
12

Exploring the Limits of Early Register
Release: Exploiting Compiler Analysis

TIMOTHY M. JONES and MICHAEL F. P. O’BOYLE

University of Edinburgh

JAUME ABELLA and ANTONIO GONZÁLEZ

Intel Labs Barcelona—UPC

and

OĞUZ ERGIN

TOBB University of Economics and Technology

Register pressure in modern superscalar processors can be reduced by releasing registers early
and by copying their contents to cheap back-up storage. This article quantifies the potential ben-
efits of register occupancy reduction and shows that existing hardware-based schemes typically
achieve only a small fraction of this potential. This is because they are unable to accurately de-
termine the last use of a register and must wait until the redefining instruction enters the pipe-
line. On the other hand, compilers have a global view of the program and, using simple dataflow
analysis, can determine the last use. This article evaluates the extent to which compiler anal-
ysis can aid early releasing, explores the design space, and introduces commit and issue-based
early releasing schemes, quantifying their benefits. Using simple compiler analysis and microar-
chitecture changes, we achieve 70% of the potential register file occupancy reduction. By adding
more hardware support, we can increase this to 94%. Our schemes are compared to state-of-
the-art approaches for varying register file sizes and are shown to outperform these existing
techniques.

Categories and Subject Descriptors: C.1.0 [Processor Architectures]: General; C.0 [Computer
Systems Organization]: General—Hardware/software interfaces; D.3.4 [Programming Lan-
guages]: Processors—Compilers

General Terms: Experimentation, Measurement, Performance

Additional Key Words and Phrases: Low-power design, energy efficiency, compiler, microarchitec-
ture, register file

This work has been partially supported by the Royal Academy of Engineering, EPSRC and the
Spanish Ministry of Science and Innovation under grant TIN2007-61763 and the Generalitat de
Catalunya under grant 2009 SGR 1250.
T. M. Jones, M. F. P. O’Boyle, and O. Ergin are members of HiPEAC (European Network of Exellence
on High Performance and Embeded Architecture and Compilation).
Author’s address: T. M. Jones, School of Informatics, 1.12 Informatics Forum, 10 Crichton Street,
Edinburgh EH8 9AB, UK; email: tjones1@inf.ed.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1544-3566/2009/09-ART12 $10.00
DOI 10.1145/1582710.1582714 http://doi.acm.org/10.1145/1582710.1582714

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

12:2 • T. M. Jones et al.

ACM Reference Format:
Jones, T. M., O’Boyle, M. F. P., Abella, J., González, A., and Ergin, O. 2009. Exploring the limits of
early register release: Exploiting compiler analysis. ACM Trans. Architec. Code Optim. 6, 3, Article
12 (September 2009), 30 pages.
DOI = 10.1145/1582710.1582714 http://doi.acm.org/10.1145/1582710.1582714

1. INTRODUCTION

Modern superscalar processors use register renaming to eliminate false (WAR
and WAW) dependences between instructions and expose instruction level par-
allelism. However, a register file that supports wide issue and a large instruc-
tion window has a high latency and complexity due to its size and the number of
ports required to read and write data each cycle. It is also a hotspot and one of
the most energy-consuming structures within the processor [Emer 2001] whose
cooling system cost in future processors will increase nonlinearly compared to
the amount of heat removed [Gunther et al. 2001].

Previous research has noted that registers are idle for many cycles after their
last use, before being placed on the free list to be assigned to a new instruc-
tion [Monreal et al. 2002; Butts and Sohi 2004]. This is because a register cannot
be released until the instruction redefining its logical register commits in order
to maintain a precise processor state in the event of an exception or interrupt.

Early register releasing has been proposed [Moudgill et al. 1993; Martin
et al. 1997; Monreal et al. 2002; Ergin et al. 2004] to remove this idle time by
releasing a register before the commit of its redefining instruction. This allows
the register to be reused by a newly dispatching instruction and reduces the
overall occupancy of the register file, meaning that a smaller register file can be
used without a drop in performance. Hardware early releasing schemes suffer
from the fact that, without speculative releasing, they can only release a regis-
ter early when the redefining instruction enters the pipeline. This is to ensure
that no future instructions will need to read the register that is being released.
However, there may be many cycles between a register’s last use and the dis-
patch of the redefining instruction, during which time the physical register is
not accessed and an opportunity for early releasing is missed.

In this article, we quantify the benefits available using an idealistic oracle
with full knowledge of the last use of each register. We find that there is potential
for significant reductions in register file occupancy that would directly affect the
amount of energy consumed. However, existing schemes are only able to achieve
between 14% and 39% of this reduction. The reason for this poor performance
is that the hardware, in practice, does not know the last use of any register
and has to be conservative in its release policy. We consider the design space of
compiler-supported approaches where early-released registers are backed up
into shadow register cells, and we show that they are able to provide dramatic
improvements. The compiler has global knowledge of the program and can
guarantee when a register value will not be used again.

We show that a simple compiler-assisted scheme with minimal hardware
support can achieve 70% of the oracle’s occupancy reductions. A more aggres-
sive implementation allowing backwards compatibility with existing binaries

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

Exploring the Limits of Early Register Release • 12:3

achieves 87% of the maximum potential benefit. A scheme with tagged instruc-
tions that achieves 94% of the benefit of an oracle is also developed. Finally,
we make an evaluation of the best techniques across varying register file sizes
and show that they provide large occupancy reductions for large register file
sizes and significant IPC gains for small register files, outperforming the best
current techniques.

The rest of this article is structured as follows. Section 2 discusses previ-
ous work on early releasing and register file optimization techniques. Section 3
motivates the use of early releasing to reduce register pressure, and Section 4
shows the ability of the compiler to obtain the majority of the benefits available.
Section 5 describes our compiler analysis, then Section 6 describes the changes
to the microarchitecture that are common to all subsequent schemes. Sections 7
and 8 describe commit- and issue-based early releasing approaches, while
Section 9 combines the best schemes from each. Section 10 evaluates com-
piler and hardware techniques across varying register file sizes, and finally,
Section 11 summarizes this article.

2. RELATED WORK

There have been many previous approaches that attempt to optimize the cen-
tralized register file [Moudgill et al. 1993]. The checkpointed register file was
first proposed by Ergin et al. [2004] to aid the implementation of early register
releasing. At early release, data is copied into shadow bitcells so that it can be
recovered in the case of a branch misprediction, interrupt, or exception. This is
the register file that our techniques use. Two schemes are presented by Ergin
et al. [2004] to take advantage of early register releasing. However, both must
wait until the dispatch of the redefining instruction before releasing any regis-
ters and, as this may happen many cycles after the last use of a register, many
potential benefits may be lost.

Monreal et al. [2002] also propose two techniques to implement early reg-
ister releasing. The first scheme waits for a redefining instruction to become
nonspeculative before releasing the previous version of its logical register. The
second adds a new queue to the processor with multiple levels corresponding
to the unconfirmed branches in the reorder buffer. Registers are released when
the redefining instruction becomes nonspeculative and the last instruction us-
ing the physical register has committed. Unfortunately, however, the addition
of the new queue increases the complexity of the pipeline. In addition to this, as
no back-up copy is kept of the registers that are released early, precise processor
interrupts and exceptions cannot be maintained.

Two compiler schemes have been proposed to help with early register re-
leasing: by Martin et al. [1997] and Lo et al. [1999]. The former uses special
compiler-inserted instructions to release registers before procedure calls while
the latter targets SMT processors using a mixture of OS and compiler support,
including the addition of special instructions or the use of free ISA bits to release
registers. In this article, we also present schemes that use special instructions
to release registers early and, furthermore, combine them with techniques that
use the logical register number to indicate early release information.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

12:4 • T. M. Jones et al.

In Jones et al. [2005], we present a single compiler-based technique that
renames registers that are only used once, releasing them upon their issue
and at the commit calls and returns. This current article, however, performs a
full exploration of the compiler design space, showing that significant further
improvements are available.

The Cherry scheme [Martinez et al. 2002] attempts to recycle all instruc-
tion resources early, rather than just the registers. A back-up register file is
provided to store a checkpoint of the architectural registers, which can be re-
covered in the event of an exception. Physical registers are recycled when the
architectural register’s redefining instruction is nonspeculative and all con-
sumers have executed. When a physical register is released, no back-up copy
is made, so execution must restart at the checkpoint if an exception occurs. In
contrast, in this article, we present schemes that can release registers even ear-
lier by indicating the last use of each register. This means that we do not even
have to wait for the redefining instruction to enter the pipeline before releasing
a dead register. Registers that are released early are stored in checkpoint bits
within the register file so that they can be quickly recovered on an exception,
interrupt, or branch misprediction.

González et al. [1998] attempt to reduce the idle time before a register is
written by proposing virtual physical registers. Virtual tags are associated with
each destination in the issue queue; the physical register is not allocated until
the writeback stage of the pipeline. Short-lived values can be optimized with
a value ageing buffer [Hu and Martonosi 2000] and by Savransky et al. [2004]
using lazy retirement from the reorder buffer. Narrow-width operands can also
be exploited [Ergin et al. 2004; Lipasti et al. 2004] as can register sharing [Tran
et al. 2004].

Other approaches create a multilevel register file [Cruz et al. 2000; Borch
et al. 2002; Butts and Sohi 2004], bank the register file [Wallace and
Bagherzadeh 1996; Tseng and Asanović 2003], or attempt to reduce the number
of ports it requires [Balasubramonian et al. 2001; Park et al. 2002; Kim and
Mudge 2003]. Some approaches optimize the issue queue, indirectly affecting
the register file too [Abella and González 2003; Jones et al. 2005]. These schemes
are orthogonal to the techniques we propose and could be used in conjunction
with ours to further optimize the register file. Finally, it has been suggested
that degree-of-use prediction could be used for early register releasing [Butts
2004].

3. MOTIVATION

We wish to use early register releasing to reduce the number of physical regis-
ters occupied at any one time (i.e., register pressure). This allows unused phys-
ical registers to be turned off, saving power. This technique can also be used to
design processors with smaller register files without affecting performance.

To illustrate how our approaches work consider the example in Figure 1,
where to aid readability, we have shown reads and writes to registers using
pseudocode. Figure 1(a) shows a simple assembly code fragment where instruc-
tions b and c are several instructions apart. In the normal baseline scheme

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

Exploring the Limits of Early Register Release • 12:5

Fig. 1. The processor internally renames the registers. In the baseline, two are used, whereas in
our scheme, we only need one.

Fig. 2. Passage of three instructions through the pipeline and the state of physical register p3
when early releasing is employed. Normally p3 is not released until c commits. With commit-based
releasing, we can release it when its last user, b, commits. In the issue-based releasing schemes, it
can be released when b issues. Other hardware approaches must wait for c to dispatch since this
redefines r1.

(Figure 1(b)), the assembly program register is allocated by the processor at
runtime to a hardware physical register, say p3, when instruction a dispatches.
When r1 is written to again in c, the baseline assigns a new unallocated physical
register to r1, say p4.

However, if at runtime the read of r1 in instruction b occurs before the write
in instruction c, then there is no need to allocate a new physical register and
the same physical register p3 could be reused, as is the case in our scheme
(Figure 1(c)). Instruction b is marked as the last user of register r1 so the
physical register it occupies is available for reuse once b has read it, reducing
the number of registers needed and potentially saving power.

As we examine an out-of-order pipelined processor, we consider what hap-
pens to the state of the registers as instructions pass through the pipeline, as
shown in Figure 2. We consider the baseline and two types of early register
releasing, namely issue-based and commit-based.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

12:6 • T. M. Jones et al.

3.1 Baseline

The diagram in Figure 2(a) shows the passage of the instructions through the
pipeline where we show a five-stage pipeline to aid presentation. At point 1,
p3 is allocated to logical register r1, and at point 3, it is read for the last time
as b issues. At point 5, possibly much later, c dispatches and so a new phys-
ical register is allocated. Finally, at point 7, in the baseline case the register
holding the previous version of r1 (p3) is released, shown by the grey oval
around c.

As is apparent in this baseline case, the physical register p3 needlessly re-
tains the value of r1 from points 3 to 7. This is because the processor does not
know whether another instruction will need to read p3 until c commits. How-
ever, using compiler knowledge that is guaranteed to be correct, it can release
much earlier if it knows which instruction is the last user of a register. Physical
registers can be released early either at the commit of this instruction, or when
it issues. The former is referred to as a commit-based scheme, whereas the lat-
ter is known as an issue-based approach. These are illustrated in Figure 2(a)
at points 3 and 4 with grey ovals around b. The potential benefits to be gained
from both commit-based and issue-based early releasing schemes are evaluated
in Section 4, but first we give an example of how each works in the following
sections.

3.2 Commit-Based Releasing

Figure 2(b) shows the state of the physical register file1 when we employ
commit-based early register releasing. This occurs when a register is released
at the commit of its last user instruction. We consider releasing in this way be-
cause we can guarantee that all consumer instructions have read the physical
register once the last user has committed. We also do not then have to deal with
the added complexity of coping with mispredicted branches, since they will only
affect subsequent instructions, which are guaranteed not to need to read any
registers that have been released early.

The passage of instructions through the pipeline remains exactly as in
Figure 2(a) and the same events happen at points 1, 2, and 3. However, at
point 4, as b commits, it releases register p3 because we know that b is the last
user of this register and thus no other instructions will read it. Although the
value will no longer normally be used, rather than discarding it, it is copied into
cheap back-up storage using the checkpointed register file described in Ergin
et al. [2004] for recovery in the event of an exception or interrupt. At point 5,
the register is allocated to the now free physical register p3. At point 7, the
old value of r1 will never be needed because its new value is committed, so the
checkpoint just needs to be cleared.

1The logical register that each physical register corresponds to is not actually kept in the register
file itself, but as a pointer in the reorder buffer—it is merely shown for clarity.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

Exploring the Limits of Early Register Release • 12:7

3.3 Issue-Based Releasing

Although commit-based releasing has its advantages in terms of complexity, in
actual fact, we can release registers even earlier than the commit of the last
user instruction. We know that after all users have read a register, its value
will no longer be needed and we can safely release the register early. As before,
we save a copy of the register in the cheap back-up storage from which we
can recover in case of an exception, interrupt, or branch misprediction. In this
section, for simplicity, we assume that instruction b is the last user of register
r1 and the last dynamic instruction to read the physical register.

Figure 2(c) shows the state of the register file when issue-based early releas-
ing is employed. This is similar to commit-based early register releasing except
that the early releasing of registers occurs when an instruction issues rather
than when it commits. This occurs at point 3, after b has read its source value,
when we know that all consumers have read the value.

Thus, with both commit-based and issue-based releasing, we are able to re-
lease registers early and guarantee correct behavior in the case of misprediction
or exception with the support of a small amount of checkpointing. By recycling
physical registers much earlier than usual, register pressure is reduced. For
large register files, where the number of physical registers is not a bottleneck
to dispatch, unused registers can be turned off for static and dynamic energy
savings. When a small register file is employed, the rapid register recycling
allows more instructions to dispatch, increasing performance.

3.4 Other Schemes

Other early releasing schemes would release p3 later than we propose. Ergin
et al. [2004] release when the redefining instruction (c in this example) has
entered the pipeline, the original defining instruction has committed and all
consumers have read the value. This is at point 5 in our diagram. Monreal
et al. [2002] release when the redefining instruction becomes nonspeculative
and all consumers have read the value. This would occur somewhere between
points 5 and 7 in our diagram.

4. QUANTIFYING THE BENEFITS

Having motivated the use of early releasing to reduce register pressure, we
now consider the extent to which this can be achieved and the compiler’s
ability to help.

Consider the situation where the processor has knowledge of the future (i.e.,
an oracle). Specifically, this oracle knows the instructions that are the final
consumers of each register. This is gained by executing each benchmark twice,
generating a trace the first time, which can then be consulted by the second to
determine the last consumer information. Using this information, the processor
can release a register far earlier than usual without having to wait for the dis-
patch of a redefining instruction. This oracle, although unrealistic in practice,
serves as the lower bound on the register file occupancy the processor alone can
achieve.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

12:8 • T. M. Jones et al.

Fig. 3. The oracle and best compiler analysis with early register releasing at issue and commit.
Figures (b) and (c) show that early releasing can significantly reduce the register file occupancy
where an idealistic compiler scheme can achieve almost the same benefits as an oracle.

A second idealistic case considered is where the compiler is able to pass infor-
mation about the last use of each register to the processor without considering
the hardware cost or ISA impact. An instruction is tagged if it is the last con-
sumer of one of its source registers, which allows the processor to release it
early. Additionally, at the start of each basic block, tags are placed for each
register that is live out of a predecessor but not live into the current block. This
is to mark the last consumers of a register after a loop, where they will not
normally be released. The compiler analysis considers all control flow paths
through a program, including loops, and incorporates interprocedural analysis
to mark the last register uses.

Figure 3 shows graphs of registers released early and register file occupancy
(based on the architecture described in Section 6) for the oracle and compiler
analysis. There is little change in the IPC of the benchmarks when early releas-
ing occurs, hence we do not show this graph. Figure 3(a) shows the percentage
of renamed registers that are released early with each scheme. On average,
58% and 61% are released early for the commit-based compiler and hardware
schemes, respectively. For the issue-based approaches, it is 55% and 56%, on
average. A smaller percentage of the renamed registers are released early with

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

Exploring the Limits of Early Register Release • 12:9

issue-based schemes compared with commit-based approaches because more
registers are renamed in the former case. The actual number of registers re-
leased is similar with each technique.

Combined with Figure 3(b) (and Figure 3(c) to show more clearly), releasing
registers early can lead to a large reduction in the register file occupancy. More
savings can be achieved by the oracle if registers are released in the issue stage
of the pipeline (from 57 down to 35 registers), when all consumer instructions
have read the data, rather than in the commit stage (when it is reduced to
41). Even though fewer registers are released early at issue, they are actually
released earlier in the pipeline, meaning that the benefits last longer. This is
because, after execution, instructions can wait many cycles in the reorder buffer
before committing.

Figure 3(d) shows the average occupancy of the oracle (commit-based), com-
piler analysis (commit- and issue-based), and three state-of-the-art approaches
in terms of the percentage of the total reduction possible (57 down to 35 reg-
isters) they have achieved. So, the baseline, by definition, has a 0% reduction
(not shown), whereas the oracle with an issue-based releasing scheme achieves
100% of the possible reduction (again, not shown). The existing approaches of
Monreal et al. [2002], labeled Monreal in Figure 3(d); Ergin et al. [2004], labeled
Ergin; and Martin et al. [1997], labeled Martin, do not significantly reduce the
occupancy. Monreal achieves a 14% reduction of the maximum possible (down
to 54), Ergin achieves 25% (down to 52), and Martin achieves 39% (down to
49). This compares to the oracle releasing at commit, which achieves a 73%
reduction of the maximum available (down to 41).

What is immediately obvious is that the compiler-based oracle scheme
achieves almost the same savings as the actual oracle, that is, a 67% re-
duction for commit-based releasing and a 94% reduction for issue-based re-
leasing. This shows that exploring realistic compiler-based implementations
of early releasing is potentially worthwhile. The remainder of this arti-
cle attempts to determine realistic compiler-based techniques, exploring the
trade-off between microarchitecture modification and register file occupancy
reduction.

5. COMPILER ANALYSIS

Having quantified the benefits of early register releasing, this section gives a
brief overview of the compiler analysis used in this article to determine the
last use of a register and the number of consumers it has. It also discusses
the limits to the information the compiler can discover through purely static
analysis.

Our compiler analysis for all schemes in this article is based on simple data-
flow and liveness analysis. For each function in the program, we construct the
control flow graph (CFG) and calculate liveness information using the sets of
registers that are written and read by each instruction. We then iterate over
the CFG, marking the last consumers of each register based on the liveness
information. The last consumer of a register is identified by having the register
in its livein set and only in its liveout set if it defines the register. While iterating

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

12:10 • T. M. Jones et al.

Fig. 4. An example of the compiler analysis used to determine a register’s last consumer. In (a),
we show some pseudocode using r1 and r2. Here, c is a conditional branch and e is an unconditional
branch. In (b), we show the control flow graph and instructions that r1 and r2 are defined and used.
Traversing the control flow graph postorder, we can easily determine the final uses of each register
in (c). We know there is exactly 1 consumer of r1 but, depending on the path taken, there could be
1 or 2 consumers of r2.

over the CFG, we record the number of uses of each register between the definer
and last consumer.

Figure 4 shows an example of this analysis. In Figure 4(a), we show some
pseudocode that defines and uses r1 and r2. Here, instruction c is a conditional
branch and instruction e is unconditional. Figure 4(b) shows the CFG for this
code. Here, we have annotated each instruction that defines or uses r1 or r2.
Using the liveness analysis and counting consumers along all paths in the CFG
leads to Figure 4(c). It is easy to identify the two final uses of r1 in the separate
paths of the CFG, and the single final use of r2 in instruction g. It is also clear
to see that r1 has only one consumer, no matter which path is taken.

Figure 4 also shows a limitation of a purely static approach. The number of
uses of r2 cannot be determined exactly. If the left-hand CFG path is taken,
then there is 1 use; if the right-hand path is taken, then there are 2. In this
situation, the compiler simply marks the number of uses as “unknown” and
an opportunity for optimization could be missed. However, in practice, sit-
uations such as this rarely occur. Any scheme that could capture these cor-
ner cases would simply improve the results we obtain through using compiler
analysis.

The final consumer and number of uses of each register are used to re-
lease registers early. The way in which this information is used varies between
schemes, and more detail is given with each technique described in Sections 7
and 8.

6. MICROARCHITECTURE

Having discussed the compiler analysis performed for early register releasing,
in this Section, we briefly describe the hardware configuration used throughout
this article.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

Exploring the Limits of Early Register Release • 12:11

Table I. Processor Configuration

Parameter Configuration Parameter Configuration
Machine width 4 instructions ROB size 96 entries
Branch predictor 16K gshare LSQ size 48 entries
BTB 2,048 entries, 4-way Issue queue 32 entries
L1 Icache 32KB 8-way 64B line Int register file 96 entries (12 banks of 8)

1 cycle hit FP register file 96 entries (12 banks of 8)
L1 Dcache 32KB 8-way 64B line Int FUs 3 ALU (1 cycle),

3 cycle hit 1 Mul (3 cycles)
Unified L2 cache 2MB 8-way 64B line, FP FUs 2 ALU (2 cycles),

14 cycles hit, 250 miss 1 MultDiv (4/12 cycles)

Our processor is an out-of-order superscalar with a centralized physical regis-
ter file, as described in Table I. The register file used is described in Sections 6.1
and 6.2 and the details on early releasing in Section 6.3. Section 6.4 discusses
interrupts and exceptions, and Section 6.5 describes our experimental set-up.

6.1 Checkpointed Register File

The checkpointed register file was proposed by Ergin et al. [2004] to aid their
early releasing scheme. It can hold a copy of each register that is released
early in cheap back-up storage that can be recovered easily and quickly. This
enables the processor to maintain a consistent state and thus implement precise
interrupts and exceptions and recover from branch mispredictions.

To implement back-up storage, an extra bitcell (called the shadow cell) is
connected to the main bitcell. Two extra wires are needed to signal a store from
the main cell’s value into the shadow bit (a Checkpoint line) or to copy from the
shadow cell back into the main bitcell (Recover).

The area overhead of the shadow bitcells is independent of the number of
ports. For the register file used in this article with 8 read and 4 write ports,
the area overhead is less than 20% [Ergin et al. 2004]. The delay overhead
is less than 0.5%, since no extra gate capacitance is added to the lines [Ergin
et al. 2004]. The extra width and height of the checkpointed bitcell increases the
wordline and bitline energy consumption, but this affects the energy dissipated
in a read or write by only a small amount. There is also a small amount of energy
consumed when checkpointing and recovering data from the shadow cells. This
is further described in Section 6.5 and all additional energy consumption is
accounted for in the experiments performed.

In order to keep the additional static power dissipation to a minimum, a
super-drowsy circuit is employed for the shadow bitcells [Kim et al. 2004]. When
turned on, the supply voltage arrives through a wide-channel transistor, but
when turned off, a long-channel transistor supplies a lower supply voltage to
preserve the state of the bitcell. With a drowsy voltage of 250mV, the leakage
energy of the circuit can be reduced by 98% [Kim et al. 2004]. This technique
is only applied to the checkpointed bits where a fast access time is not needed,
and in later sections, we also report the results without using this scheme.

All our compiler schemes use the checkpointed register file, as does the
Ergin technique implemented in Section 10. The baseline (in all experiments),

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

12:12 • T. M. Jones et al.

Monreal and Martin, schemes use a register file without checkpointing
support.

6.2 Register File Banking

A further optimization is to bank the register file using eight registers per bank,
as performed by Abella and González [2003]. When a bank holds no valid data,
even in the shadow cells, it can be turned off independently of all the others
to save energy. We assume that the baseline scheme uses a noncheckpointed,
banked register file and keeps all banks turned on permanently.

Turning register file banks off and on incurs additional performance and
energy overheads. We assume that each bank will take 1 cycle to turn off and
another to turn on. During these extra cycles, we conservatively assume the
bank is consuming full dynamic and static energy. We turn banks off the cycle
after all data becomes invalid and back on again as soon as a register is renamed
to be a destination of a dispatching instruction [Abella and González 2003]. As
there are several cycles between dispatch and writeback of an instruction, the
time taken for the bank to turn on again is hidden and thus does not impact on
processor performance. However, all energy and cycle overheads are modelled
in detail in our experiments.

A secondary benefit of banking the register file is that it has a faster ac-
cess time. On a read, bank selection is performed in parallel with the decoding
and reading from each bank. The output logic selects the correct entry from
all banks. On a write, bank selection is overlapped with wordline decoding,
with the write being performed only in the selected bank. Only banks that
are turned on are accessed during a read or write operation. Hence, turn-
ing banks off saves not just static energy, but also dynamic energy [Abella
and González 2003]. In Section 9, we evaluate the energy savings from our
approaches and show the contribution available through turning off banks
alone.

6.3 Early Releasing

Each register needs to keep track of whether the value held in its shadow
bitcells is valid. A single bit is added to each register, called the checkpointed
bit, which indicates that this value is needed.

The register retirement map table needs to keep track of each logical register,
whether it is held in the main or shadow bitcells of the physical register pointed
to. A checkpointed bit is added to the register retirement map table (one per
logical register) which, when set, indicates the required value can be found in
the shadow bitcells of its physical register.

When an instruction commits, it releases the previous version of its logical
destination register. The register retirement map table is consulted and the rel-
evant checkpointed bit read. If it indicates the actual register is held in shadow
bitcells, then the only tasks that need performing are to clear the checkpointed
bits in the map table and the physical register pointed to. If the checkpointed
bit shows that the actual register is kept in a main bitcells, then the previous
version of the logical register is released in the normal way.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

Exploring the Limits of Early Register Release • 12:13

Fig. 5. An example of the release of a register when the instruction redefining its logical register
commits. The checkpointed bit in the register retirement map table is consulted in (a), and we
find that the logical register is kept in the shadow bitcells in the register file. In (b), we clear the
checkpointed bits in the map table and the register file, which invalidates the value in the register’s
shadow bitcells.

Figure 5 shows an example of releasing logical Register 1. In Figure 5(a),
the checkpointed bit for this register in the retirement map table is consulted.
This is then cleared along with the checkpointed bit in the register file for the
physical register in Figure 5(b). Clearing these bits invalidates the register’s
shadow bitcells.

The total overhead of using the checkpointed register file for early releasing
is 32 bits in the register retirement map table (one per logical register) and
96 bits in the integer register file (one per physical register). Certain schemes
presented in subsequent sections require extra bits to the reorder buffer and
map tables, which are described in detail in the text.

6.4 Interrupts and Exceptions

When an interrupt or exception occurs, the pipeline is emptied. Before the
interrupt or exception handler can be invoked, all logical registers must be rep-
resented as noncheckpointed physical registers in order to maintain a precise
processor state. At this time, there may be some registers that are checkpointed,
and of these, some may have other valid values in their main register cells.
These need to be moved so that the checkpointed values can be safely restored
without overwriting these values.

To achieve this, the processor consults the retirement map table to determine
registers that are blocking checkpointed values in the main bitcells. It then is-
sues a MOV instruction for each one, placing them in different physical registers.
It is guaranteed that there will always be a free physical register to move the
checkpointed values into because there are more physical registers than logical.
After this has occurred, the checkpointed values can be safely restored before
executing the interrupt or exception handler. This scheme ensures no registers
are held in shadow bitcells when control passes over. Although this may take

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

12:14 • T. M. Jones et al.

several cycles longer than in the baseline case, the infrequent nature of inter-
rupts and exceptions compared to the savings gained from these schemes make
this worthwhile.

6.5 Compiler, Simulator, and Benchmarks

Our compiler analysis was written as a pass in MachineSUIF [Smith and
Holloway 2000] version 2.02.07.15 from Harvard. We used Wattch [Brooks et al.
2000] version 1.02, based on SimpleScalar [Burger and Austin 1997] version
3.0d, to implement our processor whose configuration is shown in Table I. In
addition to this, we added support for checkpoints and banking to the register
file and the ability to release registers early, as described in Sections 6.1, 6.2,
and 6.3.

We derived our dynamic and static register file energy values from Wattch
and Cacti [Tarjan et al. 2006] version 4.1 for a 70nm technology. For the base-
line (in all experiments) and the Monreal and Martin schemes (in Section 10),
we modeled the banked register file described in Section 6.2. For all of our
compiler-directed approaches and the Ergin scheme from Section 10, we mod-
eled a banked register file but, in addition, increased the RAM cell sizes to
account for the shadow bitcells in the checkpointed register file. The addition of
these shadow bitcells increases the register file’s static energy consumption (be-
cause there are more transistors) and dynamic energy consumption per access
(because of the increased area and thus longer wires). An access to the shadow
bitcells either through the Checkpoint or Recover lines (see Section 6.1) incurs
the dynamic energy needed to access the correct register bank and read or write
the relevant shadow bitcells.

For our benchmarks, we chose the Spec2000 integer suite, except for eon be-
cause it is written in C++, which SUIF cannot directly compile. We did not use
any of the floating point benchmarks, as SUIF cannot compile programs written
in Fortran 90 or those written in Fortran 77 with language extensions. We ran
all benchmarks with the ref inputs for 100 million instructions after skipping
the initialization part and warming the caches and branch predictor for 100
million instructions. We determined the initialization part of each benchmark
by instrumenting the source code at the point where the main algorithm begins,
starting functional warming after the instrumented instruction.

7. COMMIT-BASED RELEASING

This section describes and evaluates commit-based early releasing techniques.
These schemes release registers after the commit of the instructions performing
the release. These approaches are attractive as the microarchitecture require-
ments are relatively modest. Four schemes are evaluated with varying impact
on the ISA. These are: using special NOOPs, releasing at branches, releasing
at procedures, and releasing through tagging the last use of each instruction.
This section describes the minimal architectural impact of each of the schemes
and provides a short description of the compiler analysis and ISA modifications
required.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

Exploring the Limits of Early Register Release • 12:15

7.1 Commit NOOPs

To implement early releasing techniques, ideally there should be as little impact
on the processor and ISA as possible. One approach is to release registers early
through a new instruction, to guarantee backward compatibility. We chose to
use a special NOOP, called a commit NOOP. These special NOOPs do not affect
the program’s semantics but simply hold an encoding of the registers that are
to be released. This allows the processor to release them early at the commit
stage.

7.1.1 Microarchitecture Changes and ISA Impact. The commit NOOPs
need to be dispatched in the same manner as any other instruction. They are
stored in the reorder buffer along with the other instructions so that they can
release a set of registers on commit. However, they are not executed, since they
perform no operation. When a commit NOOP is committed, the processor at-
tempts to release a set of registers early. To represent all 32 logical registers in
the processor, only 5 bits are needed. Each NOOP has 25 bits free allowing it
to release a maximum of 5 registers at commit. Unused slots in the NOOP en-
coding are used to free the zero register, which the processor ignores. Although
the use of commit NOOPs adds a new instruction to the ISA, no existing in-
structions are altered, so backward compatibility is maintained. This is true
for binaries containing NOOPs with the default encoding of the zero register in
these 25 free bits.

For each encoded register the retirement map table is accessed, the correct
physical register found, and the relevant checkpointed bit read. If the check-
pointed bit for a register is clear then, in the following cycle, it can be released
early after first copying its value to the checkpoint bitcells. If the checkpointed
bit is set, then the value held in the shadow bitcells of the physical register
is needed so the register cannot be released early. Each register that is re-
leased early is recorded in the register retirement map table by setting the
checkpointed bit, as described in Section 6.3. This technique requires modest
overheads: enough ports to access the checkpointed bits in the physical regis-
ters via the register retirement map table and check that they are set. Allowing
two commit NOOPs to commit each cycle means that there needs to be 10 extra
ports to the checkpointed bits.

7.1.2 Compiler Analysis. We use the compiler analysis described in Sec-
tion 5 to determine the final users of each register. Commit NOOPs are inserted
at the start of each basic block to release registers that have been used along
all paths before the basic block but are not live into it.

7.1.3 Results. Figure 6 shows the effect of releasing registers early through
this technique. As Figure 6(a) shows, several benchmarks experience a decrease
in IPC due to the commit NOOPs taking up processor resources (e.g., the reorder
buffer). Register file occupancy is normalized to be the difference between the
baseline (at 0%) and the oracle (at 100%) in Figure 6(b) (similar to Figure 3(d)).
The average register file occupancy is slightly reduced overall, bringing savings
of 2% of the maximum possible. This translates into average dynamic energy

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

12:16 • T. M. Jones et al.

Fig. 6. Releasing using commit NOOPs.

savings of 6% and average static energy savings of 16% in the register file, gcc
benefiting the most.

Although this technique shows some register file occupancy reduction and
energy savings, it loses performance and there remains significant room for
improvement. Therefore, this approach is not considered further.

7.2 Branches

As discussed in Section 7.1.3, the downside of using commit NOOPs is that
they take up processor resources. This scheme considers the case where branch
instructions have spare bits that can be used to release a set of registers early, in
much the same way as the commit NOOPs. The differences are that the branch
instruction is actually executed and that it occurs at the end of a basic block
rather than at the start, so it should release registers used in the block it belongs
to. Using branches also means that some blocks will not have their registers
released early because some do not terminate with a branch instruction.

The microarchitecture changes required to support releasing on branches
are exactly the same as for commit NOOPs, using just the checkpointed bits of
the physical registers and the register retirement map table. We release only 1
register, requiring 5 bits, at each branch instruction. The compiler analysis for
this scheme is similar to that used when releasing with commit NOOPs.

7.3 Procedures

Another approach to early releasing is to release caller-saved registers at calls
and returns because they are guaranteed not to be live afterward. The exact
set can be altered depending on the calling conventions the compiler wishes
to use and can be passed to the processor by a special NOOP, different to that
mentioned in Section 7.1, which encodes the set of registers the compiler will
use as caller saved. It can be placed at the start of the binary and whenever
the compiler alters its set of caller-saved registers to inform the processor of
the change. The processor can store the encoded registers in a small buffer and
release these on each call and return. As in Section 7.1, these NOOPs add an
instruction to the ISA but maintain backward compatibility.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

Exploring the Limits of Early Register Release • 12:17

Fig. 7. Individual commit releasing schemes.

7.4 Instruction Tagging

The final commit-releasing technique has the largest ISA impact and requires
two spare bits in each instruction, one for each source register. If either bit is
set, it indicates that this instruction is the last consumer of the register. The
microarchitecture changes needed to implement this scheme are the same as for
commit NOOPs in Section 7.1. Additionally, the hardware must be able to check
each source register’s last consumer bit and release the corresponding physical
register if set. Once again, the compiler analysis to find the last consumer of
each register is used, as described in Section 5.

7.5 Combined

By combining several commit releasing techniques, it may be possible to take
advantage of different approaches. Procedure releasing can be combined with
all other schemes. However, it does not make sense to combine releasing on
branches with tagging because they release the same registers: those that are
tagged just release slightly earlier (they do not have to wait for the branch
to commit). Hence, two new techniques are evaluated: branch and procedure
releasing, and tagging and procedure releasing.

7.6 Results

The results from the commit releasing techniques are shown in Figure 7. We
do not show performance because there is only a negligible change when using
these schemes (less than 0.1%). Figure 7(a) shows the percentage of registers
that are released early. On average, releasing at branches and at procedure
boundaries means that 19% and 9% of all registers are released early. However,
using the tagging approach means that 63% of all registers are released early
at commit, freeing the main physical register, which can be reused by another
instruction.

The impact of this is shown in Figure 7(b). This shows that tagging the last
use of each register gives the most register file occupancy reduction, gaining
52% of the benefits, on average. This translates to 7% dynamic and 26% static

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

12:18 • T. M. Jones et al.

Fig. 8. Releasing at procedures combined with other commit releasing schemes.

energy savings in the register file. Procedure releasing, on the other hand, saves
a similar amount of dynamic energy (6% dynamic and 10% static) even though it
has a lower occupancy reduction. This is because the tagging scheme checks the
physical register checkpointed bits many more times than when only releasing
at procedures, incurring a greater dynamic energy overhead.

For some benchmarks, however, releasing at procedure boundaries results
in a higher occupancy reduction than releasing through tagging (e.g., vpr, mcf,
parser, and perlbmk). In these applications, the time between final use and
redefinition of the registers released at procedure boundaries tends to be longer
than for other registers. Therefore, although fewer registers are released early,
those that are have more of an impact on register occupancy because a larger
fraction of register idle time is saved.

Combining several commit-based early releasing techniques can bring fur-
ther benefits. Figure 8(a) once again shows that using tagging means that al-
most two thirds of all registers are released early. In terms of occupancy re-
duction (shown in Figure 8(b)), releasing registers through tagging the last use
combined with procedure releasing gains 70% of the savings, almost the same
amount as the oracle when it releases at commit (it achieves 73%). This shows
that using the compiler with simple microarchitecture and ISA changes can
reduce the register file occupancy almost to the limit of that which is achiev-
able. This translates into a savings of 8% dynamic and 26% static energy in the
register file. Again, there is only a negligible impact on performance.

Table II shows the ISA changes required from using each commit-based ap-
proach, benefits, in terms of occupancy reduction from baseline to oracle and
register file energy savings that result. In terms of static energy savings, it
shows the reductions achieved through using the super-drowsy shadow bits,
described in Section 6.1, and without this circuit scheme (in brackets).

8. ISSUE-BASED RELEASING

As shown in the previous section, commit-based early releasing can be benefi-
cial to register occupancy. One advantage of these schemes is that they require
only modest hardware modifications. However, as we discovered in Section 4,

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

Exploring the Limits of Early Register Release • 12:19

Table II. Summary of Commit Releasing Schemes

Scheme Benefit Dynamic Static
Commit NOOPs 2% 6% 16% (10%)
Branches 38% 7% 24% (18%)
Procedures 47% 7% 26% (20%)
Tagging 52% 7% 26% (20%)
Branches & procedures 62% 8% 28% (22%)
Tagging & procedures 70% 8% 26% (20%)

We show the benefit in terms of available register file occupancy
reduction and dynamic register file energy savings. Static reg-
ister file energy savings are shown with (without) the super-
drowsy circuit for the shadow bitcells.

releasing a register at the issue, rather than the commit, of its consumer po-
tentially gives greater occupancy reduction at the cost of increased hardware
resources. Hence, this section describes and evaluates issue-based early releas-
ing techniques.

Figure 9 shows the cumulative benefits that can be gained from issue-based
releasing schemes. The x-axis shows the maximum number of uses a register
has before it is released early. So, for example, when releasing registers with
4 uses or fewer at commit, 46% of the register file occupancy savings are ob-
tained. However, releasing at the issue stage of the pipeline achieves a 74%
reduction.

Issue-based releasing allows the benefits to be quickly realized. In fact, re-
leasing all registers that are only used once (one-use) gains 53% of the occu-
pancy savings. Releasing two use as well gains 69%. This section only considers
releasing one-use and two use registers. Although there are benefits to releas-
ing three-use registers, our experiments have shown that in practice, these are
hard to obtain.

In this section, we consider the use of register renaming to pass information
from the compiler about the number of consumers each register has. Although
we could have used schemes such as those proposed in Section 7 (i.e., special
NOOPs or tagging), we chose to use register renaming because it requires only
a minor ISA change (see Section 8.1.1) and incurs no performance penalties.

The remainder of this section is structured as follows. Section 8.1 describes
the microarchitecture changes and compiler analysis required to release one-
use registers early. Section 8.2 then extends this to two-use registers. Finally,
Section 8.3 presents the results from these schemes.

8.1 One-Use Registers

Previous work [Franklin and Sohi 1992; Canal and González 2001] has dis-
covered that many registers only have one consumer instruction. This can be
exploited by releasing these registers (henceforth referred to as one-use regis-
ters) after the issue of their only consumer because they will not be read again
along any control path without first being redefined. As Figure 9 shows, ap-
proximately 57% of the benefit could be achieved from releasing such registers.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

12:20 • T. M. Jones et al.

Fig. 9. The cumulative increase in occupancy reduction from baseline to oracle, achieved by re-
leasing registers with a fixed number of consumers.

8.1.1 Compiler Analysis. The compiler analysis for identifying one-use
registers is described in Section 5. After this identification pass has been
performed, we rename all registers so that the one-use registers use a pre-
defined set of logical registers, and all others use a different set. The processor
knows which registers belong in the different sets. Therefore, when it decodes
an instruction that uses a register, it immediately knows whether this register
is one-use or not.

The first task is to rename all registers to virtual registers to separate out
different uses of the same logical register. This is because the first time a register
is defined it might be used just once, but the second time, it may be used many
times. Renaming to virtual registers assigns a unique virtual register number
to each new definition, completely removing the link between unrelated register
definitions.

The next step is to recreate the interference graph, which is then colored
with registers to get the final code. This graph coloring can never introduce spill
code because the same number of logical registers are available for allocation
as there were before they were renamed to virtual registers. For this, we use a
standard graph coloring technique, as described by Appel [2002].

Nodes with high degrees are colored first. A greedy algorithm is used to
select the node with the highest degree and coloring proceeds from a fixed
order of registers. One-use registers are allocated from one end of the predefined
ordering (e.g., r0, r1, . . .), multiuse from the other (e.g., r31, r30, . . .). Registers
at the end of the ordering are preferred, so as to keep the total number used to
a minimum.

These two ordering allocations can, of course, meet and overlap. In this case,
the register is considered a multiuse register to guarantee correctness. The
maximum number of multiuse registers ever needed across the entire program
is recorded. From this, the compiler can safely determine the number of one-
use registers. Experiments show that the entire ordering is never needed for

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

Exploring the Limits of Early Register Release • 12:21

multi-use values and that there is always room for at least five one-use registers.
However, if the compiler wanted to change this, it could easily do this through
the use of a special NOOP, called a usage NOOP, which could encode the new
number of one-use registers.

8.1.2 Microarchitecture Changes. Only simple changes to the microarchi-
tecture are needed to support the early release of one-use registers in the issue
stage of the processor. The register dispatch map table has a single bit added to
each logical register entry, which is called the early release bit. This is used to
determine, at dispatch, whether a register can be released early or not. These
bits are set through the use of a usage NOOP, which is stripped out of the
instruction stream at dispatch.

The reorder buffer is augmented with two extra bits per source register to
enable early releasing: an early release bit and a did early release bit. When
an instruction dispatches, the processor copies the early release bit for each of
its source registers from the dispatch map table into the early release bits in
the reorder buffer.

When the instruction issues, the checkpointed bit of each source physical
register is read at the same time as the relevant early release bit from the
reorder buffer. This is in parallel to reading the data held in the main part of
the register. For early releasing to take place safely, the early release bit should
be set and the checkpointed bit unset (to show that there is no valid data in the
shadow cells of the physical register). If early releasing takes place, then in the
following cycle, the did early release bit is set for the source registers that are
released early.

When an instruction commits, the did early release bit for each source reg-
ister is copied to the register retirement map table for use in the event of an
interrupt or exception. The previous version of its logical destination register
is also released, as described in Section 6.3.

On a branch misprediction, some instructions that released registers early
may be squashed. By consulting the did early release bits of instructions being
squashed, registers that were released early can be restored for the correct user
to read.

The overhead of this scheme, in addition to those described in Section 6.3, is
2 bits per source register in the reorder buffer. This equals 512 bits in total.

8.1.3 Static and Dynamic One-Use Registers. The most basic technique for
releasing one-use registers early is to provide a certain number of fixed, one-
use registers. Through analysis of the register requirements of the benchmark
programs, five of the registers can be reserved for use as one-use registers. This
is called a static number of one-use registers because these five are only ever
used as one-use registers to be released early, never as multiuse registers.

A more complex but flexible scheme adapts the number of one-use registers
to the changing requirements of the program. The number of these registers is
fixed on a per-procedure basis through the use of a usage NOOP. The number
encoded in them sets the number of registers from the predefined ordering that
will be one-use until another usage NOOP alters them again. This approach is

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

12:22 • T. M. Jones et al.

called a dynamic number of one-use registers because the number changes as
the program executes.

8.2 Two-Use Registers

With the ability to release one-use registers early, the natural next step is to
increase this to allow two-use registers to also be released early. The compiler
analysis must change to identify these registers. However, the changes are
simple and only require that along every path in the control flow graph from
a defining instruction, the register defined is used exactly twice before being
redefined. Both a static and dynamic number of two-use registers are consid-
ered. In the static approach, four registers are used for one-use values and a
single register for two-use. In the dynamic case, the number of one- and two-use
registers is encoded in a usage NOOP as before.

8.2.1 Compiler Analysis. The compiler analysis to find two-use registers is
described in Section 5. Logical registers are renamed to virtual registers, one-
use and two-use registers are identified and the interference graph created,
as in Section 8.1.1. Coloring proceeds from the fixed ordering, as before, with
two small changes. When a dynamic number of one- and two-use registers are
being allocated, the one-use registers are allocated first from one end of the
ordering, then the two-use, with the condition that no register that has been
designated one-use anywhere in the procedure can be allocated to a two-use
register. This is to ensure that a register is either one-use, two-use, or multiuse
for the whole procedure. In the case of allocating a static number of one- and
two-use registers, specific registers are designated one-use or two-use and these
are used, if there is no interference, when allocating a register of the respective
type.

8.2.2 Microarchitecture Changes. The changes to the microarchitecture
needed to support the early release of two-use registers in addition to one-
use are simple. The register map tables and reorder buffer are altered in a
similar way to that described in Section 8.1.2, and some further additions are
also made. The register dispatch map table, instead of having an early release
bit, is given two extra bits per entry to indicate whether a register is one-use,
two-use, or multiuse. It also gets an extra bit, called the last user flag, which
indicates whether an instruction is the last user of a physical register. It is set
to one for a newly renamed one-use register, or zero otherwise.

When an instruction dispatches the early release bits in reorder buffer entry
are set if the corresponding logical source register is one-use or two-use (as
indicated in the dispatch map table) and the last user flag is set as previously
described. Once the instruction has dispatched, the last user flag is reversed.
This means that a two-use register will only be released early once, by its second
consumer instruction.

Along with a checkpointed bit for each physical register, several bits are
needed to count the number of consumer instructions that have to issue. This is
called the consumer counter, and for releasing two-use registers, it only needs
to be 1 bit. When an instruction issues, it can release the physical register

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

Exploring the Limits of Early Register Release • 12:23

Fig. 10. Releasing one-use and two-use registers.

early if the checkpointed bit is unset, the consumer counter is zero, and the
early release bit in its reorder buffer entry is set. This means that only the
second consumer of a two-use register can release a physical register early and
only if it issues after the first consumer. This may lead to missed opportunities
to release a register early but is important so that recovery from branch mis-
predictions is not too complex. In fact, recovery from branch mispredictions is
the same as described in Section 8.1.2 for one-use registers.

The overhead of this scheme is 3 bits per entry in the dispatch map table, 2
bits in the reorder buffer per source, as before, and a bit per physical register.
Again, there is only a minor ISA impact for this early releasing scheme due to
the addition of a usage NOOP.

8.3 Results

The results from releasing one- and two-use registers are shown in Figure 10.
Figure 10(a) shows the percentage of registers that are released early. In gen-
eral, all four schemes perform well, releasing over half of all registers early, on
average. This translates into register file occupancy changes, as can be seen in
Figure 10(b). It is clear that releasing one-use registers is beneficial. However,
it appears that dynamically changing the number of one-use registers does not
give much of an improvement over having a static number. This is because the
majority of procedures only need a few one-use registers so providing only five
in the static case achieves most of the benefits.

There is a negligible performance impact from using these schemes, apart
from in gcc and vortex. These benchmarks lose 2% and 4% IPC, respectively,
when using the dynamic one-use and dynamic two-use schemes. This loss of
performance is due to the usage NOOPs that are inserted to change the register
mappings.

Releasing a static number of one- and two-use registers brings some benefits.
However, when a dynamic number are set, further improvement occurs. For
example, crafty experiences an increase from 43% of the difference in occupancy
in the static case to to 55% in the dynamic case. This is because some procedures

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

12:24 • T. M. Jones et al.

Table III. Summary of Issue Releasing Schemes

Scheme Benefit Dynamic Static
Static one-use 40% 6% 24% (18%)
Dynamic one-use 42% 6% 24% (18%)
Static one- and two-use 42% 6% 24% (19%)
Dynamic one- and two-use 46% 6% 25% (19%)

We show the benefit in terms of available register file occupancy re-
duction and dynamic register file energy savings. Static register file
energy savings are shown with (without) the super-drowsy circuit for
the shadow bitcells.

have more than the single two-use register that is provided and this can be
exploited when usage NOOPs are used to alter the number available.

Not all the benefits that are available from releasing one-use registers, sug-
gested by Figure 9, are obtained, as discussed in Section 5. Some registers are
one-use along one path through the control-flow graph but have several uses
along another. They cannot be classified as one-use since it is not known at
compile time, which path will be taken, so if the one-use path is actually the
correct one when the program runs, an opportunity to release early is missed.

A summary of the issue-based releasing schemes is given in Table III. All
techniques gain at least 40% of the register file occupancy savings, with dynamic
two-use releasing reaching 46%. Dynamic energy savings in the register file are
6% for each scheme and static register file energy savings range from 24% to
25%.

9. COMBINED APPROACHES

This section evaluates techniques that combine issue and commit releasing,
aiming to further improve occupancy reduction. The three commit-based and
four issue-based schemes described in Sections 7 and 8 are combined together.
The combinations vary in terms of their performance and hardware/ISA impact.
It then recommends three compiler-based schemes that could be used depend-
ing on your design requirements. It presents the dynamic and static energy
savings that they achieve in the register file. The combined schemes work by
releasing registers both at the issue and commit stages of the pipeline.

9.1 Results

Figure 11(b) shows the reduction in occupancy when commit-based procedure
releasing is added to each issue-based scheme. The results are within 13% of
the limit of benefits when combining with dynamic two-use registers. Releasing
static one-use registers and procedure releasing achieves within 14% of the
limit, or gains 86% of the available benefits, and this requires little modification
to the microarchitecture.

Combining commit-based tagging to the issue-based schemes achieves less
impressive results, giving, on average, around 56% of the available register file
occupancy reduction, as shown in Figure 12(b). However, by using both commit
releasing techniques with one-use and two-use releasing, savings close to 6%

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

Exploring the Limits of Early Register Release • 12:25

Fig. 11. Combining issue releasing with procedure commit releasing.

Fig. 12. Combining issue releasing with tagging commit releasing.

of the limit can be achieved, or 94% of the benefits gained. This is shown in
Figure 13(b). This requires major changes to the ISA, and microarchitecture
should be used only if reducing the register file occupancy is a major concern.
Otherwise, early releasing implemented with static one-use issue releasing and
commit releasing on procedures gives a good trade-off between savings and
changes to the microarchitecture.

In general, tagging registers means that dynamic energy savings are limited
due to the overhead in accessing the checkpointed bits frequently to determine
whether a register can be released early. Although a smaller occupancy re-
duction is achieved using procedure commit-based releasing, the infrequent
checking of the checkpointed bits means that there is less of an overhead and
consequently greater dynamic energy savings can be achieved.

In all these combined schemes, the impact on performance is similar to just
using issue-based early releasing alone (Section 8.3). In summary, there is a
negligible change in IPC for all benchmarks apart from gcc and vortex, which
lose 2% and 4% performance, respectively, when using usage NOOPS in the
dynamic schemes.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

12:26 • T. M. Jones et al.

Fig. 13. Combining issue releasing with tagging and procedure commit releasing.

Table IV. Summary of Recommendations

Requirement Procs Tagging Dyn 1&2 Benefit Dynamic Static
Minimal hardware Yes Yes 70% 8% 26% (24%)
Backwards compatible Yes Yes 87% 8% 32% (27%)
Lowest occupancy Yes Yes Yes 94% 8% 33% (29%)

The benefit is the reduction in register file occupancy, dynamic is the dynamic energy savings
made in the register file, static is the static energy savings made in the register file with
(without) using a super-drowsy circuit for the shadow bitcells.

9.2 Recommendations

Having evaluated our compiler approaches, this section recommends three
schemes that could be implemented, depending on limitations of the
processor.

Table IV shows a summary of the recommended schemes. If the ISA im-
pact is to be kept to a minimum, then using dynamic one- and two-use, issue-
based releasing combined with commit releasing at procedures is suggested, as
this introduces an additional instruction to the ISA but maintains backward
compatibility. If the changes to the microarchitecture are to be minimal, then
only commit-based releasing should be used. The lowest occupancy is given by
the dynamic two-use, issue-based releasing with both commit-based releasing
techniques.

Figure 14 shows the normalized dynamic and static energy savings in the
register file for the recommended schemes. Also shown are the energy savings
that can be achieved on the baseline simply by turning off empty register file
banks, with no further optimizations. All compiler approaches achieve 8% dy-
namic energy savings in the register file (the increasing overheads for the more
complex schemes outweigh the gains achieved through more aggressive early
releasing). The Minimal hardware approach has the lowest static energy sav-
ings of 26% in the register file, shown in Figure 14(b). This is because it only
manages to gain 70% of the available benefits. The other schemes manage bet-
ter with Backward compatible achieving 32% static energy savings from 87%

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

Exploring the Limits of Early Register Release • 12:27

Fig. 14. Normalized dynamic and static register file energy reduction for recommended compiler-
directed early releasing schemes.

Fig. 15. Effects of reducing the register file size.

of the occupancy benefits and Lowest occupancy gaining 94% of the benefits,
converted to 33% static energy savings in the register file.

10. REGISTER FILE SIZE SENSITIVITY

To verify that the approaches are not specific to a particular register file size, we
performed experiments, which decrease the number of registers from 96 (as in
the original configuration) to 40 (when only 8 registers are available for holding
noncommitted values, the others being used to store the 32 logical registers). We
made a comparison between the recommended techniques (Minimal hardware:
procedure and tagging commit; Backward compatible: dynamic two use with
procedures; and Lowest occupancy: dynamic two use with both commit schemes)
and approaches proposed by Monreal et al. [2002], Ergin et al. [2004] and Martin
et al. [1997]. We also show the baseline and oracle.

Figure 15(a) shows the IPC for all schemes and Figure 15(b) shows the
register file occupancy. As shown, all three of our recommended schemes
considerably outperform state-of-the-art approaches across all register file
sizes. For large register file sizes, the schemes have better occupancy reduction,

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

12:28 • T. M. Jones et al.

while for small register files, they have superior IPC, approaching the oracle
performance in both cases.

As the register file size decreases so does the IPC, although our schemes are
always better than the others almost achieving the IPC gains of the oracle. In
fact, with a register file size of only 48 entries the IPC of Lowest occupancy is
still as good as the baseline with 96 entries. The Monreal, Ergin, and Martin
schemes do manage to maintain the same IPC as the baseline, and increase
it for small register files, but the compiler techniques presented in this article
are consistently better. For example, when there are only 40 registers available
then Lowest occupancy increases the IPC from 0.71 to 0.99, an increase of 39%,
whereas Martin manages an increase of 21%, Ergin 15%, and Monreal only 8%.

The effects of reducing the register file size on the occupancy are shown in
Figure 15(b). With large register file sizes, our schemes considerably reduce the
register pressure, far more than Monreal, Ergin, or Martin. In fact, even with a
register file size of 40, Lowest occupancy reduces the register pressure by 11%
(from 39 to 35), whereas Martin can only reduce it by 5% (to 37). Overall, the
recommended schemes are able to maintain higher IPC and reduce register
pressure, allowing greater energy savings across all configurations.

11. CONCLUSIONS

This article presented a detailed study of early register releasing with com-
piler support. We have proposed two types of compiler-directed early releasing,
commit-based and issue-based, and shown that together they can reduce regis-
ter pressure significantly. We have implemented an oracle and found that the
best compiler analysis is almost as accurate as this oracle. Our best compiler ap-
proach with significant, but realistic changes to the hardware can make savings
of 94% of the total. Alternatively, a scheme that maintains backward compatibil-
ity with existing binaries can achieve 87% of the maximum occupancy reduction
available, or another with minimal hardware changes gains 70% of the benefits.
Comparing our techniques to two recently proposed hardware early releasing
schemes and one previous compiler-directed approach shows that the register
pressure can be significantly improved. Furthermore, our schemes are supe-
rior across all register file sizes. In summary, our compiler-directed schemes for
early release can approach the limits of that which is possible, out-performing
state-of-the-art techniques while relying on less complex hardware.

REFERENCES

ABELLA, J. AND GONZÁLEZ, A. 2003. On reducing register pressure and energy in multiple- banked
register files. In Proceedings of the 21st International Conference on Computer Design (ICCD-21).
IEEE, Los Alamitos, CA.

APPEL, A. W. 2002. Modern Compiler Implementation in Java. Cambridge University Press,
Cambridge, UK.

BALASUBRAMONIAN, R., DWARKADAS, S., AND ALBONESI, D. H. 2001. Reducing the complexity of the
register file in dynamic super-scalar processors. In Proceedings of the 34th International Sympo-
sium on Microarchitecture (MICRO-34).ACM, New York.

BORCH, E., MANNE, S., EMER, J., AND TUNE, E. 2002. Loose loops sink chips. In Proceedings of the
8th International Symposium on High-Performance Computer Architecture (HPCA-8). IEEE, Los
Alamitos, CA.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

Exploring the Limits of Early Register Release • 12:29

BROOKS, D., TIWARI, V., AND MARTONOSI, M. 2000. Wattch: A framework for architectural-level
power analysis and optimizations. In Proceedings of the 27th International Symposium on Com-
puter Architecture (ISCA-27). ACM, New York.

BURGER, D. AND AUSTIN, T. 1997. The simple-scalar tool set, version 2.0. Tech. rep. TR1342,
University of Wisconsin-Madison.

BUTTS, J. A. 2004. Optimizing inter-instruction value communication through degree of use pre-
diction. Ph.D. thesis, University of Wisconsin-Madison.

BUTTS, J. A. AND SOHI, G. S. 2004. Use-based register caching with decoupled indexing. In
Proceedings of the 31st International Symposium on Computer Architecture (ISCA-31). ACM,
New York.

CANAL, R. AND GONZÁLEZ, A. 2001. Reducing the complexity of the issue logic. In Proceedings of
the 15th International Conference on Super-Computing (ICS-15). ACM, New York.

CRUZ, J.-L., GONZÁLEZ, A., VALERO, M., AND TOPHAM, N. P. 2000. Multiple-banked register file archi-
tectures. In Proceedings of the 27th International Symposium on Computer Architecture (ISCA-
27). ACM, New York.

EMER, J. 2001. Ev8: The post-ultimate alpha. In Proceedings of the 10th International Conference
on Parallel Architectures and Compilation Techniques (PACT’01). (Keynote.) ACM, New York.

ERGIN, O., BALKAN, D., GHOSE, K., AND PONOMAREV, D. 2004. Register packing: Exploiting narrow-
width operands for reducing register file pressure. In Proceedings of the 37th International Sym-
posium on Microarchitecture (MICRO-37). ACM, New York.

ERGIN, O., BALKAN, D., PONOMAREV, D., AND GHOSE, K. 2004. Increasing processor performance
through early register release. In Proceedings of the 22nd International Conference on Computer
Design (ICCD-22). IEEE, Los Alamitos, CA.

FRANKLIN, M. AND SOHI, G. S. 1992. Register traffic analysis for streamlining inter-operation com-
munication in fine-grain parallel processors. In Proceedings of the 25th International Symposium
on Microarchitecture (MICRO-25). ACM, New York.

GONZÁLEZ, A., GONZÁLEZ, J., AND VALERO, M. 1998. Virtual-physical registers. In Proceedings of the
4th International Symposium on High Performance Computer Architecture (HPCA-4). IEEE, Los
Alamitos, CA.

GUNTHER, S. H., BINNS, F., CARMEAN, D. M., AND HALL, J. C. 2001. Managing the impact of increasing
microprocessor power consumption. Intel Tech. J. Q1.

HU, Z. AND MARTONOSI, M. 2000. Reducing register file power consumption by exploiting value
lifetime. In Proceedings of the Workshop on Complexity Effective Design (WCED) in Conjunction
with the 27th International Symposium on Computer Architecture (ISCA-27). ACM, New York.

JONES, T. M., O’BOYLE, M. F., ABELLA, J., AND GONZÁLEZ, A. 2005. Software directed issue queue
power reduction. In Proceedings of the 11th International Symposium on High-Performance Com-
puter Architecture (HPCA-11). IEEE, Los Alamitos, CA.

JONES, T. M., O’BOYLE, M. F. P., ABELLA, J., GONZÁLEZ, A., AND ERGIN, O. 2005. Compiler directed
early register release. In Proceedings of the 14th International Conference on Parallel Architec-
tures and Compilation Techniques (PACT). ACM, New York.

KIM, N. S., FLAUTNER, K., BLAAUW, D., AND MUDGE, T. 2004. Single-VDD and single-VT super-
drowsy techniques for low-leakage high-performance instruction caches. In Proceedings of the
International Symposium on Low-Power Electronics and Design (ISLPED). ACM, New York.

KIM, N. S. AND MUDGE, T. 2003. The microarchitecture of a low-power register file. In Proceed-
ings of the International Symposium on Low-Power Electronics and Design (ISLPED). ACM,
New York.

LIPASTI, M. H., MESTAN, B. R., AND GUNADI, E. 2004. Physical register in lining. In Proceedings of
the 31st International Symposium on Computer Architecture (ISCA-31). ACM, New York.

LO, J. L., PAREKH, S. S., EGGERS, S. J., LEVY, H. M., AND TULLSEN, D. M. 1999. Software-directed
register deallocation for simultaneous multithreaded processors. IEEE Trans. Paral. Distrib.
Syst. 10, 9.

MARTIN, M. M., ROTH, A., AND FISCHER, C. N. 1997. Exploiting dead value information. In Proceed-
ings of the 30th International Symposium on Microarchitecture (MICRO-30). ACM, New York.

MARTINEZ, J. F., RENAU, J., HUANG, M. C., PRVULOVIC, M., AND TORRELLAS, J. 2002. Cherry: Check-
pointed early resource recycling in out-of-order microprocessors. In Proceedings of the 35th
International Symposium on Microarchitecture (MICRO-35). ACM, New York.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

12:30 • T. M. Jones et al.

MONREAL, T., VIÑALS, V., GONZÁLEZ, A., AND VALERO, M. 2002. Hardware schemes for early register
release. In Proceedings of the International Conference on Parallel Processing (ICPP). IEEE, Los
Alamitos, CA.

MOUDGILL, M., PINGALI, K., AND VASSILIADIS, S. 1993. Register renaming and dynamic speculation:
An alternative approach. In Proceedings of the 26th International Symposium on Microarchitec-
ture (MICRO-26). ACM, New York.

PARK, I., POWELL, M. D., AND VIJAYKUMAR, T. N. 2002. Reducing register ports for higher speed and
lower energy. In Proceedings of the 35th International Symposium on Microarchitecture (MICRO-
35). ACM, New York.

SAVRANSKY, G., RONEN, R., AND GONZÁLEZ, A. 2004. Lazy retirement: A power aware register man-
agement mechanism. In Proceedings of the Workshop on Complexity Effective Design (WCED) in
Conjunction with the 27th International Symposium on Computer Architecture (ISCA-27). ACM,
New York.

SMITH, M. D. AND HOLLOWAY, G. 2000. The Machine-SUIF documentation set.
http://www.eecs. harvard.edu/machsuif/software/software.html.

TARJAN, D., THOZIYOOR, S., AND JOUPPI, N. P. 2006. CACTI 4.0. Tech. rep. HPL-2006-86, HP Labo-
ratories Palo Alto.

TRAN, L., NELSON, N., NGAI, F., DROPSHO, S., AND HUANG, M. 2004. Dynamically reducing pressure
on the physical register file through simple register sharing. In Proceedings of the International
Symposium on Performance Analysis of Systems and Software. IEEE, Los Alamitos, CA.

TSENG, J. H. AND ASANOVIĆ, K. 2003. Banked multiported register files for high-frequency super-
scalar microprocessors. In Proceedings of the 30th International Symposium on Computer Archi-
tecture (ISCA-30). ACM, New York.

WALLACE, S. AND BAGHERZADEH, N. 1996. A scalable register file architecture for dynamically sched-
uled processors. In Proceedings of the 5th International Conference on Parallel Architectures and
Compilation Techniques (PACT). ACM, New York.

Received June 2008; revised October 2008; accepted April 2009

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 3, Article 12, Pub. date: September 2009.

