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Abstract- All-to-all (ATA) reliable broadcast is the problem 
of reliably distributing information from every node to every 
other node in point-to-point interconnection networks. A good 
solution to this problem is essential for clock synchronization, 
distributed agreement, etc. We propose a novel solution in which 
the reliable broadcasts from individual nodes are interleaved in 
such a manner that no two packets contend for the same link 
at any given time-this type of method is particularly suited for 
systems which use virtwl cut-through or wormhole routing for 
fast communication between nodes. Our solution, called the IHC 
Algorithm, can be used on a large class of regular interconnection 
networks including regular meshes and hypercubes. By adjusting 
a parameter 77 referred to as the interleaving distance, we can 
flexibly decrease the link utilization of the IHC algorithm (for 
normal traffic) at the expense of an increase in the time required 
for ATA reliable broadcast. We compare the IHC algorithm to 
several other possible virtual cut-through solutions and a store- 
and-forward solution. The IHC algorithm with the minimum 
value of 9 is shown to be optirnaZ in minimizing the execution 
time of ATA reliable broadcast when used in a dedicated mode 
(with no other network traffic). 

Index Terms-Broadcast, fault-tolerance, hypercube, mesh, re- 
liable communication, virtual cut-through, wormhole routing 

I. INTRODUCTION 

EGULAR mesh structures [5] and binary hypercubes [3], R [23] have drawn considerable attention in recent years as 
an interconnection topology for the processors of a distributed 
computing system. The fault-tolerance of these types of struc- 
tures is an important issue as they are increasingly used for 
critical applications. 

In this paper, we address the all-to-all (ATA) reliable broad- 
cast problem, in which every node must reliably broadcast 
its message to every other node. This is essential for imple- 
menting several key fault-tolerant algorithms for distributed 
agreement [9, 181, clock synchronization [17, 19, 211, and 
distributed diagnosis of intermittently faulty processors [25]. 
In these algorithms, each non-faulty node must be able to 
correctly deliver its message to all of the other non-faulty 
nodes in the system. Let us assume an interconnection network 
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G with connectivity y and N nodes, of which t nodes are 
faulty. Given that faulty nodes can behave in any manner 
whatsoever, Dolev [9] has shown that correct message delivery 
can be achieved in G if and only if t 5 min{ -1). 
In [22], Rivest er al. describe method of appending each 
message with an authenticated signature. If a signed message 
is sent from a node U to another node w, then any disruption 
of the contents of the message will be detected upon receipt 
by node w. With signed messages, the bound on the number 
of faulty nodes can be increased to t 5 y - 1. 

By Menger’s Theorem [4], a y-connected graph has y node- 
disjoint paths between any two nodes U and w. It can be shown 
that to tolerate the maximum number of faulty nodes, every 
non-faulty node must send its message to every other node 
through y node-disjoint paths. (Fewer than y node-disjoint 
paths cannot be used because that would imply that a graph 
with lower connectivity than y has the same fault tolerance as 
a y-connected graph.) All algorithms described in this paper 
are of this type. To disrupt communication between nodes U 

and II with 2 y faulty nodes, there must be at least one faulty 
node in every disjoint path from U to w. Thus, using this type 
of method, the probability of correct operation is high even 
when 2 y faulty nodes are present. 

In this paper, we present a novel ATA reliable broadcast 
algorithm, referred to as the IHC algorithm, in which the 
reliable broadcasts from individual nodes are interleaved in 
such a manner that no two packets ever contend for the same 
link at any given time; this results in the highly efficient 
communication algorithm for networks which use virtual 
cut-through [ 161 or wormhole routing [6]-over 68.7 billion 
packets can be sent and received in less than 2 milliseconds 
on a hypercube. Following preliminary background discus- 
sions in Section 11, Section 111 describes the general class 
of interconnection networks for which our proposed solution 
can be used. Section IV describes the proposed solution 
and its implementation using virtual cut-through. Section V 
describes possible alternative solutions based on new and 
existing reliable broadcast algorithms that use virtual cut- 
through. Section VI analyzes and compares the proposed 
solution and alternative solutions. We conclude with Section 
VII. 

-1, 

11. BACKGROUND 

Multicomputer systems that communicate by message pass- 
ing have traditionally used a store-and-forward routing method 
[16]. In this method, when a message is sent from a node 
U to another node U through an intermediate node w, the 
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Fig. 1. Illustration of operation of cut-through. 

message must be completely stored in w before being passed 
on. By contrast, in virtual cut-through [16] and wormhole 
routing [6], instead of storing a message completely in a 
node and then forwarding it to the next node, the header of 
the message is advanced directly from incoming to outgoing 
channels. Only a few control bytes are buffered (in a small 
on-line FIFO buffer) at each node to determine the out-going 
channel for the message. Thus, the message becomes spread 
out across the channels between the source and destination. At 
an intermediate node, if all outgoing channels are busy, then 
the entire message is buffered (in a much larger intermediate 
storage buffer) in virtual cut-through and prevented from 
moving forward in wormhole routing (i.e., the message is kept 
in the network). Special routing controller chips have been 
designed for wormhole routing [6] and virtual cut-through 
[lo]. Deadlock-free wormhole routing is addressed in [7]. The 
operation of advancing a message immediately from incoming 
to outgoing channels is referred to as cut-through. Virtual cut- 
through and wormhole routing are collectively referred to as 
cut-through (switching) methods. 

The cut-through operation is illustrated by Fig. 1. In this 
figure, a message of 10 bits originates from node U. At node 
w, part of the message has been received in a FIFO buffer while 
the head of the message has already been sent on an outgoing 
transmitter. At node 20, the leading 3 bits of the message have 
been received in a FIFO buffer. Before the 5th bit arrives at 
node w, either an outgoing transmitter must be reserved for 
the message or node w must be prepared to storeheceive the 
message. Thus, of the 10 bits in the message, the first 3 bits are 
in node 20, the middle 4 bits are in node o, and the last 3 bits 
are in source node U. It is noted that when a message is being 
cut-through a node such as node ‘U in Fig. 1, it is possible for 
node o to also receive the message by copying the message as 

it passes through the FIFO buffer. This capability is present in 
the HARTS routing controller chip [lo] and involves a “tee” 
operation in which the bits of the message are latched into the 
receiving node as they pass through the FIFO buffer. 

Most previous work on reliable broadcast [20] and ATA 
reliable broadcast [ 121 have implicitly assumed a store-and- 
forward routing method. These algorithms can be described 
by considering the broadcast to be done in several steps 
and specifying the point-to-point communication patterns that 
occur at each step. Then the objective is to minimize the 
total time required for the broadcast operation by using a 
minimal number of communication steps. Ramanathan and 
Shin’s reliable broadcast (RS) algorithm [20] requires y + 1 
steps on a hypercube of dimension y if each node can 
simultaneously use all of its outgoing links. Fraigniaud’s ATA 
reliable broadcast (FRS) algorithm for hypercubes [ 121 simply 
involves executing the RS [20] algorithm at each node in lock 
step. In every step after the first, each node must merge two 
messages from the previous step before sending the larger 
message in the current step. In the last step, the message 
formed after merging can be made a little bit shorter by 
removing the portion of the message that would be returned to 
the originator of that portion of the message. The time required 
for the FRS [ 121 algorithm is (y + 1)rs + (2? - ~ ) L T L ,  where 
TS is the message startup time, L is the message length in bits, 
and TL is the propagation time per bit. To achieve this time, 
100% of the link capacity must be used for the entire duration 
of the ATA broadcast operation. 

Recently, there has been work on broadcast algorithms that 
take advantage of the faster communication possible using cut- 
through switching methods [15]. In this case, to minimize the 
total execution time, we must not only minimize the total 
number of communication steps, but maximize the number 
of communication steps that can be implemented with cut- 
through. Kandlur and Shin’s reliable broadcast (KS) algorithm 
[ 151 is an efficient algorithm for a regularly wrapped hexagonal 
mesh topology which uses virtual cut-through. In the KS 
[15] algorithm, the longest path has 2 x (diameter of mesh) 
send-receive operations, among which all but three can use 
cut-through. The analysis done in [15] shows that for a single 
reliable broadcast operation, the KS [15] algorithm is much 
faster than an algorithm based on the use of edge-disjoint 
Hamiltonian cycles (HC’s). 

111. INTERCONNECTION NETWORKS 

This section formally presents the class of interconnection 
networks for which the IHC algorithm for ATA reliable 
broadcast can be used. 

Due to its potential for high-reliability, a point-to-point 
interconnection network is commonly used to connect the set 
of processing nodes of a large distributed system. For the 
purposes of analyzing routing and broadcast algorithms, it is 
convenient to represent the system by an undirected graph in 
which the vertices (or nodes) correspond to the processing 
nodes and the edges correspond to the communication links in 
the interconnection network. If directed communication links 
are used, each edge corresponds to 2 communication links. 
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Fig. 2. 9 3 ,  a hypercube of dimension 3. 

Thus, given an undirected graph G, the corresponding directed 
graph Gdir is defined to be the graph G with every undirected 
edge replaced by two directed edges, one in each direction. 

A graph is said to be ?-regular if all nodes in the graph 
have degree y. A regular graph is one that is y-regular for 
some y [4]. A graph G is said to belong to the class A if the 
following two conditions are satisfied: 

LC1: 
LC2: There are undirected edge-disjoint HC’s in G. 

The IHC algorithm for ATA reliable broadcast can be used on 
any graph in the class A. (While condition LC 1 is not an 
essential requirement for the algorithm, it is necessary for the 
optimality analysis in Section 6, Theorem 4.) Note that if G 
belongs to the class A, they y is the connectivity of G. 

G is y-regular for an even interger y. 

A. Hypercube 
An m-dimensional hypercube, denoted by Q m ,  has N = 2m 

nodes and m2”-’ edges. If directed communication links are 
used, 9% has m2” directed edges. A Qm is recursively 
defined as: (1) QO is a single point, and (2) Qm = Kz x Qm-lr 

where Kz is a complete graph of 2 nodes and x denotes the 
product operation on two graphs [4]. The recursion for Qm 
can alternatively be written as Qm = x Qly1. Each 
node in a Qm is uniquely represented by an m-bit address 
such that the addresses of adjacent nodes differ in exactly one 
bit. The bits in an address are referred to in right to left order 
from 0 to m - 1. l’bo adjacent nodes which differ in th ith bit 
will be said to be in direction i (0 5 i 5 m - 1) with respect 
to each other. Fig. 2 shows an example of a Q 3 .  

Hypercubes of even dimension belong to the class A. 
Condition LCI is satisfied because a Qm is m-regular with 
degree y = m. Condition LC2 is satisfied by Theorem 1 
below. Let c k  denote an undirected cycle of length k. Then 
Theorem 1 can be proven with the aid of the following two 
lemmas. 

Lemma 1: [ll] c k  x cl can be decomposed into 2 undi- 
rected HC’s ( k , l  2 3). 

Lemma 2: [2] The Cartesian sum G + C, where G is 
decomposed into 2 undirected HC’s and C is a HC, can be 
decomposed into 3 undirected HC’s (k,  1 ,  T 2 3). 

Theorem 1:  [13] A Q z k  contains k undirected edge-disjoint 
HC’s. 

Proof: The theorem can be proven by induction on 2k. 
For the induction basis, a Qz is a cycle and Fig. 3 shows 2 
undirected edge-disjoint HC’s in a Q 4  (although Fig. 3 shows 

Fig. 3. Torus-wrapped square mesh. 

a square mesh, it is also a Q4 since a Q4 can be redrawn as 
a 4 x 4 torus-wrapped square mesh). Assume a Q21 contains 
I undirected edge-disjoint HC’s for all 1 5 k .  We must show 
that a Q z k + z  contains k + 1 undirected edge-disjoint HC’s. 

If k + l  is even, then decompose the Q z k + z  into two Q k + l ’ s  

(where decomposition is the inverse of the x operation). By in- 
duction, each Q&+l contains (k+1)/2 undirected edge-disjoint 
HC’s. Create ( k  + 1)/2 graphs by multiplying (applying the 
product operation on) the i-th HC’s in the two decomposed 
hypercubes, for all 1 I i I (k + 1)/2. By Lemma 1, each 
product graph contains two undirected edge-disjoint HC’s. 
Then, since all product graphs are edge-disjoint, there exist 
( k  + 1) undirected edge-disjoint HC’s in the Q z k + z .  

If k + 1 is odd, then decompose the Q z k + ~  into a Qk and 
a Q k + 2 .  Create k/2 - 1 graphs by multiplying the i-th HC’s 
in the two decomposed hypercubes, for all 1 5 i 5 k/2 - 1. 
By Lemma 1, each product graph again contains 2 undirected 
edge-disjoint HC’s. There remains one unused HC (C,) in Q k  

and 2 unused HC’s (Cz + C 3 )  in Q k + z .  From Lemma 2, we 
know that (Cz + C3) x C1 can be decomposed into 3 HC’s. 
Thus, there are a total of (k + 1) undirected edge-disjoint HC’s 

Theorem 1 can be used to construct the k undirected edge- 
disjoint HC’s in a Q z k .  Theorem 1 and Lemmas 1 and 2 use 
inductive proofs. For Lemmas 1 and 2, Foregger [l  11 and 
Aubert and Schneider [2] give examples of the construction 
method for the basis cases of the inductive proofs and shows 
how to construct the HC’s for larger graphs based upon the 
solutions for smaller graphs. To construct the k undirected 
edge-disjoint HC’s for a given Q Z k ,  we need to start from 
the induction basis and use the inductive construction method 
to build up to the desired hypercube. Although this is clearly 
a tedious process, it only needs to be done once for a given 
size hypercube. In addition, results obtained for smaller sized 
hypercubes can be used in the construction of the HC’s for 
larger sized hypercubes. We do not know of any method to 
directly construct the k undirected edge-disjoint HC’s for a 
Q z k .  

For completeness, the case of hypercubes of odd dimension 
is considered. It is shown in Theorem 2 that a QZk+l contains 
k undirected edge-disjoint HC’s. Thus, if one link incident on 
each node of the Q Z k + l  is deleted, the resulting graph, with 
connectivity y = 2k, also belongs to the class A. 

in the Q z k + z .  0 
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Fig. 4. Hex-mesh of size 3 without wrapping. 

Theorem 2: A Q 2 k + l  contains k undirected edge-disjoint 
HC’s. 

Proofi A Q3, with IC = 1, has the structure of a cube. By 
using the Gray-code sequence of the node addresses, we can 
easily obtain 1 undirected edge-disjoint HC. Assume a 
contains 1 undirected edge-disjoint HC’s for all 1 5 k .  We must 
show that a Q 2 k + 3  contains IC + 1 undirected edge-disjoint 
HC’s. 

Suppose k + 1 is even. Decompose Q2k+3 into a Q k + l  

and a Q k + 2 .  From Theorem 1, &k+l contains ( k  + 1)/2 
edge-disjoint HC’s. By the induction hypothesis, Qk+2  also 
contains ( k  + 1)/2 edge-disjoint HC’s. Create ( k  + 1)/2 
graphs by multiplying the z-th HC’s in Qk+l and Qk+2 ,  

for all 1 5 i 5 (k + 1)/2. By Lemma 1, each product 
graph contains 2 undirected edge-disjoint HC’s. Then, since 
all product graphs are edge-disjoint, Q2k+3  contains k + 1 
undirected edge-disjoint HC’s. 

Suppose k + 1 is odd. Decompose Q2k+3 into a Q k + l  and a 
Qk+2 .  By induction Q k + l  has k/2 edge-disjoint HC’s. Also, 
by Theorem 1, Qk+2 has ( k  + 2)/2 edge-disjoint HC’s. Create 
k/2-1 graph by multiplying the i-th HC’s in Q k + l  and Q k + z ,  

for all 1 5 i 5 k/2 - 1. From lemma 1 ,  each product graph 
again contains 2 undirected edge-disjoint HC’s, for a total of 
k - 2 HC’s. There remains 1 unused HC in Q k + l  and 2 unused 
HC’s in Q k + 2 .  From Lemma 2, we know that the product of 

0 these 2 graphs can be decomposed into 3 HC’s. 
Alternate proofs of Theorems 1 and 2 are given in [l]. 

B. Torus- Wrapped Square Mesh 

The torus-wrapped square mesh, shown in Fig. 3, belongs to 
the class A. Let SQm be a torus-wrapped square mesh of size 
m, where m is the number of nodes in a single row or column. 
Since the degree of every node in a S Q ,  is 4, condition LC1 
is satisfied with y = 4. The dashed lines and solid lines in 
Fig. 3 show two undirected edge-disjoint HC’s in a SQ4,  thus 
satisfying condition LC2. A similar pattern can be used to find 
two undirected edge-disjoint HC’s for any S Q , .  

C. C- Wrapped Hexagonal Mesh 

A hexagonal mesh (hex-mesh) has the general structure 
shown in Fig. 4, which is an unwrapped hex-mesh of size 3. In 
order to achieve regularity and homogeneity such that identical 
hardware, software and protocols can be applied uniformly 
over the network, it is required that the nodes on the hexagonal 
periphery be wrapped around systematically. 

A general systematic method for wrapping hex-meshes is 
defined in [51 as C-type wrapping (see, e.g., Fig. 5). In a C- 

- 
Fig. 5. Hex-mesh with C-type wrapping in +.T direction. 

wrapped hex-mesh, there are six oriented directions, as shown 
in Fig. 4. Several topological properties of hex-meshes with 
the C-type wrapping are given in [5 ] .  From these properties, it 
can easily be derived that the set of edges in any direction of 
a C-wrapped hex-mesh of size m, denoted as H,, describes a 
HC [15]. Thus, there are three undirected edge-disjoint HC’s in 
a H,; in addition, since a H ,  is also y-regular with y = 6, 
it belongs to the class A. 

IV. PROPOSED SOLUTION 
The proposed ATA reliable broadcast solution is described 

for all interconnection networks in the class A. Let G be 
the undirected graph representing any such interconnection 
network. G is a y-regular graph (y even) with undirected 
edge disjoint HC’s. In Gdir, there are y directed HC’s HC1, 
HC2,.  . . , HC,. For a given node w, nexf;(v),  and prev;(w) 
denote the nodes immediately following and preceding node 
w in HC;. Let us arbitrarily designate a node as No. For any 
node v,IDj(v) is the distance from NO to w when traversing 
HCj. N is the total number of nodes. The notation [z], is used 
to denote z mod y, the remainder after z is divided by y. The 
interleaving distance q is the spacing between nodes that are 
initiating packets in one iteration of the outermost loop in the 
proposed solution, described below as algorithm IHC. 

For i = 0 to q - 1 do 
IHC Algorithm: 

begin 
for j = 1 to y doparallel 

for every node w doparallel 
if ([IDj(w)lv = i) then 

w sends its message to nextj(v); 
for j = 1 to N - 1 do 

for IC = 1 to y doparallel 
for every node w doparallel 

begin 
receive message from prevk(v); {*} 
if ( j  < N - 1) then 

relay message to nextk ( U); { *} 
end; 

end 
The IHC algorithm is performed in q stages. Fig. 6 shows 

an example of the execution of the algorithm in direction HCj 
assuming q = 3. Broadcast messages are sent in fixed-size 
packets. In stage i ( 0  5 i 5 q - l), every q-th node in 
direction HCj starting from the i-th neighbor of NO in directon 
HCj is permitted to initiate a packet along HCj for every 
j (1  5 j 5 y). Referring to Fig. 6, in a given HC, the nodes 
numbered i initiate packets in stage i. q can be considered as 
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mcrmediale storage buffer 

Fig. 6. Nodes initiating packets in one HC of the IHC algorithm 
Fig. 7. Node architecture for virtual cut-through. 

the interleaving distance. Once packets have been started along 
directed HC’s, they keep flowing for N - 1 hops along the 
cycles in which they started. If there are no packets generated 
by other tasks in the network, then the two steps indicated 
by “{*}” correspond to a single cut-through operation at each 
node. 

The IHC algorithm has been described assuming that each 
node can use all of its incoming and outgoing links concur- 
rently. With this assumption, the degree of the network y does 
not effect the execution time of the IHC algorithm. However, 
since y copies of every message are delivered to every node 
through edge-disjoint paths, the reliability (and degree of fault 
tolerance) of the algorithm increases with increasing y. By 
using more stages, the algorithm can easily be modified for 
systems in which each node can use only a subset of its 
incoming and outgoing links concurrently. For instance, if 
each node can use only one incoming link and one outgoing 
link concurrently, then y sequential invocations of the IHC 
algorithm can be used (one for each directed HC HCj). Note 
that, in this case, it is a simple matter to reduce the execution 
time (and reliability) of the ATA reliable broadcast by using 
k < y sequential invocations of the IHC algorithm for IC of 
the y directed HC’s. 

We now address the implementation of the IHC algorithm 
using virtual cut-through. The only difference in the wormhole 
routing implementation is that blocked packets are not buffered 
but kept in the network. Note that deadlock does not occur 
if Dally and Seitz’s method of virtual channels [7] is used 
for deadlock prevention. To prevent extremely long “lines of 
packets” from being formed, however, the wormhole routing 
implementation of the IHC algorithm must be used in a 
dedicated mode in which the entire network (or one channel on 
each directed link) is dedicated to the ATA reliable broadcast 
operation for the duration of the broadcast operation. 

Let us use an architecture similar to the routing controller 
chip for HARTS [lo], a 19-node (H3) version of which is 
currently being built at the Real-Time Computing Laboratory. 
A crucial feature in the HARTS routing controller chip is that 
all incoming and outgoing links (receivers and transmitters) 
can be used simultaneously. We also assume such a capability 
in our architecture, shown in Fig. 7. 

In high bandwidth communication networks, it has been 
observed that a large portion (about 80%) of the communica- 
tion latency is spent in the processing at the transmitters and 
receivers [ 141. (The delay caused by the actual transmission 
accounts for only 20% of the latency.) Virtual cut-through can 
be seen as an attempt to eliminate much of the processing (i.e., 
store-and-forward) at the intermediate nodes between a source 
and a destination. Thus, when an incoming message cuts 
through a node, only a very small amount of processing (with 
the aid of special hardware) is required to determine where and 
how to advance the message. In Fig. 7, the length of the FIFO 
buffer is determined by the minimum number of bytes that 
must be seen and the additional delay required to determine 
the outgoing transmitter. Many applications in which ATA 
reliable broadcast is required, such as clock synchronization 
and distributed diagnosis of intermittently faulty processors, 
have very short messages that must be broadcast (such as 
a single clock value or y bits). For other applications, the 
messages can be split into fixed size packets. Thus, for the 
IHC algorithm, we use a packet size of p x BFIFO, where 
B F I F ~  is the size of the FIFO buffers at the receivers and p 
is a small integer greater than or equal to 1 .  

Under ideal conditions, in which all nodes can operate 
perfectly synchronously and there are no other messages in 
the network, the IHC algorithm can be executed with q = p 
(assuming N modulo p = 0). In this case, all possible cut- 
throughs in the IHC algorighm can occur. Note that 17 < p 
cannot be used because in this case, once a message has been 
entered into the network from every q-th node, the network 
(consisting of the FIFO buffers in the receivers of the nodes) 
cannot “hold” all of the messages. As a result, most of the 
messages will have to be temporarily stored at the intermediate 
nodes, defeating the purpose of using cut-through switching. 

It network conditions are less than ideal, then we must use 
an interleaving distance 7 that is greater than p. With q > p% 
we do not require strict synchronization and normal network 
traffic can be accommodated. The choice of q depends on 
the degree of link utilization (by the ATA reliable broadcast 
operation) desired and the degree of synchronization available. 
Let us refer to the transmission of packets in cycle HCj during 
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Col. # 
1 2 3 step # 

stage i of the IHC algorithm as an HCj-cycle. Note that 
even if nodes start sending packets in a cycle HCj “out of 
sequence” (possibly due to synchronization inaccuracies), it 
merely affects the amount of time required and does not affect 
the correct execution of the algorithm. Also, if normal network 
traffic or synchronization inaccuracies cause one HCj-cycle to 
complete before the other HCb-cycles (k # j ) ,  then the nodes 
on cycle HCj can start on stage i + 1 immediately. 

There are several ways in which nodes can determine when 
to stop relaying packets flowing in any given cycle HCj. 
One method is to count the number of packets which have 
been passed. Another method is to add the address of the last 
node w (with respect to node w) to node w’s packet (in the 
space normally reserved for the routing tag). Then, instead of 
counting packets, node w simply checks the address of each 
HCj broadcast packet to determine if it should stop relaying 
the packet. 

4 5 6 7 8  

v. RELIABLE BROADCAST WITH VIRTUAL CUT-THROUGH 

An ATA reliable broadcast algorithm can be described by 
first presenting the reliable broadcast algorithm for a single 
node and then showing how all nodes execute this reliable 
broadcast algorithm. %o methods have previously been pro- 
posed for converting a reliable broadcast algorithm into an 
ATA reliable broadcast algorithm. In the first method, every 
node executes the reliable broadcast algorithm concurrently 
and in lock step [12]. In general, this uses 100% of the 
available link capacity and may require merge and possibly 
even split operations. While such operations can easily be done 
with store-end-forward switching, they would be much more 
difficult to implement with cut-through switching. 

In the second method, each node executes the reliable 
broadcast algorithm in turn, with the reliable broadcast for one 
node starting when the previous node finishes. This method 
leaves a certain amount of unused link capacity (for use by 
other tasks) and can be executed with cut-through switching 
methods if the individual reliable broadcast operations can use 
cut-through. This method can be considered as an alternative 
to our proposed solution. Thus, in this section, we describe the 
VRS algorithm, which is the RS [20] algorithm modified to 
use cut-through. We also describe the KS [15] algorithm and 
the VSQ algorithm, a cut-through reliable broadcast algorithm 
for a SQm. These three algorithms can form the basis for 
ATA reliable broadcast in hypercubes, hex-meshes, and square 
meshes. VRS-ATA (KS-ATA, VSQ-ATA) is define to be the 
ATA reliable broadcast algorithm in which the VRS (KS [ 151, 
VSQ) algorithm is executed for each node in turn. 

1 

A. Hypercube Algorithm 
The RS [20] algorithm is based on the recursive doubling 

algorithm for broadcast in a hypercube, which is a common 
broadcast algorithm for hypercubes that can be found in 
several places in the literature including [20, 241. In this 
broadcast algorithm, when a node such as node 0 in Fig. 2 
wishes to broadcast a message, it first sends the message in 
direction 0 to node 1. Nodes 0 and 1 then send the message in 
direction 1 to nodes 2 and 3, respectively. In the i-th step, all 
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0+8 
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2 

3 
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4+12 
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6+14 2+10 
12413 4 4  

4 

9+11 8-10 
7-15 5-13 3-11 1-9 
14+15 10+11 6+7 2+3 
13-15 5+7 12-14 4+6 

5 

nodes that received the message in step i - 1 send the message 
in direction i - 1. The broadcast completes in n steps in a Qn. 

In the RS [20] algorithm, the node that wishes to broadcast a 
packet sends a copy of the packet to all of its neighbors. Each 
of its neighbors then simultaneously execute the recursive 
doubling algorithm. This algorithm requires y + 1 (27) steps if 
each node can use all (only one) of its outgoing communication 
links at a time. It was proven that if the RS [20] algorithm is 
used, each node receives 7 copies of the packet through y 
disjoint paths in the fault-free situation [20]. This statement 
can also be proven by observing that the RS [20] algorithm 
uses 7 edge-disjoint spanning trees as in [12]. The execution 
of the RS [20] algorithm is illustrated with Example 1. 

Example I :  Suppose node 0 wishes to reliably broadcast a 
packet to all other nodes in a Q4. The send-receive operations 
that occur at each step of the algorithm are shown in Table 
I. The send-receive operations shown in bold in Step 5 of 
the algorithm (column 8) can be optionally omitted since they 
simply return copies of the packet to their originator. 

To convert the RS [20] algorithm into an efficient cut- 
through algorithm, we need to convert as many store-and- 
forward operations as possible into cut-through operations. 
When a node U receives a packet from direction i and then 
immediately sends it on in direction [i + lIm, U will be said 
to have forwarded the packet. When a node U sends a packet 
in direction i and later sends a copy of the same packet in 
direction [i + l],,,, U will be said to have redirected the packet. 
Clearly, every time a node forwards a packet, a cut-through 
operation can be used at that node. Also, every time a node 
has to initiate or redirect a packet, it cannot be done with 
cut-through. In Table I, the send-receive operations have been 
separated into columns. In a given column, all of the send- 
receive operations except the first and last ones are operations 
in which the packet is being forwarded to the next node. 
Whenever a new column is started, a redirection is taking 
place. 

In the VRS algorithm (RS [20] algorithm modified to use 
cut-through), all send-receive operations in which a packet 
is forwarded is implemented as a cut-through operation. All 
send-receive operations in which a packet has to be redirected 

11+15 10+14 9+13 8+12 
15-14 13-12 I l - t I O  9 4  7-6 5-4  3 4  1 4  
15+13 11+9 7-5 3+1 14+12 10+8 6 4  2+0 
15+11 7+3 14-10 6-2 13+9 5+1 1 2 4  k 0  
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(C )  

(b1-0 

(PI (Cl (d) Fig. 9. VSQ algorithm initiated in one direction. 
Fig. 8. KS [I51 algorithm initiated in one direction. 

is implemented as a store-and-forward operation. The longest 
path in the VRS algorithm consists of y - 1 store-and-forward 
operations and 2 cut-through operations (since there is no 
redirection of the packets received in Step 2 of Table I). 

B. C- Wrapped Hex-Mesh Algorithm 

The KS [15] algorithm is an efficient cut-through reliable 
broadcast algorithm for a H,. When a node U wishes to 
perform a reliable broadcast, it initiates a copy of the broadcast 
packet in each of the six possible directions. The pattern 
of cut-through and store-and-forward operations are identical 
for each of the six directions. This pattern is shown for one 
direction in Fig. 8. Every time there is a fork in the pattern, 
at most one of the paths can use cut-through and the rest of 
the paths must initiate a new copy of the message, i.e., use 
a store-and-forward operation. In the KS [15] algorithm, cut- 
through is used on the path in which the message is propagated 
on the same direction it arrives on. Then, the longest path 
with the number of places using store-and-forward requires 
the longest time to complete. By inspection of Fig. 8, it 
can be seen that the longest path consists of 3 store-and- 
forward operations and 2 m  - 5 cut-through operations. Since 
3 m ( m  - 1) + 1 = N ,  < m < @ + 1. n u s ,  a 
lower bound estimate of the number of cut-through operations 
required by the KS [15] algorithm is 2 d m  - 5. 

C. Torus- Wrapped Square Mesh Algorithm 

The VSQ algorithm is a cut-through reliable broadcast 
algorithm for a SQ,, an m x m torus-wrapped square mesh. 
This algorithm is similar to the KS [15] algorithm. When a 
node w wishes to perform a reliable broadcast, it initiates a 
copy of the broadcast packet in each of the four possible 
directions. Then the pattern of cut-through and store-and- 
forward operations are identical for each of the four directions. 
When designing this pattern for one direction, we should 
insure that the patterns for any of the other directions do not 
“interfere” with the patterns for that direction. Interference 
would correspond to two arrows pointing in the same direction 
over the same link, which would mean that one packet could 
block the other’s progress. A pattern satisfying this condition 
for one direction is shown in Fig. 9. The interpretations of 
this pattem is the same as for the KS [15] algorithm. The 

longest path length consists of 3 store-and-forward operations 
and 2 n  - 6 cut-through operations. 

VI. COMPARATIVE ANALYSIS 

In this section, the IHC algorithm is compared to other 
possible ATA reliable broadcast algorithms. In the analysis, 
we will distinguish between the utilization of the available 
communication links by the ATA reliable broadcast operation 
and by all other tasks. The latter is referred to by p. p = ( p  = 
1) represents an unloaded (completely congested) system. To 
achieve p = 0, we must dedicate the entire network (or one 
channel on each directed link) to the ATA reliable broadcast 
operation. This is referred to as a dedicated network. Using 
times quoted for the TORUS wormhole routing chip [6], it is 
argued in Section VI-A that the IHC algorithm can be used in 
such a dedicated mode even in the largest currently available 
multicomputer systems. Even in the case of normal network 
load, our analysis shows that the IHC algorithm compares 
favorably to the alternate ATA reliable broadcast algorithms. 

In sending a packet from a node U to its neighbor w, there 
are several time parameters of interest. Let L be the length of 
the packet in bytes and TL be the message transmission time 
in bytedsecond. If the packet cuts through node U, then the 
delay experienced is denoted by a,  which is proportional to 
B F I F ~ .  If the packet is stored into the intermediate storage 
buffer before being transmitted, then the delay experienced is 
TS + LTL. Since a packet has fixed length and fits into exactly 
p FIFO buffers, LTL = pa. If the packet has to wait because 
the transmitter to node w is busy, then it will experience the 
additional queueing delay, D. 

A. Dedicated Network 

Let us consider the ATA reliable broadcast operation with 
p = 0. The times required by the IHC, VRS-ATA, KS-ATA, 
SQ-ATA, and FRS [ 121 algorithms are shown in Table 11. The 
execution time for the FRS [12] algorithm is the same as in 
[ 121 with a change in notation. For the IHC algorithm, there are 
q states, each of which requires one message startup and N - 2 
cut-through operations. For the VRS-ATA, KS-ATA, and VSQ- 
ATA algorithms, there are N reliable broadcast operations, 
each of which takes the amount of time shown in parentheses. 

The IHC algorithm performs better than all of the other 
cut-through algorithms if q 5 min{log,N - 1,2@ - 
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TABLE I1 
EXECUTION TIMES WITH p = 0 

Algorirhm I Excculion Time 
IHC I vuF + ua + ( N  - 2)a) 

N ( i i o g 2 ' ~  - I)(T, +'ia) + 2a) 
N ( 3 ( T s  + pa) + 
N(3(Ts  + pa) + (2@ - 6)a) 
(log, N + 1)Tq + (N - l h a  

- 1)/3 - 5)a) 

TABLE 111 
EXECUTION TIMES WITH p = 0 AND 7 = p = 2 

2 , 2 n -  3). Since 77 2 p and p can be assumed to be a small 
fixed constant, this condition is easily achieved. If, in addition, 
77 = p and T~ 1 +!'a, the IHC algorithm is also faster than 
the FRS [ 121 algonthm. Theorem 4 further states that the IHC 
algorithm with 77 = p = 1 has the optimal computation time. 

Theorem 4: Given p = 0, Algorithm IHC with 7 = p = 1 
is optimal in execution time. 

Since there are N nodes, each of which must 
receive y copies of packets from all other nodes, a total of 
y N ( N  - 1) packets must be sent and received. If the work of 
sending these packets is divided evenly among the N nodes, 
each node is responsible for sending y(N - 1) packets. In a 
y-regular graph, each node has y outgoing links. For a given 
node U, if the work of sending the y ( N  - 1) packets is divided 
evenly among the y outgoing links, a minimum execution time 
of rs + ( N  - 1)a is required. Substituting 77 = p = 1 into 
the equation for the IHC algorithm in Table 111, this is the 

0 
Although the above theorem states that the IHC algorithm 

is optimal if 77 = p = 1, the IHC algorithm can be modified 
to execute slightly faster for the general case of 9 = p. Let us 
assume 77 = p and consider only one HC in the description of 
the IHC algorithm in Section IV. There are 77 = p stages, and 
each stage requires a time of 7s + pa + ( N  - 2)a, resulting in 
the total execution time of ~ ( T S  +pa + ( N  - 2)a). However, 
the second stage can start p - 1 time steps before the first stage 
completes. The reason for this is that when a node initiates a 
packet, part of the packet is in the source node queue (as in 
Fig. 1) for the first p - 1 time steps. Likewise, when a single 
stage of the IHC algorithm completes, part of each packet is 
in the receiving buffer of a node in the last p - 1 time steps. 
This method of overlapping stages can be used in every stage 
after the first (a total of p - 1 stages). Thus, the execution 
time of the algorithm is reduced to TIHC - ( p  - 1)2a, where 
TIHC is the execution time of the original IHC algorithm. The 
interested reader will note that in the modified IHC algorithm, 
the outermost for loop must be changed to iterate from 
i = 77 - 1 down to i = 0. For simplicity, the original IHC 
algorithm is used in our analysis. 

In a dedicated network, the IHC algorithm can be executed 
with 77 = p. Using p = 2, we get the following comparisons 
on execution time. 

Proof: 

execution time of the IHC algorithm. 

TABLE IV 
WORST-CASE EXECUTION TIMES 

In Table 111, the IHC algorithm is clearly better than all 
of the other algorithms. In [8], Dally quoted a time of 20 
ns for routing a single packet through a node using cut- 
through. Using this figure, the time required for ATA reliable 
broadcast using the IHC algorithm is 27s + 0.02 ms on a 
1024-node Q ~ o  and 27.9 + 1.31 ms on a 64 K-node QI6. 
(Using a conservative figure of rs  = 0.5 ms, this implies 
that over 68.7 billion packets ( y N ( N  - 1))  can be sent 
and received in 1.81 ms on a 64 K-node hypercube.) It is 
feasible to dedicate the interconnection network to the ATA 
reliable broadcast operation for this length of time. If several 
communication channels run through each link, it is also 
feasible to dedicate one channel on each link to the ATA 
reliable broadcast operation for this length of time. 

B. Worst-case Analysis 

The worst-case performance for the IHC algorithm occurs 
when all of the potential cut-through operations have to 
be performed as store-and-forward operations due to heavy 
network traffic. Adding in the additional queueing delay D, the 
worst-case execution time for the IHC algorithm can be written 
as v ( N  - 1) ( rs  + pa + D). The worst-case execution times 
for the VRS-ATA, KS-ATA, and VSQ-ATA change in a similar 
manner to reflect the fact that all send-receive operations have 
to be buffered and experience the queueing delay D. The 
worst-case execution time for the FRS [12] algorithm is the 
same as in Table I1 with the addition of the queueing delay 
D to the startup delay 7s. Table IV summarizes the worst- 
case execution times of the various ATA reliable broadcast 
algorithms considered. 

From Table IV, it can easily be seen that the FRS algorithm 
has the best performance as (log, N + 1) is multiplied to 
rs + D as opposed to a factor of N for the other algorithms. 
The worst-case performance of the cut-through algorithms 
results when none of the potential cut-through operations 
can be implemented with cut-through-this happens with 
extremely high network traffic. In this case, since all send- 
receive operations must experience the queueing delay D and 
startup delay rs, performance degradation is minimized if 
packets from individual nodes are merged into larger messages 
before being sent on the next step; since the FRS algorithm 
performs this operation in a highly efficient manner, it has the 
best performance given extremely high network traffic (large 
p). In the general case of p > 0, the execution times of the 
various algorithms will fall between the best and worst-case 
execution times shown in Tables I1 and IV, respectively. 

Tables I1 and IV provide comparisons of various possible 
ATA reliable broadcast algorithms given highly favorable and 
highly unfavorable network conditions, respectively. Table I1 
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and Theorem 4 show that the IHC algorithm is the “best 
possible” algorithm in terms of execution time when the 
network is under-loaded. Table IV shows that a store-and- 
forward algorithm such as the FRS algorithm is the “best 
possible” when the network is heavily-loaded. While this 
analysis can serve as a basis for comparison with other 
ATA reliable broadcast algorithms, a practical implementations 
of the IHC algorithm will require the solution of several 
practical issues such as the packet format, timing message 
reconstruction, and control. 

VII. CONCLUSION 
The all-to-all (ATA) reliable broadcast problem has been 

considered for a class of regular interconnection networks. 
Although good solutions to this problem exist if we are re- 
stricted to using store-and-forward switching, better solutions 
can be found by taking advantage of the faster communication 
possible with cut-through switching. When designing an ATA 
reliable broadcast algorithm that uses cut-through, we would 
like to ensure that all possible cut-throughs can be achieved 
when there is no other network traffic. This implies that 
nodes must be at least loosely synchronized and coordinate 
their actions such that “collisions” of broadcast packets do 
not occur. One method of doing this to stagger the nodes 
that initiate reliable broadcasts and to finish the individual 
reliable broadcasts as fast as possible. Another method is to 
interleave the nodes that initiate reliable broadcasts. However, 
with this latter method, the reliable broadcasts by individual 
nodes should be performed such that two broadcast packets 
from the same or different nodes do not interfere with each 
other’s progress. 

In this paper, we have proposed a general method for 
performing ATA reliable broadcast in an interleaved manner. 
Our solution, the IHC algorithm, compares favorably to several 
other possible cut-through and store-and-forward algorithms. 
Unlike the other algorithms studied, the IHC algorithm can be 
used on a large class of interconnection networks. In terms of 
execution time, the IHC algorithm with the minimum value of 
17 is shown to be optimal. Moreover, using a cut-through time 
of 20 ns, the IHC algorithm can complete the ATA reliable 
broadcast in a few milliseconds even on a 64 K-node system. 
Thus, it is feasible to dedicate the entire network (or one 
channel on each directed link) to the IHC algorithm for the 
duration of the broadcast. In heavy network traffic, a store- 
and-forward algorithm that merges packets as they are being 
relayed has the best overall performance. However, among the 
possible cut-through algorithms considered, the IHC algorithm 
still has the best worst-case performance. 

APPENDIX 
LIST OF SYMBOLS AND ACRONYMS 

ATA all-to-all 
a 

&IFO 
D 

17 

time for a broadcast packet to cut through an 

size of the FIFO buffer at the receivers 
queueing delay experienced by a buffered 

interleaving distance used in the IHC algorithm 

intermediate node 

broadcast packet 

FRS [lo] 

Gdir 

7 
HARTS 
HC 
HCi.-cycle 

Hm 
IHC 
A 

KS [15] 

KS-ATA 

P 
N 
Qm 
RS [20] 

P 

SQm 
7.S 
VRS 

VRS-ATA 

VSQ-ATA 

Fraigniaud’s all-to-all reliable broadcast 
algorithm 

a graph G with every undirected edge replaced 
by two directed edges 

connectivity of G 
hexagonal architecture for real-time systems 
Hamiltonian cycle 
transmission of packets in cycle HCj during 

stage i of IHC 
C-type wrapped hexagonal mesh of size m 
Proposed ATA reliable broadcast algorithm 
special class of regular interconnection networks 

Kandlur and Shin’s reliable broadcast algorithm 

ATA reliable broadcast algorithm based on the 

length of a broadcast packet divided by BFIFO 
number of nodes in the network 
hypercube of dimension m 
Ramanathan and Shin’s reliable broadcast 

algorithm for hypercubes 
utilization of available communication links by 

normal system tasks 
m x m torus-wrapped square mesh 
message startup time for store-and-forward 
RS algorithm modified to use virtual 

Ata reliable broadcast algorithm based on the 

virtual cut-through reliable broadcast algorithm 

ATA reliable broadcast algorithm based on the 

defined in Section I1 

for hex-meshes 

KS [15] algorithm 

cut-through 

VRS algorithm 

for a SQm 

VSQ algorithm 
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