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Abstract. The architecture of a software system is the highest level of 
abstraction whereupon useful analysis of system properties is possible. Hence, 
performance analysis at this level can be useful for assessing whether a 
proposed architecture can meet the desired performance specifications and can 
help in making key architectural decisions. In this paper we propose an 
approach for performance evaluation of software systems following the layered 
architecture, which is a common architectural style for building software 
systems. Our approach initially models the system as a Discrete Time Markov 
Chain, and extracts parameters for constructing a closed Product Form 
Queueing Network model that is solved using the SHARPE software package. 
Our approach predicts the throughput and the average response time of the 
system under varying workloads and also identifies bottlenecks in the system, 
suggesting possibilities for their removal. 

1   Introduction 

Software architecture is an important phase in software lifecycle as it allows taking 
early design decisions about a system. Moreover it is also the earliest point in system 
development at which the system to be built could be analyzed [7], [9]. Analysis of a 
system at the architectural level enables the choice of the right architecture for the 
system under consideration, thus saving major potential modifications later in the 
development cycle or tuning the system after deployment.  

Out of the various attributes that could be assessed, performance attributes are most 
sought after in any software system. Performance is an umbrella term describing 
various aspects, such as responsiveness, throughput, etc. of the system. Assessing and 
optimizing these aspects is essential for the smooth and efficient operation of the 
software system. There have been many approaches [2],[3],[4],[5],[12] for 
performance evaluation of software systems, the pioneering work being done by C.U. 
Smith, [2] which introduced the concept of Software Performance Engineering (SPE).  
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Layered software architecture is a very prevalent software architectural style that is 
followed by almost all client-server and web based systems. Layered architecture 
helps to structure applications that can be decomposed into n groups of subtasks in 
which each group is at a particular level of abstraction with well-defined interfaces 
[8]. The ith layer could communicate with only the (i-1)th and the (i+1) th layer. Layered 
architecture is widely used in almost all web-based systems where performance is a 
critical factor. Hence, performance analysis of layered systems is of much importance 
to system architects. Moreover as a large number of layered systems already exist, 
performance predictions with varying number of clients or with the addition or scaling 
up of components in the system would be beneficial to system administrators, who 
manage such systems. 

In this paper, we present an approach for performance evaluation of software 
systems following the layered architectural style. In the past SPE has been largely seen 
as an activity, which requires specialized skills and in-depth knowledge of both 
software architecture and performance modeling. Thus one of the motivating factors 
of our effort is to provide an approach that could be used by software engineers for 
designing new systems and system administrators for tweaking existing systems alike. 
The aim of the approach is to output the traditional performance parameters as well as 
suggest to the user bottleneck components that need to be scaled up. Our system thus 
removes the performance analyst from the loop in that the activities traditionally 
performed by him/her are automated.  

Our approach consists of modeling the layered software system as a closed Product 
Form Queueing Network (PFQN) [1], and then solving it for finding performance 
attributes of the system. One of our aims is to ask for specifications that are easy to 
provide even for someone who is not an expert in this field. After getting the 
specifications we model the system initially as a Discrete Time Markov Chain 
(DTMC), with each layer in the system, corresponding to a state in the DTMC [13]. 
This DTMC is then analyzed to find the total service requirements of the software 
system over the different hardware nodes or machines. The closed PFQN model is 
then constructed using this information along with the specifications given by the user. 
Modeling machines having limited software resources such as threads is also 
performed at this stage using a hierarchical approach.  

This closed PFQN model is then fed to SHARPE [11] which is a versatile software 
package for analyzing performance, reliability and performability models. The output 
from SHARPE is then further analyzed, and the results include the classical 
performance metrics such as the throughput and the average response time along with 
information about system bottlenecks and suggested scale-ups for them. Along with 
these, it predicts the improvement in system performance if the suggested scale-ups 
are done. This is done by reconstructing the model internally, accommodating the 
scaled-up components and solving it again, using our approach.    

The tool, which we have developed as an implementation of this approach, requires 
minimal knowledge of queueing models or any other performance modeling 
techniques to use it. The specifications which are needed could be easily procured and 
hence the tool facilitates modeling new systems as well as helping in scaling existing 
systems. 
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2   Evaluating Performance of Software Architectures 

System performance has become a major concern, as large, complex, mission critical 
and real time software systems proliferate in almost all domains. The inherent 
structural relationships among the components characterize the architecture that 
software system is following and usually could be classified into some well-known 
architectural styles [7], [8]. Since the performance attributes of a software system, 
such as number of jobs serviced per second (throughput), the average response time, 
etc. depend both on the time and resources spent in computation as well as in the 
communication between various components of the system, the architecture that a 
particular system follows has a lot of bearing on its performance. This forms the basis 
for the need of evaluating various software architectures for their performance 
attributes. In practice there are many questions that a performance assessment 
approach should answer. Some of the prominent ones are: 

• What effect would varying the number of clients have on the throughput and the 
average response time of a particular system, if a particular architecture is 
followed? 

• What would be the ideal number of clients the system would be able to handle 
before it saturates? 

• Which software component should be allocated to which hardware node? 
• What would be the bottlenecks in the system and how could they be removed? 
• What would be the change in the performance attributes if a system component is 
enhanced or scaled up? 

In the recent past there have been some efforts towards answering such questions 
and concerns regarding software architectures. A methodological approach for 
evaluation of software architectures for performance was first proposed by C.U. Smith 
in her pioneering work [2] and later with L.G. Williams [10] and is called Software 
Performance Engineering (SPE). Two models represent the system in SPE: the 
software execution model and the system execution model. The software execution 
model is specified using Execution Graphs (EGs), which have nodes representing the 
components and arcs representing transitions. The system execution model is basically 
a queueing network model, which relies on workload parameters derived from EGs.  

Following the SPE approach, Petriu and Wang have used UML activity diagrams 
for the software execution model, and UML collaboration diagrams for the system 
execution model [3]. The latter is modeled as a Layered Queueing Network (LQN) 
which differs from Queueing Network (QN) models in that servers can become clients 
of other servers in the model. An LQN model is represented as an acyclic graph whose 
nodes are software entities and hardware devices and whose arcs denote software 
requests. Menasc´e and Gomaa proposed a proprietary language called CLISSPE 
(Client/Server Software Performance Evaluation) [5] for the performance assessment 
of client server systems. The specifications in CLISSPE are fed to a compiler which 
generates the QN model which is then solved using a performance model solver. Some 
authors have also followed a Stochastic Petri Net based approach [4] for modeling the 
systems.  
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Our approach follows the basic SPE methodology with a focus on layered software 
architecture. We represent the software model in terms of a DTMC which is then 
transformed into a closed PFQN model. However, the QN model we propose to use 
also models software resource constraints such as limited number of threads at a 
particular machine. This allows for a model which is closely related to the real system 
and its constraints. As the architecture to be analyzed has been fixed to layered, 
specifying the software system becomes relatively simple, unlike in other approaches 
that follow some proprietary languages. This was also one of the aims we set forth 
while developing this approach. We also allow analysis of the software model on 
different hardware architectures, by letting the user specify the rating factor of the 
hardware under consideration, as compared to the one in which the resource demands 
of the components were specified for the specific architecture. 

The inherent simplicity of specification makes our model feasible to be used in 
practice more effortlessly and even by those with relatively little knowledge of 
performance analysis techniques. Moreover the close modeling of real systems by our 
QN model, and the results we provide to the user, including the suggested bottleneck 
scale-ups and predicted performance improvements for the same, make our approach 
well suited to be used for large layered systems with real world constraints. We 
present the details of our approach in the following sections. 

3   System Model and Assumptions 

Our approach assumes that the computer system under consideration is an interactive 
system, wherein the system gives responses to the inputs given by the users. Further 
this interactive system follows the layered software architecture, with each layer 
interacting only with the adjacent layers. The user interacts with the first layer, which 
passes the request, if needed, to the second layer, which may pass it to the next layer, 
and so on. The last layer sends its response back, which then traverses through the 
layers, till the user gets the output. In general a layered software system could be 
visualized as in Figure 1. 

 

 

Client 1 

Layer 1 Layer 2 Layer nl 
Client 2 

Client  nc The Software System 
 

Fig. 1. The layered software architecture. 

Note that different software components which constitute different layers, could be 
allocated to different (hardware) machines or some of them could be collocated on the 
same machine also. A layer acts as a functional unit providing some well defined 
services through appropriate interfaces and some computation and some I/O is done as 
the control passes through each software layer. The computation and I/O may be 
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intermixed and done repeatedly till the layer has completed its task. It then either 
returns the result, or passes the request to the next layer either on the same machine or 
on a different machine as the case may be. There might also be limitations on how 
many concurrent pending requests can exist for computation on a machine (which 
frequently is the case when the software server or the operating system of the 
hardware node, limits the number of threads or available connections.) We assume 
that a software component runs on only one machine at a time, i.e., there is no 
concurrency within a software component. However, several layers could be allocated 
to run on a single machine. 

To analyze the performance of this architecture, we need to specify the average 
CPU time for a request in each layer and the average I/O time, which we call the Disk 
time in our model. Note that even though in a layer, the CPU work and I/O may be 
intermixed, for modeling purposes, they can be assumed to occur in an aggregate 
fashion, i.e., first all the CPU processing and then all the I/O processing. This 
combination does not affect the performance analysis and is based on the known 
insensitivity result of the product form solution of closed networks [1]. The allocation 
or deployment of the layers on different hardware nodes is also very important and is 
taken as a part of the specifications. The tool could be used to aid in choosing 
different allocations by comparing them.  

In addition, we need to model the impact of connectors between the layers that are 
allocated on different machines. We capture this by the size of the request, the 
capacity of the connector, and the probability with which a request is sent by one layer 
to another layer. To model the load on the system, we require the range of the number 
of clients that the system might be subjected to. In addition, an estimate of the number 
of requests generated per unit time by each client is also needed. Overall, the 
following properties about the architecture are needed: 

• The range of the number of clients [ncmin, ncmax] accessing the system and the 
average think time of each client ttc. 

• The total number of layers in the software system nl.  
• The relationship between the machines and the software components, i.e., which 

software layer is located to which machine and the number of machines. Thus 
corresponding to each machine j we have a set L(j) containing indices of the layers 
residing on j , 0<j≤nm  and nm is the number of machines. 

• The number of CPUs and disks on each of these machines and thread limitations if 
any, or nCPU(i), ndisk(i) and  tlim(i).  

• The uplink and downlink capacities of the connectors connecting machines 
running adjacent layers of the system and the size of the packets going on these 
links or capup(i), capdn(i), psizup(i) and psizdn(i) where 0<i≤nm. Note that 
capup(1) and capdn(1) are the total uplink and downlink capacities respectively, 
of the connector(s) joining all the client to the machines.   

• The service time required to service one request by a software layer given that it is 
using a standard CPU and a standard Disk for the purpose or CPU(i) and disk(i) 
where 0<i≤ nm.  

• Forward transition probabilities px(x+1), i.e., the probability that a request being 
serviced by layer x would need the service of layer (x + 1) next.  



This is a preprint of our paper published in CBSE 2005: Refer LNCS 3489, pages 66-81. 

• The rating factors fcj and fdj of the CPU and Disks respectively of each machine, 
which are present in the system, with respect to a standard CPU and Disk as 
considered above in 6. 

4   Analyzing Performance 

For analyzing the performance of a layered software system, we follow these main 
steps, which are discussed in detail in the ensuing sections: 

• Constructing the DTMC model. 
• Determining the queuing network model parameters. 
• Modeling thread limitations. 
• Queuing model solution and outputs. 

4.1 Constructing the DTMC model 

We model the software system following layered architecture using a DTMC [13]. 
The state of the application at any time is given by the component or layer in 
execution at that time. Moreover, transitions between states represent transfer of 
control from one layer to the other. Assume that the DTMC to be analyzed has k 
states. Then the DTMC is characterized by a k by k transition probability matrix P = 
[pij]. All elements of a row in P add up to one and 0≤pij≤1. We can calculate the 
expected total number of visits to a state j starting from state 1, Vj [1] by 

∑ += jijij qpVV where, qj is the probability of starting in state j. Thus visit counts to a 

particular state could be obtained by solving a system of (n-1) linear equations. We 
can model a layered software system with nl layers as shown in the Figure 1 using a 
DTMC with 2nl+2 states as shown in Figure 2. 

 

 

Fig. 2. The DTMC model for a layered software system. 

The transition from state S0 to S1 represents a client sending request to the first 
layer with probability 1. The completion of a request’s service by the layered system 
is denoted by a transition to state S2nl+1, which is an absorbing state. Note that as the 
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system is layered in nature, only transitions between adjacent layers are possible. 
There is no incoming edge to S0, which is the initial state, and no outgoing edge from 
S2nl+1, which is the absorbing state. The states Si and Snl+i (0 < i ≤ nl) represent control 
flow arriving to layer i in the forward and return paths of the request respectively. In 
the forward path, upon receiving service at layer i, the request can proceed further to 
the next layer with probability pi(i+1), or may return with the probability (1-pi(i+1)).   
Also note that we have:  

0 ≤ pi(i+1)   ≤1  0 ≤ i <nl 

4.2. Determining Model Parameters 

The layer to layer transition probabilities provided by the user and shown in Figure 2 
can also be seen as a (2nl+2) by (2nl+2) transition probability matrix of a DTMC with 
(2nl+2) states given by: 
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As mentioned in Section 4.1, we could calculate the visit counts to each of the 

states V(i), by solving the set of linear equations given in the previous section. If we 
assume that between each pair of layers an imaginary connector is present, then 
assuming the connectors to be bi-directional, the number of visits to this connector in 
the forward and the backward direction would be same as each request going forward 
will eventually return. For any layer i in the system, the fraction of all the arriving 
requests that proceed to the next layer is the same as pi(i+1)  in the DTMC as shown in 
Figure 2. Hence, the average number of visits to a uplink connector i, joining layer i, 
to layer (i+1) ,  is given by V(i)pi(i+1 ). The backward or return visits to the (downlink) 
connector will also be the same. Hence, we could calculate the total visits to these 
imaginary connectors joining the layers. 

However, note that not all of these imaginary connectors are present in the actual 
system. The chosen allocation of software layers on different machines determines the 
connectors that are present between layers, which lie on adjacent machines. Only these 
are the connectors that physically exist and need to be considered in the queueing 
model. Hence, we can get the visit count to the uplink and downlink connectors 
respectively between machines j-1 and j as Vconup(j) and Vcondn(j). Once the visit 
counts for the different layers and the connectors are calculated, the next step is to find 
the total service requirements on the actual CPUs and Disks on the machines as well 
as for the connectors that join these machines. For any machine j (0<j≤ nm) we have 
the total CPU and Disk service requirements given by 
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The above equation simply states that the total CPU or Disk service requirement at 
a particular machine is given by the sum of individual CPU or Disk service 
requirements of all the layers present on that machine, multiplied by the rating factor 
of that hardware device. For the connector j with uplink and downlink capacities 
capup(j) and capdn(j) respectively, we can compute the average delays caused due to 
each request as: 

)()( jcapuppsizeup(j)  jdelayup ÷=  
)()( jcapdnpsizedn(j)  jdelaydn ÷=  

where, psizeup(j) and psizedn(j) are the uplink and downlink average packet sizes on 
the connectors. Each time the connector is visited, the above delays occur depending 
upon whether the request is going from a lower indexed machine to a higher indexed 
machine or vice versa. So the total average service requirement at connector j would 
be given by: 

)()( jdelayupVconup(j) jtconup ⋅=  
)()( jdelaydnVcondn(j) jtcondn ⋅=  

The performance model that we generate is a closed product form queueing 
network wherein queueing stations represent the connectors, CPUs and Disks.  This is 
shown in Figure 3. The clients are modeled by an Infinite Server (IS) [11] which 
allows a new request to be generated after an average of ttc seconds of the completion 
of the previous request. The total number of jobs in the closed PFQN is kept same as 
the number of clients. 

 
 

Fig. 3. The closed PFQN model of the system. 
 

The connectors are modeled as FCFS stations [11] with rate as the reciprocal of the 
total average service requirements at that connector. The CPU for a machine is 
modeled by an FCFS station with CPU service rate for that machine. However, if there 
is more than one CPU present at a single machine, these are modeled as a multiple-
server (MS) [11], with each server in MS having the rate as the CPU service rate for 
that machine. Thread limited systems are discussed in detail in the next section. The 
disk is modeled by an FCFS station with service rate same as the reciprocal of the 
total average disk service requirement at that machine. If there is more than one disk 
present at the machine, then all these disks are modeled as separate FCFS stations with 
equal probability of transition from the CPU to each of the disks. These are not 
modeled as a multi-server (unlike the case of CPUs), as a request would not go to just 
any free disk, but is targeted to some specific data, on a particular disk. 
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4.3. Modeling Thread Limited Systems 

In real systems there exist machines that have some software resources such as 
number of available threads in limited quantity. So there is an upper limit on the 
number of jobs that a particular machine can handle. We can visualize this as in 
Figure 4. 

 

Machine i 

M 

Connector i 
 

Fig. 4. Limited threads on a machine. 

Here M is the upper limit on the number of jobs in that machine. We use a 
hierarchical combination of models so in the upper level model, the dotted box is 
represented a flow equivalent server. The lower level is modeled as a closed form 
PFQN. This is done by converting the subset of the model, which is shown inside the 
dotted region, to an equivalent closed PFQN. The rate of the flow equivalent server 
then equals the throughput E[T(n)] of this inner PFQN, which is directly proportional 
to the utilization of the same[1]. The flow equivalent server should continue to serve 
jobs only until limit M and till this point its rate keeps on increasing. However, after 
this point the rate no longer increases with increase in the number of jobs, and the jobs 
have to wait before getting into this inner PFQN or equivalently this thread limited 
server. So the rate of the flow equivalent server is given by: 

Mn if   MTE                       

Mn if     nTE      nflrate

>=
≤=

)]([
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Such hierarchical models are easily specified and solved by SHARPE. Note that the 
flow equivalent server is represented as a load dependent server (LDS) in SHARPE. 

4.4. Model Solution and Outputs  

The performance model would consist of an upper level PFQN and if flow equivalent 
servers are present, some lower level (inner) PFQNs along with output statements. 
This has to be fed to SHARPE for getting the throughput of the whole system for the 
range of clients specified by the user. Other measures such as the average response 
times, saturation number and bottlenecks would be found using the throughput along 
with the specifications provided by the user.  

In case of thread limited servers present in the system, each of those will have a 
separate PFQN representing the flow equivalent server, and the corresponding LDS 
will be present in the top level PFQN. So in general the SHARPE input file will have 
the specifications of each of the inner PFQNs, if any, followed by the function that 
calculates their service rates, and the specification of the top level PFQN, followed by 
the output section. The model is fed to the SHARPE engine, which analyzes it and 
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predicts the throughput of the whole system. The average throughput at each of the 
servers in the model for different number of clients is also calculated. This is required 
as unlike the FCFS or MS, the total service requirements per visit at the LDS change 
with varying number of clients in the system. This in turn affects the bottleneck 
analysis as is explained in the next section. 

As part of the outputs, the approach provides for the throughput and the average 
response times of the whole system for the range of clients mentioned by the user. The 
approach also provides the saturation number of the system, which is the number of 
clients beyond which the system starts to saturate, i.e., the servers in the system start 
getting busy almost at all times and server utilization (the probability of finding a 
server busy) reaches unity. In practice the system should be running with the number 
of clients below the saturation number. Along with these it provides the bottleneck 
analysis as explained in section 5. 

5.  Bottleneck Analysis 

One important part of our analysis is bottleneck analysis of the whole system. The 
bottleneck node of the system is defined as the one at which the total service 
requirement is the largest or the relative utilization (the probability of finding a server 
busy) is the highest. Hence in a closed PFQN, bottleneck nodes can be found out even 
before solving the queueing network model, by comparing the total service demands 
on the various nodes.  However, if there is a thread limited server in the network, the 
total service requirements at this node is dependent upon the instantaneous number of 
jobs on that server (hence the name load dependent servers). Thus in such networks, 
we need the throughput values for the lower level closed PFQN for calculating the 
total service requirements at that node for varying number of clients from the 
SHARPE engine. 

Bottleneck nodes are the ones, which are most busy (or have high relative 
utilizations), and most jobs will tend to queue up at these servers. They will cease to 
be the bottleneck if they are scaled up so that they no longer have the highest total 
service requirements (or the highest relative utilization). We provide information 
about the first as well as the second bottleneck(s) in the system. In general one can 
determine the minimum scaling up factor Scale(k) of the  kth bottleneck by the 
formula: 

(k-1)bottleneck

(k)bottleneck
Scale(k)

 of jobper  tsrequiremen service Avg.
 of jobper  tsrequiremen service Avg.

  =  

One thing to be noted is that the bottleneck(s) of the system might change with the 
number of clients in the system. This is so, because the average service demands and 
hence the average service times per job of the thread limited servers are load 
dependent and would change with the number of clients in the system. Hence, we give 
the bottlenecks for the whole range of the clients as mentioned by the user.  

Bottleneck information is then used to analyze the effect of scaling the bottleneck 
server up, on the average throughput and average response time of the whole system. 
This is done by iterating once again through the performance model generation phase 
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with the bottleneck node’s service rate scaled up by the suggested value, and then 
feeding the model to SHARPE and analyzing throughput again. Thus one can get the 
percentage change in system performance for the suggested scale up, and decide if the 
scale up is worthwhile for the system. Bottleneck analysis gives the user a good idea 
of the amount of improvement in system performance if he/she chooses to put in effort 
in scaling up / improving the bottleneck of the system. 

6.  An Example 

We have implemented our approach as a web based tool, which automates our 
approach. The implementation of the tool was partially done as an undergraduate 
project [14], and was extended later on. The tool completely automates the task of 
performance analysis of layered software systems. This web tool is based on cgi 
scripting and renders html forms for the user to fill in the specifications of the layered 
system under consideration. The tool then uses the specifications and constructs a 
DTMC internally, representing the software system, calculates the service 
requirements and generates a SHARPE input file, which has the system model as a 
closed PFQN. This is then fed to SHARPE, which works as our model solver and 
backend. The results from SHARPE are further analyzed, for bottlenecks. The scale 
up for the primary bottleneck in the system is found and the QN model is 
reconstructed and again fed to SHARPE to get the new performance attribute values. 

Consider an example of a 4-layered software architecture. Suppose that the current 
plan is to have these 4 layers run on 3 machines, with layer 1 running on machine 1, 
layer 2 on machine 2, and layers 3 and 4 on machine 3.  Further assume that there is a 
limit of 25 threads on machine 2. In the baseline hardware configuration that we are 
planning for be that each machine has 2 CPUs and machines 1 and 2 have 1 Disk 
each, while machine 3 has 4 disks available. The data about the software architecture 
and the hardware that is being planned is summarized in Table 1. 

Table 1. Example software and hardware specifications. 

Number of Layers 4 Number of Machines 3 
Layer 1 runs on Mc  1 Layer 2 runs on Mc  2 
Layer 3 runs on Mc  3 Layer 3 runs on Mc  3 
No. of CPUs on Mc 1 2 Thread Limit on Mc 1 No 
No. of CPUs on Mc 2 2 Thread Limit on Mc 2 25 
No. of CPUs on Mc 3 2 Thread Limit on Mc 3 No 
No. of Disks on Mc 1 1 No. of Disks on Mc 2 1 
No. of Disks on Mc 3 4 

Total capacity of connector joining 
Clients and Mc 1 Uplink/Downlink 

56/512 
Kbps 

Capacity of connector joining Mc 1 
and Mc 2 Uplink/Downlink 

1/1 
Mbps 

Capacity of connector joining Mc 2 
and Mc 1 Uplink/Downlink 

1/1 
Mbps 

Capacity of connector joining Mc 2 
and Mc 3 Uplink/Downlink 

1/1 
Mbps 

 

Now we have to provide the system execution behavior estimates. We have taken 
the parameters resembling those, which might characterize a distributed transaction 
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processing system following a 4 layered architecture. We take an example of an 
ADSL connection between the clients and the system as is evident from the 
asymmetry in the uplink and downlink capacities of the link joining clients to machine 
1. Further, assume that the client request does much of its CPU processing in layers 2 
and 3 and does most of its I/O operations in layer 4. Also, assume that 60% of all 
requests coming to layer 1 need to go to higher layers for service and similarly 90 % 
and 100 % of the requests which reach layer 2 and 3 respectively require service from 
higher layers.  The values of the relevant parameters are as in Table 2.  

Table 2. Example system execution behavior estimates. 

Data packet sizes: (in bytes) 
From Client to Mc 1 250 from  Mc 1 back to Clients 2000 
From   Mc 1 to Mc 2 250  From  Mc 2 back to Mc 1 1000 
From  Mc 2 to Mc 3 250  From  Mc 3 back to Mc 2 1000  
 Times per visit: (in secs) 
CPU time/visit of Layer 1 0.01 CPU time/visit of Layer 2 0.03 
CPU time/visit of Layer 3 0.06 CPU time/visit of Layer 4 0.01 
Disk time/visit of Layer 1 0.02 Disk time/visit of Layer 2 0.02 
Disk time/visit of Layer 3 0.002 Disk time/visit of Layer 4 0.20 
Probability of request flow from:  
Layer 1 to higher Layers 0.60 Layer 2 to higher Layers 0.90 
Layer 3 to higher Layers 1.00  

 
Suppose we specify to the tool that we want to estimate the performance of this 

system for 1 to 75 clients, each client having an average think time of 1 sec and the 
rating factor for all the devices as unity. The tool does the analysis and gives the 
output as in Figure 5 and 6. 
 

   

Fig. 5. Analysis output: The average response time and throughput graphs. 

From Figure 5, we can see that the model suggests that the average response time is 
quite low initially, but then after around 8 clients the average response times starts to 
increase very fast. Similarly if we study the throughput graph, this shows the 
throughput constantly increasing with the number of clients initially, but then almost 
becoming constant if the number of clients is increased further, the maximum 
throughput of the system being about 34 jobs/sec. These two observations are due to 
the same phenomenon of the onset of saturation of the system - in this case occurring 
around 11 clients in the system. Below 11 clients, there are practically no queues at 
each of the machines, and so the average response time is fairly low, and the 
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throughput of the system, increases almost linearly as new clients are added. But as 
the number of clients increase further, queues start to build up at different service 
centers, and jobs have to wait for other jobs to complete service, before they could be 
taken up. The servers in these conditions are busy almost all the time and server 
utilizations (the probability of finding the server busy) reaches unity. Thus congestion 
builds up in the system, and hence the average response time of the system keeps on 
increasing thereon as more and more clients are added. Because of the same reason, 
the throughput of the system reaches a limiting level, and does not increase after that 
(as most of the servers are already busy processing to their limit) and so we get the flat 
region in the throughput graph.  

The graphs are very useful for a system architect as they show precisely how many 
clients would the system be able to handle efficiently. Practically a system should 
never be running in a saturated condition as then the system performance degrades 
very fast. These graphs could be used to ascertain the kind of the average response 
times and throughput the system would deliver for the specified range of clients and 
whether that meets the desired performance criteria or not. The system architect could 
also get an idea about the performance of the system, in conditions of excessive loads. 

As shown in the bottleneck analysis in Figure 6, the tool predicts the primary and 
secondary bottlenecks in the system along with the minimum scale-up needed so that 
they no longer are the bottlenecks. As mentioned earlier, as the bottlenecks in the 
system may change upon changing the number of clients in the system, hence the tool 
provides the bottleneck analysis for the whole range of clients. In Figure 6, the same is 
shown for 43 clients. Moreover the tool iterates upon the analysis once more with the 
primary bottleneck scaled-up, and then shows the improvements in throughput, 
average response time, and saturation number of the system. 

 

 

Fig. 6. The bottleneck analysis output. 

In this example system, we can see the improvements - by scaling the disk of 
machine 3, we could get an improvement of more that 22.5% in the throughput of the 
system and about a 50% decrease in average response time. Figure 7 illustrates the 
comparative improvements using graphs, showing the system throughout and the 
average response time variation with load, before and after the suggested scale-up. We 
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can see that if the suggested scale-up is done, then the system can sustain more 
number of clients, without degradation as compared to the initial configuration. 

 

  

Fig. 7. The effect of system scaleup as suggested by our tool on average system throughput and 
response times.  

From the capacity planning point of view, say if an average response time of upto 
0.6 seconds is deemed acceptable for the system, one can observe from the average 
response time variation graph in Figure 7 that the capacity of the system increases 
from 46 to 72, if the suggested scaleup is done. One can also use to the tool to see the 
possible effects of any changes in the system hardware or software. We used the tool 
to evaluate the above example system but with the number of concurrent threads in 
Machine 3 limited to 25. The tool shows that this restriction causes the maximum 
throughput of the system to go down to 20 jobs/sec from 34 jobs/sec. In addition, the 
tool could be used for comparing the effect of different deployments of the layers on 
the available machines, on the overall system performance. One such comparison for 
the example system is shown in Table 3 which shows that the first deployment scheme 
is significantly better than the others in terms of maximum average throughput.   

Table 3. Effect of different layer deployments on maximum average throughput. 

Layer(s) deployed on 
Machine 1 Machine 2 Machine 3 

Maximum average 
throughput (jobs/s) 

1st 2nd 3rd ,4th 33.62 
1st 2nd ,3rd 4th 19.84 

1st ,2nd 3rd 4th 29.81 

7   Discussion and Conclusion 

In this paper we presented an approach of performance evaluation of systems 
following layered architecture. The approach deals with first constructing a DTMC 
model of the software system, using the specifications user has provided. This model 
is then solved to get the total visit counts to different layers of the system and calculate 
total service requirements of the system on the hardware over which the software 
system is deployed. These are then used to construct a closed PFQN model for the 
system. This model also takes care of limited software resources as threads on a 
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particular machine. The PFQN model is solved using SHARPE as the backend, the 
outputs of which are analyzed, and various performance metrics such as throughput 
and the average response times, and saturation number are provided. Moreover 
bottleneck analysis is done and the minimum scale up for the bottleneck node in the 
system is suggested. The approach also allows for a prediction of the improvement in 
system performance if the scale up is actually done. There are two major applications 
of this approach: First is in architecting and deploying new layered systems and the 
second is in tweaking or upgrading or scaling up existing systems.  

As COTS based development is becoming very popular these days, it is 
commonplace today to use components as black boxes for the desired functionality. In 
such cases the designer could use our approach and estimate the performance 
characteristics of the final system he wishes to build using those components. 
Moreover it would also allow the architect to know about the possible bottlenecks in 
the system and how much scaling up is needed for those components. 

The second application as mentioned before is when an existing system has to be 
scaled up or some additional software or hardware component has to be added. The 
system administrator should have some idea of the change in the system performance 
due to the change in system hardware and/or software configuration. Our approach 
could be used to ascertain that. The system administrator need not have an in-depth 
knowledge of performance evaluation techniques for this and our tool could be 
employed for the same by providing some specifications, which are easy to get. 

At the software architecture phase, the actual components, which would constitute 
the layers, would not be present (unless COTS approach is used) so, the service 
requirements of different components at different devices have to be estimated from 
previous experience with similar software components. If off the shelf components are 
being used, the CPU and I/O times taken by particular layers to execute once could be 
assessed by using built in tools provided by various operating systems like iostat or 
sar. Tests will have to be conducted for each layered component separately as the 
above mentioned tools do not provide application level break-up of the measurements. 
For testing purposes if a single layer is run on a single machine one can get the total 
CPU and I/O times for say n executions and then get the average CPU and I/O times 
per execution. 

Each proposed component in a layer could be examined to find the components 
with which it interacts with a non-zero probability and known operational profiles of 
similar systems might be used to estimate the associated transition probabilities 
between the layers. For existing systems, techniques mentioned in [6] might be used to 
ascertain the transition probabilities. Specifications such as the capacity of connectors, 
the number of CPUs and disks or thread limitations are all system characteristics. 
Some measurements will be needed for the packet sizes on the connectors joining 
various machines and could be ascertained by using a suitable network analysis utility. 

There are still lots of avenues in this approach for future work. Our approach is 
limited only to layered systems at present. We believe that this could be extended to 
general software architectural patterns also. However, the aim while doing so would 
be to keep the specifications needed as simple and practical as possible so that the 
approach is easily adoptable in practice. One other major extension could be to 
modify the approach so that it allows for optimizing the use of various system 
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resources to provide the maximum possible performance. This would be beneficial to 
system architects as well as system administrators and will allow them to minimize 
investment and maximize performance of their systems. One of the many aims of this 
approach is to provide a thorough performance evaluation of the layered software 
system under concern. Moreover the approach is helpful both at the time of 
architecting new systems as well as scaling up or improving existing systems. The tool 
that we have built implements our approach and is very simple to use. We hope that 
our approach would help software engineers and performance experts to architect 
better layered systems, as well as allow those who are not specialists in this field to 
perform performance evaluation of their systems. 
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