper published in CBSBZ2 Refer LNCS 3489, pages 66-81.

can see that if the suggested scale-up is done, tthee system can sustain more
number of clients, without degradation as comp#oeéie initial configuration.

Original Response Time
Response Time after suggested ScaleUp -

Throughput (iobsfses)

o 10 20 30 a0 50 60 70 80 1 10 20 30 40 50 60 70 80
Number of Clients Number of Clients

Fig. 7. The effect of system scaleup as suggested by ouptoaverage system throughput and
response times.

From the capacity planning point of view, say ifarerage response time of upto
0.6 seconds is deemed acceptable for the systeencam observe from the average
response time variation graph in Figure 7 thatahpacity of the system increases
from 46 to 72, if the suggested scaleup is done €am also use to the tool to see the
possible effects of any changes in the system trenelar software. We used the tool
to evaluate the above example system but with tmeber of concurrent threads in
Machine 3 limited to 25. The tool shows that théstriction causes the maximum
throughput of the system to go down to 20 jobsfsmm 34 jobs/sec. In addition, the
tool could be used for comparing the effect ofatiéiht deployments of the layers on
the available machines, on the overall system pmdace. One such comparison for
the example system is shown in Table 3 which shbeisthe first deployment scheme
is significantly better than the others in termsmaiximum average throughput.

Table 3. Effect of different layer deployments on maximune=age throughput.

Layer(s) deployed on Maximum average

Machine : | Machine: | Machine { | throughput (jobs/s
1" 2" 39 4n 33.62
lsl one ’Erd 4th 19.8¢
151 ’2nc 3rd 4th 20.8]

7 Discussion and Conclusion

In this paper we presented an approach of perfaeagvaluation of systems
following layered architecture. The approach dewsth first constructing a DTMC
model of the software system, using the specificatiuser has provided. This model
is then solved to get the total visit counts tdedént layers of the system and calculate
total service requirements of the system on thewsre over which the software
system is deployed. These are then used to cohstralmsed PFQN model for the
system. This model also takes care of limited samféwresources as threads on a

This is a preprint of our paper published in CBSBZ2 Refer LNCS 3489, pages 66-81.

particular machine. The PFQN model is solved uShtARPE as the backend, the
outputs of which are analyzed, and various perfogaametrics such as throughput
and the average response times, and saturation emuare provided. Moreover

bottleneck analysis is done and the minimum scpléou the bottleneck node in the

system is suggested. The approach also allows fioediction of the improvement in

system performance if the scale up is actually d@inere are two major applications
of this approach: First is in architecting and dgpig new layered systems and the
second is in tweaking or upgrading or scaling uptig systems.

As COTS based development is becoming very popthase days, it is
commonplace today to use components as black foxé&se desired functionality. In
such cases the designer could use our approachestimate the performance
characteristics of the final system he wishes tddbusing those components.
Moreover it would also allow the architect to knalout the possible bottlenecks in
the system and how much scaling up is needed dsethomponents.

The second application as mentioned before is vemeaxisting system has to be
scaled up or some additional software or hardwareponent has to be added. The
system administrator should have some idea of h@ge in the system performance
due to the change in system hardware and/or sateanfiguration. Our approach
could be used to ascertain that. The system admgitis need not have an in-depth
knowledge of performance evaluation techniques this and our tool could be
employed for the same by providing some specificesti which are easy to get.

At the software architecture phase, the actual corapts, which would constitute
the layers, would not be present (unless COTS agpras used) so, the service
requirements of different components at differeetides have to be estimated from
previous experience with similar software composeliitoff the shelf components are
being used, the CPU and I/O times taken by padidalers to execute once could be
assessed by using built in tools provided by varioperating systems likestat or
sar. Tests will have to be conducted for each layezeshponent separately as the
above mentioned tools do not provide applicatimell®dreak-up of the measurements.
For testing purposes if a single layer is run @ingle machine one can get the total
CPU and I/0 times for say n executions and therttgeaverage CPU and 1/O times
per execution.

Each proposed component in a layer could be examindind the components
with which it interacts with a non-zero probabiliypd known operational profiles of
similar systems might be used to estimate the &sdsdc transition probabilities
between the layers. For existing systems, techeiquentioned in [6] might be used to
ascertain the transition probabilities. Specificasi such as the capacity of connectors,
the number of CPUs and disks or thread limitatiars all system characteristics.
Some measurements will be needed for the packes sim the connectors joining
various machines and could be ascertained by assuitable network analysis utility.

There are still lots of avenues in this approaahffibure work. Our approach is
limited only to layered systems at present. Weelelithat this could be extended to
general software architectural patterns also. Hewethe aim while doing so would
be to keep the specifications needed as simplepesxtical as possible so that the
approach is easily adoptable in practice. One othajor extension could be to
modify the approach so that it allows for optimgithe use of various system

This is a preprint of our paper published in CBSBZ2 Refer LNCS 3489, pages 66-81.

resources to provide the maximum possible perfocmamhis would be beneficial to
system architects as well as system administratodswill allow them to minimize
investment and maximize performance of their systgbme of the many aims of this
approach is to provide a thorough performance ewial of the layered software
system under concern. Moreover the approach isflielpoth at the time of
architecting new systems as well as scaling upnpraoving existing systems. The tool
that we have built implements our approach ancery gimple to use. We hope that
our approach would help software engineers andopeeince experts to architect
better layered systems, as well as allow those aveonot specialists in this field to
perform performance evaluation of their systems.

References

1. K. S. Trivedi, “Probability and Statistics wiReliability, Queuing, and Computer Science
Applications”,John Wiley and Son2001.

2. C.U. Smith, “Performance Engineering of Softw@ystems”Addison Weslgyl990

3. Dorina C. Petriu, X. Wang, “From UML descriptoonof High-Level Software
Architectures to LQN Performance ModelProceedings of AGTIVE'9Springer Verlag
LNCS 1779, 1999.

4. P. King, R. Pooley, “Derivation of Petri Net Remance Models from UML
Specifications of Communication SoftwareProceedings of XV UK Performance
Engineering Workshq.999.

5. D. A. Menasc’e, H. Gomaa, “A Method for designd aPerformance Modeling of
Client/Server SystemslEEE Transactions on Software Engineerigl. 26, No. 11, pp.
1066-1085, 2000.

6. K. Go'seva—Popstojanova and K. Trivedi, “Arctitee—based approach to reliability
assessment of software systen®Srformance Evaluatigrd5:179-204, 2001.

7. L. Bass, P. Clements, R. Kazman, “Software Aetlture in Practice”SEl Series in
Software EngineeringAddison-Wesley, 1998.

8. F. Buschmann, R. Meunier, H. Rohnert, P. Sormaderl M. Stal, “Pattern-Oriented
Software Architecture, Volume 1: A System Of Patsdr, John Wiley and Son2000.

9. M. Shaw, D. Garlan, “Software Architecture, Pextives On An Emerging Discipline”,
Prentice-Hall Inc, 1996.

10. C. U. Smith, L.G. Williams, “Software PerforntanEngineering: A Case Study Including
Performance Comparison with Design Alternatived®EE Transactions On Software
Engineering, Vol 19, No7, Pages 720-74993.

11. R.A. Sahner, K.S. Trivedi, and A. Puliafito,efformance and Reliability Analysis of
Computer Systems: An Example-Based approach Uem@HARPE Software Package”,
Kluwer Academic Publisherd996.

12. Dorin Petriu, Murray Woodside, “Software Penfiance Models from System Scenarios
in Use Case Maps”Proc. Performance TOOLS 2002, Lond&Q02.

13. Swapna S. Gokhale, W. Eric Wong. K. S. Trivaahd J.R. Horgan, “An Analytical
Approach to Architecture-Based Software Reliabilyediction”, IEEE Int. Comp. Perf.
and Dependability Symposiymurham, NC, USA, Sept. 1998.

14. M. Vikram, P. Kant, “Evaluation of Layered Airdtture Software Systems for
Performance Attributes using Closed Product Forneuthg networks”B.Tech Project
Report, CSE, Indian Institute of Technology Kanjrnaja, 2003.

This is a preprint of our paper published in CBSBZ2 Refer LNCS 3489, pages 66-81.

