
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 5, MAY 1994 449

Interleaved All-to-All Reliable Broadcast
on Meshes and Hypercubes
Sunggu Lee, Member, IEEE, and Kang G. Shin, Fellow, IEEE

Abstract- All-to-all (ATA) reliable broadcast is the problem
of reliably distributing information from every node to every
other node in point-to-point interconnection networks. A good
solution to this problem is essential for clock synchronization,
distributed agreement, etc. We propose a novel solution in which
the reliable broadcasts from individual nodes are interleaved in
such a manner that no two packets contend for the same link
at any given time-this type of method is particularly suited for
systems which use virtwl cut-through or wormhole routing for
fast communication between nodes. Our solution, called the IHC
Algorithm, can be used on a large class of regular interconnection
networks including regular meshes and hypercubes. By adjusting
a parameter 77 referred to as the interleaving distance, we can
flexibly decrease the link utilization of the IHC algorithm (for
normal traffic) at the expense of an increase in the time required
for ATA reliable broadcast. We compare the IHC algorithm to
several other possible virtual cut-through solutions and a store-
and-forward solution. The IHC algorithm with the minimum
value of 9 is shown to be optirnaZ in minimizing the execution
time of ATA reliable broadcast when used in a dedicated mode
(with no other network traffic).

Index Terms-Broadcast, fault-tolerance, hypercube, mesh, re-
liable communication, virtual cut-through, wormhole routing

I. INTRODUCTION

EGULAR mesh structures [5] and binary hypercubes [3], R [23] have drawn considerable attention in recent years as
an interconnection topology for the processors of a distributed
computing system. The fault-tolerance of these types of struc-
tures is an important issue as they are increasingly used for
critical applications.

In this paper, we address the all-to-all (ATA) reliable broad-
cast problem, in which every node must reliably broadcast
its message to every other node. This is essential for imple-
menting several key fault-tolerant algorithms for distributed
agreement [9, 181, clock synchronization [17, 19, 211, and
distributed diagnosis of intermittently faulty processors [25].
In these algorithms, each non-faulty node must be able to
correctly deliver its message to all of the other non-faulty
nodes in the system. Let us assume an interconnection network

Manucscript received April 21, 1992; revised May 19, 1993. This work
was supported in part by the Research Institute of Industrial Science and
Technology (Korea), by the NSF under Grants MIP-9012649 and MIP-
9203895, by NASA unnder Grant NAG-1-1220, and by the ONR under
Grants N00014-91-J-1115 and N00014-94-1-0229.

S. Lee is with the Department of Electrical Engineering, Pohang
University, Pohang, Kyungbuk, 790-600, Republic of Korea. Email:
slee@vision.postech.ac.kr.

K. G. Shin is with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 48109-2122, USA. Email: kgshin@eecs.umich.edu.

IEEE Log Number 9216777.

G with connectivity y and N nodes, of which t nodes are
faulty. Given that faulty nodes can behave in any manner
whatsoever, Dolev [9] has shown that correct message delivery
can be achieved in G if and only if t 5 min{ -1).
In [22], Rivest er al. describe method of appending each
message with an authenticated signature. If a signed message
is sent from a node U to another node w, then any disruption
of the contents of the message will be detected upon receipt
by node w. With signed messages, the bound on the number
of faulty nodes can be increased to t 5 y - 1.

By Menger’s Theorem [4], a y-connected graph has y node-
disjoint paths between any two nodes U and w. It can be shown
that to tolerate the maximum number of faulty nodes, every
non-faulty node must send its message to every other node
through y node-disjoint paths. (Fewer than y node-disjoint
paths cannot be used because that would imply that a graph
with lower connectivity than y has the same fault tolerance as
a y-connected graph.) All algorithms described in this paper
are of this type. To disrupt communication between nodes U

and II with 2 y faulty nodes, there must be at least one faulty
node in every disjoint path from U to w. Thus, using this type
of method, the probability of correct operation is high even
when 2 y faulty nodes are present.

In this paper, we present a novel ATA reliable broadcast
algorithm, referred to as the IHC algorithm, in which the
reliable broadcasts from individual nodes are interleaved in
such a manner that no two packets ever contend for the same
link at any given time; this results in the highly efficient
communication algorithm for networks which use virtual
cut-through [161 or wormhole routing [6]-over 68.7 billion
packets can be sent and received in less than 2 milliseconds
on a hypercube. Following preliminary background discus-
sions in Section 11, Section 111 describes the general class
of interconnection networks for which our proposed solution
can be used. Section IV describes the proposed solution
and its implementation using virtual cut-through. Section V
describes possible alternative solutions based on new and
existing reliable broadcast algorithms that use virtual cut-
through. Section VI analyzes and compares the proposed
solution and alternative solutions. We conclude with Section
VII.

-1,

11. BACKGROUND

Multicomputer systems that communicate by message pass-
ing have traditionally used a store-and-forward routing method
[16]. In this method, when a message is sent from a node
U to another node U through an intermediate node w, the

1045-9219/94$04.00 0 1994 IEEE

mailto:kgshin@eecs.umich.edu

450 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 5, MAY 1994

I node v

U node \v

Fig. 1. Illustration of operation of cut-through.

message must be completely stored in w before being passed
on. By contrast, in virtual cut-through [16] and wormhole
routing [6], instead of storing a message completely in a
node and then forwarding it to the next node, the header of
the message is advanced directly from incoming to outgoing
channels. Only a few control bytes are buffered (in a small
on-line FIFO buffer) at each node to determine the out-going
channel for the message. Thus, the message becomes spread
out across the channels between the source and destination. At
an intermediate node, if all outgoing channels are busy, then
the entire message is buffered (in a much larger intermediate
storage buffer) in virtual cut-through and prevented from
moving forward in wormhole routing (i.e., the message is kept
in the network). Special routing controller chips have been
designed for wormhole routing [6] and virtual cut-through
[lo]. Deadlock-free wormhole routing is addressed in [7]. The
operation of advancing a message immediately from incoming
to outgoing channels is referred to as cut-through. Virtual cut-
through and wormhole routing are collectively referred to as
cut-through (switching) methods.

The cut-through operation is illustrated by Fig. 1. In this
figure, a message of 10 bits originates from node U. At node
w, part of the message has been received in a FIFO buffer while
the head of the message has already been sent on an outgoing
transmitter. At node 20, the leading 3 bits of the message have
been received in a FIFO buffer. Before the 5th bit arrives at
node w, either an outgoing transmitter must be reserved for
the message or node w must be prepared to storeheceive the
message. Thus, of the 10 bits in the message, the first 3 bits are
in node 20, the middle 4 bits are in node o, and the last 3 bits
are in source node U. It is noted that when a message is being
cut-through a node such as node ‘U in Fig. 1, it is possible for
node o to also receive the message by copying the message as

it passes through the FIFO buffer. This capability is present in
the HARTS routing controller chip [lo] and involves a “tee”
operation in which the bits of the message are latched into the
receiving node as they pass through the FIFO buffer.

Most previous work on reliable broadcast [20] and ATA
reliable broadcast [121 have implicitly assumed a store-and-
forward routing method. These algorithms can be described
by considering the broadcast to be done in several steps
and specifying the point-to-point communication patterns that
occur at each step. Then the objective is to minimize the
total time required for the broadcast operation by using a
minimal number of communication steps. Ramanathan and
Shin’s reliable broadcast (RS) algorithm [20] requires y + 1
steps on a hypercube of dimension y if each node can
simultaneously use all of its outgoing links. Fraigniaud’s ATA
reliable broadcast (FRS) algorithm for hypercubes [121 simply
involves executing the RS [20] algorithm at each node in lock
step. In every step after the first, each node must merge two
messages from the previous step before sending the larger
message in the current step. In the last step, the message
formed after merging can be made a little bit shorter by
removing the portion of the message that would be returned to
the originator of that portion of the message. The time required
for the FRS [121 algorithm is (y + 1)rs + (2? - ~) L T L , where
TS is the message startup time, L is the message length in bits,
and TL is the propagation time per bit. To achieve this time,
100% of the link capacity must be used for the entire duration
of the ATA broadcast operation.

Recently, there has been work on broadcast algorithms that
take advantage of the faster communication possible using cut-
through switching methods [15]. In this case, to minimize the
total execution time, we must not only minimize the total
number of communication steps, but maximize the number
of communication steps that can be implemented with cut-
through. Kandlur and Shin’s reliable broadcast (KS) algorithm
[151 is an efficient algorithm for a regularly wrapped hexagonal
mesh topology which uses virtual cut-through. In the KS
[15] algorithm, the longest path has 2 x (diameter of mesh)
send-receive operations, among which all but three can use
cut-through. The analysis done in [15] shows that for a single
reliable broadcast operation, the KS [15] algorithm is much
faster than an algorithm based on the use of edge-disjoint
Hamiltonian cycles (HC’s).

111. INTERCONNECTION NETWORKS

This section formally presents the class of interconnection
networks for which the IHC algorithm for ATA reliable
broadcast can be used.

Due to its potential for high-reliability, a point-to-point
interconnection network is commonly used to connect the set
of processing nodes of a large distributed system. For the
purposes of analyzing routing and broadcast algorithms, it is
convenient to represent the system by an undirected graph in
which the vertices (or nodes) correspond to the processing
nodes and the edges correspond to the communication links in
the interconnection network. If directed communication links
are used, each edge corresponds to 2 communication links.

LEE AND SHIN: INTERLEAVED ALL-TO-ALL RELIABLE BROADCAST 45 1

Fig. 2. 9 3 , a hypercube of dimension 3.

Thus, given an undirected graph G, the corresponding directed
graph Gdir is defined to be the graph G with every undirected
edge replaced by two directed edges, one in each direction.

A graph is said to be ?-regular if all nodes in the graph
have degree y. A regular graph is one that is y-regular for
some y [4]. A graph G is said to belong to the class A if the
following two conditions are satisfied:

LC1:
LC2: There are undirected edge-disjoint HC’s in G.

The IHC algorithm for ATA reliable broadcast can be used on
any graph in the class A. (While condition LC 1 is not an
essential requirement for the algorithm, it is necessary for the
optimality analysis in Section 6, Theorem 4.) Note that if G
belongs to the class A, they y is the connectivity of G.

G is y-regular for an even interger y.

A. Hypercube
An m-dimensional hypercube, denoted by Q m , has N = 2m

nodes and m2”-’ edges. If directed communication links are
used, 9% has m2” directed edges. A Qm is recursively
defined as: (1) QO is a single point, and (2) Qm = Kz x Qm-lr

where Kz is a complete graph of 2 nodes and x denotes the
product operation on two graphs [4]. The recursion for Qm
can alternatively be written as Qm = x Qly1. Each
node in a Qm is uniquely represented by an m-bit address
such that the addresses of adjacent nodes differ in exactly one
bit. The bits in an address are referred to in right to left order
from 0 to m - 1. l’bo adjacent nodes which differ in th ith bit
will be said to be in direction i (0 5 i 5 m - 1) with respect
to each other. Fig. 2 shows an example of a Q 3 .

Hypercubes of even dimension belong to the class A.
Condition LCI is satisfied because a Qm is m-regular with
degree y = m. Condition LC2 is satisfied by Theorem 1
below. Let c k denote an undirected cycle of length k. Then
Theorem 1 can be proven with the aid of the following two
lemmas.

Lemma 1: [ll] c k x cl can be decomposed into 2 undi-
rected HC’s (k , l 2 3).

Lemma 2: [2] The Cartesian sum G + C, where G is
decomposed into 2 undirected HC’s and C is a HC, can be
decomposed into 3 undirected HC’s (k, 1 , T 2 3).

Theorem 1: [13] A Q z k contains k undirected edge-disjoint
HC’s.

Proof: The theorem can be proven by induction on 2k.
For the induction basis, a Qz is a cycle and Fig. 3 shows 2
undirected edge-disjoint HC’s in a Q 4 (although Fig. 3 shows

Fig. 3. Torus-wrapped square mesh.

a square mesh, it is also a Q4 since a Q4 can be redrawn as
a 4 x 4 torus-wrapped square mesh). Assume a Q21 contains
I undirected edge-disjoint HC’s for all 1 5 k . We must show
that a Q z k + z contains k + 1 undirected edge-disjoint HC’s.

If k + l is even, then decompose the Q z k + z into two Q k + l ’ s

(where decomposition is the inverse of the x operation). By in-
duction, each Q&+l contains (k+1)/2 undirected edge-disjoint
HC’s. Create (k + 1)/2 graphs by multiplying (applying the
product operation on) the i-th HC’s in the two decomposed
hypercubes, for all 1 I i I (k + 1)/2. By Lemma 1, each
product graph contains two undirected edge-disjoint HC’s.
Then, since all product graphs are edge-disjoint, there exist
(k + 1) undirected edge-disjoint HC’s in the Q z k + z .

If k + 1 is odd, then decompose the Q z k + ~ into a Qk and
a Q k + 2 . Create k/2 - 1 graphs by multiplying the i-th HC’s
in the two decomposed hypercubes, for all 1 5 i 5 k/2 - 1.
By Lemma 1, each product graph again contains 2 undirected
edge-disjoint HC’s. There remains one unused HC (C,) in Q k

and 2 unused HC’s (Cz + C 3) in Q k + z . From Lemma 2, we
know that (Cz + C3) x C1 can be decomposed into 3 HC’s.
Thus, there are a total of (k + 1) undirected edge-disjoint HC’s

Theorem 1 can be used to construct the k undirected edge-
disjoint HC’s in a Q z k . Theorem 1 and Lemmas 1 and 2 use
inductive proofs. For Lemmas 1 and 2, Foregger [l 11 and
Aubert and Schneider [2] give examples of the construction
method for the basis cases of the inductive proofs and shows
how to construct the HC’s for larger graphs based upon the
solutions for smaller graphs. To construct the k undirected
edge-disjoint HC’s for a given Q Z k , we need to start from
the induction basis and use the inductive construction method
to build up to the desired hypercube. Although this is clearly
a tedious process, it only needs to be done once for a given
size hypercube. In addition, results obtained for smaller sized
hypercubes can be used in the construction of the HC’s for
larger sized hypercubes. We do not know of any method to
directly construct the k undirected edge-disjoint HC’s for a
Q z k .

For completeness, the case of hypercubes of odd dimension
is considered. It is shown in Theorem 2 that a QZk+l contains
k undirected edge-disjoint HC’s. Thus, if one link incident on
each node of the Q Z k + l is deleted, the resulting graph, with
connectivity y = 2k, also belongs to the class A.

in the Q z k + z . 0

452 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 , NO. 5 . MAY 1994

Fig. 4. Hex-mesh of size 3 without wrapping.

Theorem 2: A Q 2 k + l contains k undirected edge-disjoint
HC’s.

Proofi A Q3, with IC = 1, has the structure of a cube. By
using the Gray-code sequence of the node addresses, we can
easily obtain 1 undirected edge-disjoint HC. Assume a
contains 1 undirected edge-disjoint HC’s for all 1 5 k . We must
show that a Q 2 k + 3 contains IC + 1 undirected edge-disjoint
HC’s.

Suppose k + 1 is even. Decompose Q2k+3 into a Q k + l

and a Q k + 2 . From Theorem 1, &k+l contains (k + 1)/2
edge-disjoint HC’s. By the induction hypothesis, Qk+2 also
contains (k + 1)/2 edge-disjoint HC’s. Create (k + 1)/2
graphs by multiplying the z-th HC’s in Qk+l and Qk+2 ,

for all 1 5 i 5 (k + 1)/2. By Lemma 1, each product
graph contains 2 undirected edge-disjoint HC’s. Then, since
all product graphs are edge-disjoint, Q2k+3 contains k + 1
undirected edge-disjoint HC’s.

Suppose k + 1 is odd. Decompose Q2k+3 into a Q k + l and a
Qk+2 . By induction Q k + l has k/2 edge-disjoint HC’s. Also,
by Theorem 1, Qk+2 has (k + 2)/2 edge-disjoint HC’s. Create
k/2-1 graph by multiplying the i-th HC’s in Q k + l and Q k + z ,

for all 1 5 i 5 k/2 - 1. From lemma 1 , each product graph
again contains 2 undirected edge-disjoint HC’s, for a total of
k - 2 HC’s. There remains 1 unused HC in Q k + l and 2 unused
HC’s in Q k + 2 . From Lemma 2, we know that the product of

0 these 2 graphs can be decomposed into 3 HC’s.
Alternate proofs of Theorems 1 and 2 are given in [l].

B. Torus- Wrapped Square Mesh

The torus-wrapped square mesh, shown in Fig. 3, belongs to
the class A. Let SQm be a torus-wrapped square mesh of size
m, where m is the number of nodes in a single row or column.
Since the degree of every node in a S Q , is 4, condition LC1
is satisfied with y = 4. The dashed lines and solid lines in
Fig. 3 show two undirected edge-disjoint HC’s in a SQ4, thus
satisfying condition LC2. A similar pattern can be used to find
two undirected edge-disjoint HC’s for any S Q , .

C. C- Wrapped Hexagonal Mesh

A hexagonal mesh (hex-mesh) has the general structure
shown in Fig. 4, which is an unwrapped hex-mesh of size 3. In
order to achieve regularity and homogeneity such that identical
hardware, software and protocols can be applied uniformly
over the network, it is required that the nodes on the hexagonal
periphery be wrapped around systematically.

A general systematic method for wrapping hex-meshes is
defined in [51 as C-type wrapping (see, e.g., Fig. 5). In a C-

-
Fig. 5. Hex-mesh with C-type wrapping in +.T direction.

wrapped hex-mesh, there are six oriented directions, as shown
in Fig. 4. Several topological properties of hex-meshes with
the C-type wrapping are given in [5] . From these properties, it
can easily be derived that the set of edges in any direction of
a C-wrapped hex-mesh of size m, denoted as H,, describes a
HC [15]. Thus, there are three undirected edge-disjoint HC’s in
a H,; in addition, since a H , is also y-regular with y = 6,
it belongs to the class A.

IV. PROPOSED SOLUTION
The proposed ATA reliable broadcast solution is described

for all interconnection networks in the class A. Let G be
the undirected graph representing any such interconnection
network. G is a y-regular graph (y even) with undirected
edge disjoint HC’s. In Gdir, there are y directed HC’s HC1,
HC2,. . . , HC,. For a given node w, nexf;(v), and prev;(w)
denote the nodes immediately following and preceding node
w in HC;. Let us arbitrarily designate a node as No. For any
node v,IDj(v) is the distance from NO to w when traversing
HCj. N is the total number of nodes. The notation [z], is used
to denote z mod y, the remainder after z is divided by y. The
interleaving distance q is the spacing between nodes that are
initiating packets in one iteration of the outermost loop in the
proposed solution, described below as algorithm IHC.

For i = 0 to q - 1 do
IHC Algorithm:

begin
for j = 1 to y doparallel

for every node w doparallel
if ([IDj(w)lv = i) then

w sends its message to nextj(v);
for j = 1 to N - 1 do

for IC = 1 to y doparallel
for every node w doparallel

begin
receive message from prevk(v); {*}
if (j < N - 1) then

relay message to nextk (U); { *}
end;

end
The IHC algorithm is performed in q stages. Fig. 6 shows

an example of the execution of the algorithm in direction HCj
assuming q = 3. Broadcast messages are sent in fixed-size
packets. In stage i (0 5 i 5 q - l), every q-th node in
direction HCj starting from the i-th neighbor of NO in directon
HCj is permitted to initiate a packet along HCj for every
j (1 5 j 5 y). Referring to Fig. 6, in a given HC, the nodes
numbered i initiate packets in stage i. q can be considered as

LEE AND SHIN: INTERLEAVED ALL-TO-ALL RELIABLE BROADCAST 453

mcrmediale storage buffer

Fig. 6. Nodes initiating packets in one HC of the IHC algorithm
Fig. 7. Node architecture for virtual cut-through.

the interleaving distance. Once packets have been started along
directed HC’s, they keep flowing for N - 1 hops along the
cycles in which they started. If there are no packets generated
by other tasks in the network, then the two steps indicated
by “{*}” correspond to a single cut-through operation at each
node.

The IHC algorithm has been described assuming that each
node can use all of its incoming and outgoing links concur-
rently. With this assumption, the degree of the network y does
not effect the execution time of the IHC algorithm. However,
since y copies of every message are delivered to every node
through edge-disjoint paths, the reliability (and degree of fault
tolerance) of the algorithm increases with increasing y. By
using more stages, the algorithm can easily be modified for
systems in which each node can use only a subset of its
incoming and outgoing links concurrently. For instance, if
each node can use only one incoming link and one outgoing
link concurrently, then y sequential invocations of the IHC
algorithm can be used (one for each directed HC HCj). Note
that, in this case, it is a simple matter to reduce the execution
time (and reliability) of the ATA reliable broadcast by using
k < y sequential invocations of the IHC algorithm for IC of
the y directed HC’s.

We now address the implementation of the IHC algorithm
using virtual cut-through. The only difference in the wormhole
routing implementation is that blocked packets are not buffered
but kept in the network. Note that deadlock does not occur
if Dally and Seitz’s method of virtual channels [7] is used
for deadlock prevention. To prevent extremely long “lines of
packets” from being formed, however, the wormhole routing
implementation of the IHC algorithm must be used in a
dedicated mode in which the entire network (or one channel on
each directed link) is dedicated to the ATA reliable broadcast
operation for the duration of the broadcast operation.

Let us use an architecture similar to the routing controller
chip for HARTS [lo], a 19-node (H3) version of which is
currently being built at the Real-Time Computing Laboratory.
A crucial feature in the HARTS routing controller chip is that
all incoming and outgoing links (receivers and transmitters)
can be used simultaneously. We also assume such a capability
in our architecture, shown in Fig. 7.

In high bandwidth communication networks, it has been
observed that a large portion (about 80%) of the communica-
tion latency is spent in the processing at the transmitters and
receivers [141. (The delay caused by the actual transmission
accounts for only 20% of the latency.) Virtual cut-through can
be seen as an attempt to eliminate much of the processing (i.e.,
store-and-forward) at the intermediate nodes between a source
and a destination. Thus, when an incoming message cuts
through a node, only a very small amount of processing (with
the aid of special hardware) is required to determine where and
how to advance the message. In Fig. 7, the length of the FIFO
buffer is determined by the minimum number of bytes that
must be seen and the additional delay required to determine
the outgoing transmitter. Many applications in which ATA
reliable broadcast is required, such as clock synchronization
and distributed diagnosis of intermittently faulty processors,
have very short messages that must be broadcast (such as
a single clock value or y bits). For other applications, the
messages can be split into fixed size packets. Thus, for the
IHC algorithm, we use a packet size of p x BFIFO, where
B F I F ~ is the size of the FIFO buffers at the receivers and p
is a small integer greater than or equal to 1 .

Under ideal conditions, in which all nodes can operate
perfectly synchronously and there are no other messages in
the network, the IHC algorithm can be executed with q = p
(assuming N modulo p = 0). In this case, all possible cut-
throughs in the IHC algorighm can occur. Note that 17 < p
cannot be used because in this case, once a message has been
entered into the network from every q-th node, the network
(consisting of the FIFO buffers in the receivers of the nodes)
cannot “hold” all of the messages. As a result, most of the
messages will have to be temporarily stored at the intermediate
nodes, defeating the purpose of using cut-through switching.

It network conditions are less than ideal, then we must use
an interleaving distance 7 that is greater than p. With q > p%
we do not require strict synchronization and normal network
traffic can be accommodated. The choice of q depends on
the degree of link utilization (by the ATA reliable broadcast
operation) desired and the degree of synchronization available.
Let us refer to the transmission of packets in cycle HCj during

454 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 5, MAY 1994

Col. #
1 2 3 step #

stage i of the IHC algorithm as an HCj-cycle. Note that
even if nodes start sending packets in a cycle HCj “out of
sequence” (possibly due to synchronization inaccuracies), it
merely affects the amount of time required and does not affect
the correct execution of the algorithm. Also, if normal network
traffic or synchronization inaccuracies cause one HCj-cycle to
complete before the other HCb-cycles (k # j) , then the nodes
on cycle HCj can start on stage i + 1 immediately.

There are several ways in which nodes can determine when
to stop relaying packets flowing in any given cycle HCj.
One method is to count the number of packets which have
been passed. Another method is to add the address of the last
node w (with respect to node w) to node w’s packet (in the
space normally reserved for the routing tag). Then, instead of
counting packets, node w simply checks the address of each
HCj broadcast packet to determine if it should stop relaying
the packet.

4 5 6 7 8

v. RELIABLE BROADCAST WITH VIRTUAL CUT-THROUGH

An ATA reliable broadcast algorithm can be described by
first presenting the reliable broadcast algorithm for a single
node and then showing how all nodes execute this reliable
broadcast algorithm. %o methods have previously been pro-
posed for converting a reliable broadcast algorithm into an
ATA reliable broadcast algorithm. In the first method, every
node executes the reliable broadcast algorithm concurrently
and in lock step [12]. In general, this uses 100% of the
available link capacity and may require merge and possibly
even split operations. While such operations can easily be done
with store-end-forward switching, they would be much more
difficult to implement with cut-through switching.

In the second method, each node executes the reliable
broadcast algorithm in turn, with the reliable broadcast for one
node starting when the previous node finishes. This method
leaves a certain amount of unused link capacity (for use by
other tasks) and can be executed with cut-through switching
methods if the individual reliable broadcast operations can use
cut-through. This method can be considered as an alternative
to our proposed solution. Thus, in this section, we describe the
VRS algorithm, which is the RS [20] algorithm modified to
use cut-through. We also describe the KS [15] algorithm and
the VSQ algorithm, a cut-through reliable broadcast algorithm
for a SQm. These three algorithms can form the basis for
ATA reliable broadcast in hypercubes, hex-meshes, and square
meshes. VRS-ATA (KS-ATA, VSQ-ATA) is define to be the
ATA reliable broadcast algorithm in which the VRS (KS [151,
VSQ) algorithm is executed for each node in turn.

1

A. Hypercube Algorithm
The RS [20] algorithm is based on the recursive doubling

algorithm for broadcast in a hypercube, which is a common
broadcast algorithm for hypercubes that can be found in
several places in the literature including [20, 241. In this
broadcast algorithm, when a node such as node 0 in Fig. 2
wishes to broadcast a message, it first sends the message in
direction 0 to node 1. Nodes 0 and 1 then send the message in
direction 1 to nodes 2 and 3, respectively. In the i-th step, all

0+2
0+4
0+8
1-3

2

3

2+6
4+12
8+9
3+7 1 4
6+14 2+10
12413 4 4

4

9+11 8-10
7-15 5-13 3-11 1-9
14+15 10+11 6+7 2+3
13-15 5+7 12-14 4+6

5

nodes that received the message in step i - 1 send the message
in direction i - 1. The broadcast completes in n steps in a Qn.

In the RS [20] algorithm, the node that wishes to broadcast a
packet sends a copy of the packet to all of its neighbors. Each
of its neighbors then simultaneously execute the recursive
doubling algorithm. This algorithm requires y + 1 (27) steps if
each node can use all (only one) of its outgoing communication
links at a time. It was proven that if the RS [20] algorithm is
used, each node receives 7 copies of the packet through y
disjoint paths in the fault-free situation [20]. This statement
can also be proven by observing that the RS [20] algorithm
uses 7 edge-disjoint spanning trees as in [12]. The execution
of the RS [20] algorithm is illustrated with Example 1.

Example I : Suppose node 0 wishes to reliably broadcast a
packet to all other nodes in a Q4. The send-receive operations
that occur at each step of the algorithm are shown in Table
I. The send-receive operations shown in bold in Step 5 of
the algorithm (column 8) can be optionally omitted since they
simply return copies of the packet to their originator.

To convert the RS [20] algorithm into an efficient cut-
through algorithm, we need to convert as many store-and-
forward operations as possible into cut-through operations.
When a node U receives a packet from direction i and then
immediately sends it on in direction [i + lIm, U will be said
to have forwarded the packet. When a node U sends a packet
in direction i and later sends a copy of the same packet in
direction [i + l],,,, U will be said to have redirected the packet.
Clearly, every time a node forwards a packet, a cut-through
operation can be used at that node. Also, every time a node
has to initiate or redirect a packet, it cannot be done with
cut-through. In Table I, the send-receive operations have been
separated into columns. In a given column, all of the send-
receive operations except the first and last ones are operations
in which the packet is being forwarded to the next node.
Whenever a new column is started, a redirection is taking
place.

In the VRS algorithm (RS [20] algorithm modified to use
cut-through), all send-receive operations in which a packet
is forwarded is implemented as a cut-through operation. All
send-receive operations in which a packet has to be redirected

11+15 10+14 9+13 8+12
15-14 13-12 I l - t I O 9 4 7-6 5-4 3 4 1 4
15+13 11+9 7-5 3+1 14+12 10+8 6 4 2+0
15+11 7+3 14-10 6-2 13+9 5+1 1 2 4 k 0

LEE AND SHIN INTERLEAVED ALL-TO-ALL RELIABLE BROADCAST 455

(C)

(b1-0

(PI (Cl (d) Fig. 9. VSQ algorithm initiated in one direction.
Fig. 8. KS [I51 algorithm initiated in one direction.

is implemented as a store-and-forward operation. The longest
path in the VRS algorithm consists of y - 1 store-and-forward
operations and 2 cut-through operations (since there is no
redirection of the packets received in Step 2 of Table I).

B. C- Wrapped Hex-Mesh Algorithm

The KS [15] algorithm is an efficient cut-through reliable
broadcast algorithm for a H,. When a node U wishes to
perform a reliable broadcast, it initiates a copy of the broadcast
packet in each of the six possible directions. The pattern
of cut-through and store-and-forward operations are identical
for each of the six directions. This pattern is shown for one
direction in Fig. 8. Every time there is a fork in the pattern,
at most one of the paths can use cut-through and the rest of
the paths must initiate a new copy of the message, i.e., use
a store-and-forward operation. In the KS [15] algorithm, cut-
through is used on the path in which the message is propagated
on the same direction it arrives on. Then, the longest path
with the number of places using store-and-forward requires
the longest time to complete. By inspection of Fig. 8, it
can be seen that the longest path consists of 3 store-and-
forward operations and 2 m - 5 cut-through operations. Since
3 m (m - 1) + 1 = N , < m < @ + 1. n u s , a
lower bound estimate of the number of cut-through operations
required by the KS [15] algorithm is 2 d m - 5.

C. Torus- Wrapped Square Mesh Algorithm

The VSQ algorithm is a cut-through reliable broadcast
algorithm for a SQ,, an m x m torus-wrapped square mesh.
This algorithm is similar to the KS [15] algorithm. When a
node w wishes to perform a reliable broadcast, it initiates a
copy of the broadcast packet in each of the four possible
directions. Then the pattern of cut-through and store-and-
forward operations are identical for each of the four directions.
When designing this pattern for one direction, we should
insure that the patterns for any of the other directions do not
“interfere” with the patterns for that direction. Interference
would correspond to two arrows pointing in the same direction
over the same link, which would mean that one packet could
block the other’s progress. A pattern satisfying this condition
for one direction is shown in Fig. 9. The interpretations of
this pattem is the same as for the KS [15] algorithm. The

longest path length consists of 3 store-and-forward operations
and 2 n - 6 cut-through operations.

VI. COMPARATIVE ANALYSIS

In this section, the IHC algorithm is compared to other
possible ATA reliable broadcast algorithms. In the analysis,
we will distinguish between the utilization of the available
communication links by the ATA reliable broadcast operation
and by all other tasks. The latter is referred to by p. p = (p =
1) represents an unloaded (completely congested) system. To
achieve p = 0, we must dedicate the entire network (or one
channel on each directed link) to the ATA reliable broadcast
operation. This is referred to as a dedicated network. Using
times quoted for the TORUS wormhole routing chip [6], it is
argued in Section VI-A that the IHC algorithm can be used in
such a dedicated mode even in the largest currently available
multicomputer systems. Even in the case of normal network
load, our analysis shows that the IHC algorithm compares
favorably to the alternate ATA reliable broadcast algorithms.

In sending a packet from a node U to its neighbor w, there
are several time parameters of interest. Let L be the length of
the packet in bytes and TL be the message transmission time
in bytedsecond. If the packet cuts through node U, then the
delay experienced is denoted by a, which is proportional to
B F I F ~ . If the packet is stored into the intermediate storage
buffer before being transmitted, then the delay experienced is
TS + LTL. Since a packet has fixed length and fits into exactly
p FIFO buffers, LTL = pa. If the packet has to wait because
the transmitter to node w is busy, then it will experience the
additional queueing delay, D.

A. Dedicated Network

Let us consider the ATA reliable broadcast operation with
p = 0. The times required by the IHC, VRS-ATA, KS-ATA,
SQ-ATA, and FRS [121 algorithms are shown in Table 11. The
execution time for the FRS [12] algorithm is the same as in
[121 with a change in notation. For the IHC algorithm, there are
q states, each of which requires one message startup and N - 2
cut-through operations. For the VRS-ATA, KS-ATA, and VSQ-
ATA algorithms, there are N reliable broadcast operations,
each of which takes the amount of time shown in parentheses.

The IHC algorithm performs better than all of the other
cut-through algorithms if q 5 min{log,N - 1,2@ -

456 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 5, MAY 1994

TABLE I1
EXECUTION TIMES WITH p = 0

Algorirhm I Excculion Time
IHC I vuF + ua + (N - 2)a)

N (i i o g 2 ' ~ - I)(T, +'ia) + 2a)
N (3 (T s + pa) +
N(3(Ts + pa) + (2@ - 6)a)
(log, N + 1)Tq + (N - l h a

- 1)/3 - 5)a)

TABLE 111
EXECUTION TIMES WITH p = 0 AND 7 = p = 2

2 , 2 n - 3). Since 77 2 p and p can be assumed to be a small
fixed constant, this condition is easily achieved. If, in addition,
77 = p and T~ 1 +!'a, the IHC algorithm is also faster than
the FRS [121 algonthm. Theorem 4 further states that the IHC
algorithm with 77 = p = 1 has the optimal computation time.

Theorem 4: Given p = 0, Algorithm IHC with 7 = p = 1
is optimal in execution time.

Since there are N nodes, each of which must
receive y copies of packets from all other nodes, a total of
y N (N - 1) packets must be sent and received. If the work of
sending these packets is divided evenly among the N nodes,
each node is responsible for sending y(N - 1) packets. In a
y-regular graph, each node has y outgoing links. For a given
node U, if the work of sending the y (N - 1) packets is divided
evenly among the y outgoing links, a minimum execution time
of rs + (N - 1)a is required. Substituting 77 = p = 1 into
the equation for the IHC algorithm in Table 111, this is the

0
Although the above theorem states that the IHC algorithm

is optimal if 77 = p = 1, the IHC algorithm can be modified
to execute slightly faster for the general case of 9 = p. Let us
assume 77 = p and consider only one HC in the description of
the IHC algorithm in Section IV. There are 77 = p stages, and
each stage requires a time of 7s + pa + (N - 2)a, resulting in
the total execution time of ~ (T S +pa + (N - 2)a). However,
the second stage can start p - 1 time steps before the first stage
completes. The reason for this is that when a node initiates a
packet, part of the packet is in the source node queue (as in
Fig. 1) for the first p - 1 time steps. Likewise, when a single
stage of the IHC algorithm completes, part of each packet is
in the receiving buffer of a node in the last p - 1 time steps.
This method of overlapping stages can be used in every stage
after the first (a total of p - 1 stages). Thus, the execution
time of the algorithm is reduced to TIHC - (p - 1)2a, where
TIHC is the execution time of the original IHC algorithm. The
interested reader will note that in the modified IHC algorithm,
the outermost for loop must be changed to iterate from
i = 77 - 1 down to i = 0. For simplicity, the original IHC
algorithm is used in our analysis.

In a dedicated network, the IHC algorithm can be executed
with 77 = p. Using p = 2, we get the following comparisons
on execution time.

Proof:

execution time of the IHC algorithm.

TABLE IV
WORST-CASE EXECUTION TIMES

In Table 111, the IHC algorithm is clearly better than all
of the other algorithms. In [8], Dally quoted a time of 20
ns for routing a single packet through a node using cut-
through. Using this figure, the time required for ATA reliable
broadcast using the IHC algorithm is 27s + 0.02 ms on a
1024-node Q ~ o and 27.9 + 1.31 ms on a 64 K-node QI6.
(Using a conservative figure of rs = 0.5 ms, this implies
that over 68.7 billion packets (y N (N - 1)) can be sent
and received in 1.81 ms on a 64 K-node hypercube.) It is
feasible to dedicate the interconnection network to the ATA
reliable broadcast operation for this length of time. If several
communication channels run through each link, it is also
feasible to dedicate one channel on each link to the ATA
reliable broadcast operation for this length of time.

B. Worst-case Analysis

The worst-case performance for the IHC algorithm occurs
when all of the potential cut-through operations have to
be performed as store-and-forward operations due to heavy
network traffic. Adding in the additional queueing delay D, the
worst-case execution time for the IHC algorithm can be written
as v (N - 1) (rs + pa + D). The worst-case execution times
for the VRS-ATA, KS-ATA, and VSQ-ATA change in a similar
manner to reflect the fact that all send-receive operations have
to be buffered and experience the queueing delay D. The
worst-case execution time for the FRS [12] algorithm is the
same as in Table I1 with the addition of the queueing delay
D to the startup delay 7s. Table IV summarizes the worst-
case execution times of the various ATA reliable broadcast
algorithms considered.

From Table IV, it can easily be seen that the FRS algorithm
has the best performance as (log, N + 1) is multiplied to
rs + D as opposed to a factor of N for the other algorithms.
The worst-case performance of the cut-through algorithms
results when none of the potential cut-through operations
can be implemented with cut-through-this happens with
extremely high network traffic. In this case, since all send-
receive operations must experience the queueing delay D and
startup delay rs, performance degradation is minimized if
packets from individual nodes are merged into larger messages
before being sent on the next step; since the FRS algorithm
performs this operation in a highly efficient manner, it has the
best performance given extremely high network traffic (large
p). In the general case of p > 0, the execution times of the
various algorithms will fall between the best and worst-case
execution times shown in Tables I1 and IV, respectively.

Tables I1 and IV provide comparisons of various possible
ATA reliable broadcast algorithms given highly favorable and
highly unfavorable network conditions, respectively. Table I1

LEE AND SHIN: INTERLEAVED ALL-TO-ALL RELIABLE BROADCAST 457

and Theorem 4 show that the IHC algorithm is the “best
possible” algorithm in terms of execution time when the
network is under-loaded. Table IV shows that a store-and-
forward algorithm such as the FRS algorithm is the “best
possible” when the network is heavily-loaded. While this
analysis can serve as a basis for comparison with other
ATA reliable broadcast algorithms, a practical implementations
of the IHC algorithm will require the solution of several
practical issues such as the packet format, timing message
reconstruction, and control.

VII. CONCLUSION
The all-to-all (ATA) reliable broadcast problem has been

considered for a class of regular interconnection networks.
Although good solutions to this problem exist if we are re-
stricted to using store-and-forward switching, better solutions
can be found by taking advantage of the faster communication
possible with cut-through switching. When designing an ATA
reliable broadcast algorithm that uses cut-through, we would
like to ensure that all possible cut-throughs can be achieved
when there is no other network traffic. This implies that
nodes must be at least loosely synchronized and coordinate
their actions such that “collisions” of broadcast packets do
not occur. One method of doing this to stagger the nodes
that initiate reliable broadcasts and to finish the individual
reliable broadcasts as fast as possible. Another method is to
interleave the nodes that initiate reliable broadcasts. However,
with this latter method, the reliable broadcasts by individual
nodes should be performed such that two broadcast packets
from the same or different nodes do not interfere with each
other’s progress.

In this paper, we have proposed a general method for
performing ATA reliable broadcast in an interleaved manner.
Our solution, the IHC algorithm, compares favorably to several
other possible cut-through and store-and-forward algorithms.
Unlike the other algorithms studied, the IHC algorithm can be
used on a large class of interconnection networks. In terms of
execution time, the IHC algorithm with the minimum value of
17 is shown to be optimal. Moreover, using a cut-through time
of 20 ns, the IHC algorithm can complete the ATA reliable
broadcast in a few milliseconds even on a 64 K-node system.
Thus, it is feasible to dedicate the entire network (or one
channel on each directed link) to the IHC algorithm for the
duration of the broadcast. In heavy network traffic, a store-
and-forward algorithm that merges packets as they are being
relayed has the best overall performance. However, among the
possible cut-through algorithms considered, the IHC algorithm
still has the best worst-case performance.

APPENDIX
LIST OF SYMBOLS AND ACRONYMS

ATA all-to-all
a

&IFO
D

17

time for a broadcast packet to cut through an

size of the FIFO buffer at the receivers
queueing delay experienced by a buffered

interleaving distance used in the IHC algorithm

intermediate node

broadcast packet

FRS [lo]

Gdir

7
HARTS
HC
HCi.-cycle

Hm
IHC
A

KS [15]

KS-ATA

P
N
Qm
RS [20]

P

SQm
7.S
VRS

VRS-ATA

VSQ-ATA

Fraigniaud’s all-to-all reliable broadcast
algorithm

a graph G with every undirected edge replaced
by two directed edges

connectivity of G
hexagonal architecture for real-time systems
Hamiltonian cycle
transmission of packets in cycle HCj during

stage i of IHC
C-type wrapped hexagonal mesh of size m
Proposed ATA reliable broadcast algorithm
special class of regular interconnection networks

Kandlur and Shin’s reliable broadcast algorithm

ATA reliable broadcast algorithm based on the

length of a broadcast packet divided by BFIFO
number of nodes in the network
hypercube of dimension m
Ramanathan and Shin’s reliable broadcast

algorithm for hypercubes
utilization of available communication links by

normal system tasks
m x m torus-wrapped square mesh
message startup time for store-and-forward
RS algorithm modified to use virtual

Ata reliable broadcast algorithm based on the

virtual cut-through reliable broadcast algorithm

ATA reliable broadcast algorithm based on the

defined in Section I1

for hex-meshes

KS [15] algorithm

cut-through

VRS algorithm

for a SQm

VSQ algorithm

ACKNOWLEDGMENT

The authors would like to thank D. D. Kandlur, J. W. Dolter,
and other members of the Real-Time Computing Laboratory
for helpful discussions on the ideas presented in this paper.
The proof of Theorem 1 was based on a personal communique
received from C. T. Ho.

REFERENCES

[l] B. Alspach, J. C. Bermond, and D. Sotteau, “Decomposition into cycles
1 : Hamiltonian decompositions,” in Cycles and Rays, G . Hahn, G.
Sabidussi, and R.E. Woodrow, Eds. Boston: Kluwer Academic, 1990,

[2] J. Arbert and B. Schneider, “Decomposition de la somme cartesienne
d’un cycle et de I’union de deux cycles Hamiltoniens en cycles
Hamiltoniens,” Discrete Math., vol. 38, pp. 7-20, 1982.

[3] B. Becker and H. U. Simon, “How robust is the n-cube?,” in Proc. 27th
Annu. Symp. on Found. of Comput. Sci., Oct. 1986, pp. 283-291.

[4] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. New
York: North-Holland, 1976.

[5] M. S. Chen, K. G. Shin, and D. D. Kandlur, “Addressing, routing and
broadcasting in hexagonal mesh multiprocessors,” IEEE Trans. Comput.,
vol. C-39, no. 1, pp. 1 6 1 8 , Jan. 1990.

[61 W. J. Dally and C. L. Seitz, ‘The torus routing chip,” J. Distribut.
Computing, vol. 1, no. 3. pp. 187-196, 1986.

[7] ___ , “Deadlock-free message routing in multiprocessor interconnec-
tion networks,” IEEE Trans. Comput., vol. (2-36, no. 5 , pp. 547-553,
May 1987.

pp. 9-18.

458 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 5, MAY 1994

[8] W. J. Dally, “A fine-grain, message-passing processing node,” in Con-
current Computaiions: Algorithms, Architecture, and Technology. New
York Plenum Press, 1988, pp. 375-389.

191 D. Dolev, “The Byzantine generals strike again,” J. Algorithms, vol. 3,
pp. 14-30, 1982.

[lo] J. W. Dolter, P. Ramanathan, and K. G. Shin, “A microprogrammable
VLSI routing controller for Harts,” in Proc. ZCCD’89, Oct. 1989, pp.
160- 163.

[l I] M. Foregger, “Hamiltonian decompositions of products of cycles,”
Discrete Math., vol. 24, pp. 251-260, 1978.

[12] P. Fraigniaud, “Asymptotically optimal broadcast and total-exchange
algorithms in faulty hypercube multicomputers,” Laboratories de
I’lnformatiaue du Parallelisme. Ecole Normal Suuerieure de Lyon,
May 1989.-

1131 C. T. Ho. Dersonal communication, Nov. 1989.
[14] H. Kanakia and D. R. Cheriton, “The VMP network adapter broad

(NAB): High-performance network communication for multiprocessor,”
in SIGCOMM ’88, Aug.t 1988, pp. 175-187.

[15] D. D. Kandlur and K. G. Shin, “Reliable broadcast in hexagonal mesh
multiprocessors,” ACM Trans. Comput. Syst., vol. 9, no. 4, pp. 374-398,
Nov. 1991.

[16] P. Kermani and L. Kleinrock, “Virtual cut-through: A new computer
communication switching technique,” Compui. New. , vol. 3, no. 4, pp.
267-286, Sept. 1979.

[17] C. M. Krishna, K. G. Shin, and R. W. Butler, “Ensuring fault tolerance
of phase-locked clocks,” IEEE Trans. Comput., vol. C-34, no. 8, pp.

[l8] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob-
lem,” ACM Trans. Prog. hnguages and Syst., vol. 4, no. 3, pp. 382-401,
July 1982.

[I91 L. Lamport and P. M. Melliar-Smith, “Synchronizing clocks in the
presence of Faults,” J. ACM, vol. 32, no. 1, pp. 52-78, January 1985.

[20] P. Ramanathan and K. G. Shin, “Reliable broadcast in hypercube
multicomuuters.” IEEE Trans. ComDut.. vol. 37. no. 12. nD. 1654-1657.

752-756, Aug. 1985.

1 . I .
Dec. 198’8.

1211 P. Ramanathan. D. D. Kandlur. and K. G. Shin. “Hardware-assisted ~-
software clock synchronization for homogeneous distributed systems,’’
IEEETrans. Comput., vol. 39, no. 4, pp. 514-524, Apr. 1990.

[22] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public key cryptosystems,” Commun. ACM, vol.
21, pp. 120-126, Feb. 1978.

1231 C. L. Seitz, “The cosmic cube,” Commun. ACM, vol. 28, pp. 22-33,
Jan. 1985.

[24] H. Sullivan, T. Bashkov, and D. Klappholz, “A large scale, homoge-
neous, fully distributed parallel machine,” in Proc. Fourth Annu. Symp.
Compui. Architecture, March 1977, pp. 105-124.

[251 C. L. Yang and G. M. Masson, “A distributed algorithm for fault
diagnosis in systems with soft failures,” IEEE Trans. Comput., vol. 37,
no. 11, pp. 1476-1479, Nov. 1988.

DE. His research intere
Dr. Lee is a member

Engineering Honor Soc

Sunggu Lee (S’87-M’90) received the B.S.E.E.
degree (with highest distinction) from the University
of Kansas, Lawrence, in 1985, and the M.S.E.E. and
Ph.D. degrees from the University of Michigan, Ann
Arbor, in 1987 and 1990, respectively.

He is currently an Assistant Professor in the
Department of Electronic and Electrical Engineer-
ing at the Pohang University, Pohang, Republic
of Korea. Prior to this appointment, he was an
Assistant Professor in the Department of Electrical
Engineering at the University of Delaware, Newark,

of the IEEE Computer Society and the Tau Beta Pi
sts are in parallel and fault-tolerant computing.

:iety.

Kang G. Shin (S’75-M’78-SM’83-F‘92) received
the B.S. degree in electronics engineering from
Seoul National University, Seoul, Republic of Ko-
rea, in 1970, and the M.S. and Ph.D. degrees in elec-
trical engineering from Cornell University, Ithaca,
NY. in 1976 and 1978, respectively.

He is Professor and Director of the Real-Time
Computing Laboratory, Department of Electrical
Engineering and Computer Science, University of
Michigan, Ann Arbor. From 1978 to 1982, he was
on the faculty of Rensselaer Polytechnic Institute,

Troy, NY. He has held visiting positions at the U.S. Air Force Flight Dynamics
Laboratory, AT&T Bell Laboratories, the computer science division within
the Department of Electrical Engineering and Computer Science, University
of California, Berkeley, and the International Computer Science Institute,
Berkeley, CA. He also chaired the computer science and engineering division,
Department of Electrical Engineering and Computer Science, University of
Michigan, Ann Arbor, for three years beginning in 1991. In 1985, he founded
the Real-Time Computing Laboratory, where he and his colleagues are
currently building a 19-node hexagonal mesh multicomputer, called HARTS,
to validate various architectures and analytic results in the area of distributed
real-time computing. He has also been applying the basic research results of
real-time computing to manufacturing-related applications ranging from the
control of robots and machine tools to the development of open architectures
for manufacturing equipment and processes. Recently, he has initiated research
on the open-architecture information base for machine tool controllers.

Dr. Shin has authored or co-authored over 270 technical papers (more than
120 of these in archival journals) and several book chapters in the areas of dis-
tributed real-time computing and control, fault-tolerant computing, computer
architecture, robotics and automation, and intelligent manufacturing. In 1987,
he received the Outstanding IEEE TRANSACTIONS ON AUTOMATIC CONTROL
Paper Award for a paper on robot trajectory planning. In 1989, he also received
the Research Excellence Award from the University of Michigan. He was
the Program Chairman of the 1986 IEEE Real-Time Systems Symposium
(RTSS), the General Chairman of the 1987 RTSS, the Guest Editor of the
1987 August special issue of IEEE TRANSACTIONS ON COMPUTERS on real-
time systems, a Program Co-chair for the 1992 International Conference
on Parallel Processing, and served numerous technical program committees.
He also chaired the IEEE Technical Committeeon Real-Time Systems during
1991-1993. He is also a Distinguished Visitor of the IEEE Computer Society,
an Editor of IEEE TRANSAC~IONS ON PARALLEL AND DISTRtBuTED COMPUTING,
and an Area Editor of International Journal of Time-Critical Computing
Systems.

