
Reducing False Sharing on Shared Memory Multiprocessorsthrough Compile Time Data TransformationsTor E. JeremiassenAT&T Bell Laboratories�600 Mountain Ave.Murray Hill, New Jersey 07974tor@research.att.com Susan J. EggersDepartment of Computer Science and EngineeringUniversity of WashingtonSeattle, Washington 98195eggers@cs.washington.eduAbstractWe have developed compiler algorithms that analyze explic-itly parallel programs and restructure their shared data toreduce the number of false sharing misses. The algorithmsanalyze per-process shared data accesses, pinpoint the datastructures that are susceptible to false sharing and choosean appropriate transformation to reduce it. The transfor-mations either group data that is accessed by the same pro-cessor or separate individual data items that are shared.This paper evaluates that technique. We show throughsimulation that our analysis successfully identi�es the datastructures that are responsible for most false sharing misses,and then transforms them without unduly decreasing spatiallocality. The reduction in false sharing positively impactsboth execution time and program scalability when executedon a KSR2. Both factors combine to increase the maximumachievable speedup for all programs, more than doublingit for several. Despite being able to only approximate ac-tual inter-processor memory accesses, the compiler-directedtransformations always outperform programmer e�orts toeliminate false sharing.1 IntroductionOn bus-based, shared memory multiprocessors, much of the\unnecessary" bus tra�c, i.e., that which could be elimi-nated with better processor locality [AG88], is coherencyoverhead caused by false sharing [TLH94, EJ91]. False shar-ing occurs when multiple processors access (both read andwrite) di�erent words in the same cache block. Although theprocessors do not actually share data, they incur its costs,because coherency operations manipulate cache blocks. Ina write-invalidate coherency protocol the overhead of falsesharing takes the form of extra invalidations when a proces-sor updates data and extra invalidation misses when other�This work was performed while the author was at the Universityof Washington.This work was supported by IBM Contract No. 18830046, ONRGrant No. N00014-92-J-1395, NSF PYI Award #MIP-9058-439, andNSF grants CCR-9200832 and CDA-9123308.

processors reread di�erent data that reside in the invalidatedcache block.False sharing is caused by a mismatch between the mem-ory layout of write-shared data and the cross-processor mem-ory reference pattern to it. By changing the way shared datais laid out in memory to better conform to the memory refer-ence pattern, false sharing can be eliminated. In particular,all data that are accessed by the same processor should begrouped together, improving processor locality. Individualdata objects that are accessed by multiple processors shouldbe separated and padded to the size of a cache block. Al-though this restructuring reduces false sharing, applying ituniversally may have a negative impact on spatial localitythat outweighs the gain in processor locality. Therefore, itis important to carefully balance the tradeo� between pro-cessor and spatial locality, so as to maximize program per-formance.To this end we have developed and incorporated into theParafrase-2 [PGH+89] source-to-source restructurer a seriesof compiler algorithms [JE92, JE94] and a suite of datatransformations. The algorithms analyze explicitly paral-lel programs; they produce information about each proces-sor's memory reference patterns that identi�es data struc-tures susceptible to false sharing, decide whether transform-ing them will pay o� and then choose appropriate transfor-mations.This paper evaluates that technique. We show throughsimulation that the analysis successfully identi�es the datastructures responsible for most false sharing misses, andmakes appropriate tradeo�s between eliminating false shar-ing and reducing spatial locality. For example, with 128 bytecache blocks, 70% of the cache misses in our workload aredue to false sharing. The transformations eliminate 80% ofthem, while increasing other types of misses by only 19%.The overall e�ect reduces the total number of cache missesby half. No single transformation is responsible for the falsesharing reductions, even within a single program: all areimportant contributors to improved performance.The reduction in false sharing misses has two e�ects onrun-time performance as measured on a KSR2: reductionsin execution time and improved program scalability. Of thetwo, improved scalability (better performance with increas-ing numbers of processors) is the decisive factor. Memorycontention from false sharing in the untransformed programsgrows more than linearly with the number of processors. Thecompiler-directed transformations alleviate this bottleneck,and extend scalability, often to the point where the max-imum achievable speedup more than doubles. Before thepoint at which the performance of the unoptimized programsno longer scales, the compiler-optimized programs still have



lower execution times, ranging from a modest (2%) to a moresizable (58%) amount.We also compare the compiler-optimized approach to sev-eral programs in which considerable programming e�ort hadbeen expended to improve data locality, including eliminat-ing false sharing. Despite being able to only approximateactual inter-processor memory accesses, the compiler analy-sis always outperforms programmer hand-tuning, often sub-stantially.The next section identi�es the parallel programmingparadigm for which our algorithms are appropriate and de-scribes the particular model used in our workload. Sec-tion 3 presents a brief overview of our compile time analysis,and describes the shared data transformations and heuris-tics for applying them. Section 4 describes our methodologyand workload. Section 5 presents the experimental resultswhich are the contribution of this paper. They are based onboth simulation and execution time experiments and com-pare compiler-optimized programs to both unoptimized andhand-optimized programs. Related work is discussed in sec-tion 6, and section 7 concludes.2 Model of Parallel ProgrammingOur analysis and transformations are appropriate for sharedmemory paradigms where accesses to shared data can beparameterized by variables that have di�erent values for dif-ferent processes. Examples of these variables include induc-tion variables of FORALL loops in HPF [Hig93] and privatevariables, such as pid in Figure 1, in the fork/join model.Our current implementation targets programs that use thelatter: coarse-grained, explicitly parallel C programs thatexecute on shared memory multiprocessors. Examples ofsuch programs can be found in the Stanford SPLASH appli-cation suite [SWG91]. These programs currently execute onsmall to medium scale multiprocessors, both commercially(e.g., Sequent Symmetry [LT88], SGI Challenge [GW94],SPARCcenter 2000 [M. 93], and the KSR2 [Ken94] ) andin research environments (e.g., DASH [LLG+92], FLASH[LLG+94]).The granularity of parallelism in these programs is coarse,on the level of an entire process. Our analysis assumes thenumber of processes equals the number of processors andprocesses do not migrate. (This restriction can be relaxedto allow a larger number of processes, but the analysis maythen overestimate the amount of false sharing between theprocessors.) The programs conform to an SPMD model ofparallel programming: the processes all have identical code,but they need not take the same paths through the code.They may or may not access di�erent data.Processes are created explicitly, e.g., using a fork() systemcall (illustrated in Figure 1). They are typically spawned ina loop that iterates over the number of processes; each valueof the induction variable (e.g., pid) is stored in a private (toeach process) variable as a de facto process identi�er. Wecall this variable a process di�erentiating variable (PDV).Process synchronization is performed using both locks andglobal barriers. Locks are used to enforce mutual exclusion,i.e., they serialize access to critical sections. Barriers sep-arate phases of program execution. When the control 
owof a process reaches a barrier, it must wait until all partic-ipating processes also reach it. Barriers are often used inshared memory multiprocessors as a (relatively) inexpensivemechanism to enforce large sets of cross-process data depen-dences that otherwise would have to be enforced by a large

number of locks.1While our workload consists of programs written in C,our compile-time analysis and transformations rely on prop-erties that are more restrictive than what the C program-ming model provides. The most important constraints in-volve pointers and separate compilation (a full descriptionwill appear in [Jer95]).While our model allows for pointers, the full generalityof pointers in C is restricted to reduce pointer aliasing ofstatically allocated data to that induced by pointer typeparameters to functions. For example, pointers may onlypoint to objects of the same type as in their declarations,and pointer arithmetic and indirection through arithmeticexpressions are disallowed.In order to ensure that any shared data transformation isapplied universally to all accesses to a target data structure,separate compilation is restricted to only those modules thatdo not access shared data that may be targeted for transfor-mation.3 Compile-time Analysis and Transfor-mationsSince this paper evaluates the ability of the static analysisto eliminate false sharing rather than the algorithms per se,we provide only an overview of the analysis and transforma-tions. Section 3.1 brie
y describes the compile-time analysisused to pinpoint data structures that are susceptible to falsesharing. Section 3.2 illustrates how our four transformationseliminate false sharing, and Section 3.3 discusses under whatconditions they are applied.3.1 Compile-time AnalysisIn order to determine which data structures are suscepti-ble to false sharing, where locality may be improved, andwhich transformations to apply at compile time, we ana-lyze a program and compute an approximation of the mem-ory access pattern of each of its processes. This compileranalysis involves three separate stages. The �rst uses inter-procedural analysis of the control 
ow to determine whichsections of code each process executes, and annotates thenodes of the control-
ow graphs accordingly [JE92]2. Thesecond performs non-concurrency analysis [MR93] interpro-cedurally by examining the barrier synchronization patternof the program, delineating the phases that cannot exe-cute in parallel and computing the 
ow of control betweenthem [JE94]. The third stage performs an enhanced in-terprocedural, 
ow-insensitive, summary side-e�ect analysis[Bar78, Ban79, Mye81, CK88b] and static pro�ling on a per-process basis (based on the control 
ow determined in stageone) for each phase (determined in stage two).Per-process references to shared data occur either as aresult of the processes executing di�erent code (and thus ac-cessing di�erent shared data) or by the implicit partitioningof arrays across the processes when they execute the samecode. Per-process control-
ow analysis (stage 1) detects the�rst case, and summary side-e�ect analysis and process dif-ferentiating variables (PDVs)3 (stage 3) help detect the sec-1HPF has direct counterparts to constructs in the fork/join model.For example, iterations of FORALL loops are \forked" implicitly; val-ues of the FORALL induction variables could act as a PDVs; and thereis an implicit barrier after a FORALL.2This reference describes the general technique, but an implemen-tation we no longer use.3As mentioned in section 2, process di�erentiating variables areprivate variables that have values that vary across the processes andare invariant throughout the lifetime of the processes. pid in Figure 1
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Work() {

while (converged != 0) {

SubPart1(pid);

SubPart2(pid);

private int pid;

shared int NumProcs;

if (pid == 1)

.

converged = TestConverged();

cell2 = value2[proc];

}

}

exit(0);

for ( pid = 1; pid < NumProcs; pid++) {

Work();

if (fork() == 0) {

}

}

Work();

(a) (b) (c)

shared barrier_t Barr1, Barr2, Barr3;

Wait_Barrier(&Barr1);

Wait_Barrier(&Barr2);

Wait_Barrier(&Barr3);

int proc;

SubPart1(proc)

cell1 = value1[proc];

Figure 1: Example program segments that illustrates the use of a process di�erentiating variable in process creation (a),per-process control 
ow (b), and shared data access (c) in our parallel program model.ond. The side-e�ect analysis represents the sections of eacharray that each process accesses using bounded regular sec-tion descriptors4 to describe the index expressions [HK91].When a regular section descriptor contains a PDV in theindex expressions, we test whether the descriptor identi�esdisjoint sections of the array for di�erent values of the vari-able. The array is implicitly partitioned across processes ifthe sections are disjoint. The per-process control-
ow anal-ysis, on the other hand, identi�es control statements wherethe control 
ow of di�erent processes diverges, and uses thisinformation to compute a separate control-
ow graph foreach process. Analyzing shared arrays and structures thatare indexed by PDVs, and applying the side e�ect analy-sis to the separate control-
ow graphs yields the sections ofshared data that each process reads and writes.We improve upon traditional summary side-e�ect analysisin two respects. First, to improve its accuracy we allowmultiple regular section descriptors [CK88a, HK91] and onlymerge them when very little or no information will be lost,or when the number of descriptors for a single array exceedssome small preset limit. (None of the arrays used in ourbenchmarks required more than 10 descriptors). Second, topinpoint data structures most responsible for false sharing,we use static pro�ling to produce a weighting of the side-e�ects with respect to estimated execution frequency.The non-concurrency analysis (stage 2) uses barrier syn-chronization points to determine which portions of a pro-gram can execute in parallel and which cannot. It thereforedetects the memory access pattern of distinct phases of aprogram between barriers, and, more importantly, when thepattern shifts. Coupled with static pro�ling, it determinesthe dominant sharing pattern in the program and restruc-tures shared data for that pattern.Including all techniques in the source-to-source restruc-turer had little impact on the overall compile costs. Whentechniques commonly used in optimizing compilers (such asis an example.4A bounded regular section descriptor is a vector of subscript posi-tions in which each element describes the accessed portion of the arrayin that dimension. Each element is either a simple, invariant expres-sion of program variables or constants (when the index expression forthat dimension does not contain an induction variable), a range (giv-ing simple, invariant expressions for the lower bound, upper boundand stride), or unknown (when the index expressions are too complexor variable).

call and 
ow graph construction, alias, dependence and loopanalysis) were included in our source-to-source restructurer,the execution time of our algorithms made up only 5% (onaverage) of the total running time.3.2 Shared Data TransformationsIn order to eliminate false sharing, data must be restruc-tured so that (1) data that are only, or overwhelmingly, ac-cessed by one processor are grouped together, and (2) writeshared data objects with no processor locality [AG88] do notshare cache lines. Two transformations, originally devisedfor manual application, group and transpose and indirection[EJ91], address item (1); the third, pad and align, is wellknown and addresses item (2).Group & Transpose: Group & transpose (Figure 2a)physically groups per-process data together by changing thelayout of the data structures in memory. It gathers vectorsin which adjacent elements are accessed by di�erent proces-sors into a group and then transposes it. If each processor'sdata is less than the cache block size, it may be padded, sothat no two processors' data share a cache block. In addi-tion to eliminating false sharing misses, this transformationimproves spatial locality.Indirection: When it is not possible to physically changethe data layout (because, for example, the a�ected per-process data structure is embedded into the elements of adynamically allocated list or graph), we can achieve a similare�ect by using indirection. Indirection (Figure 2b) allocatesdata areas of memory for each processor, places shared datainto them, and locates the shared data with pointers thatreplace the values in the original data structures. Unlikegroup and transpose, indirection has two possible sources ofrun time overhead: additional space for the pointers, and anadditional memory access for each reference to the data.Pad & Align: The third transformation pads and alignson cache block boundaries data (scalars or array elements)that are falsely shared in the short term but write-sharedby all processes over time. Padding the data structures in-creases the data set size, and may therefore increase con-
ict and capacity misses, and reduce spatial locality when
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Processor 2Figure 2: Illustration of (a) group & transpose and (b) indirection.a processor accesses the entire shared area. However, judi-cious use of padding need not have these e�ects. In orderfor spatial locality to bene�t write-shared data, it must besynonymous with processor locality, i.e., a processor mustaccess the data over a short period of time. If it does not,other processors will invalidate the data before it can be ref-erenced. Therefore we only pad data structures that lackprocessor locality, i.e., where the possible loss of spatial lo-cality is insigni�cant relative to the savings in false sharing.Pad and align has been used to eliminate false sharing inboth cache blocks and pages in other work. Our applicationof padding di�ers in that we apply it only when indicated bythe static analysis, as opposed to from feedback from o�-linecache simulation pro�les [TLH94], or based on programmerknowledge [BFS89].Locks: Locks are also padded, to the size of the cacheblock, rather than allocated with the write-shared data theyprotect. Co-allocating locks and data [TLH94] improves spa-tial locality, but generates coherence tra�c when there iscontention for the locks. The processor that holds the busylock loses exclusive ownership of its cache block, because ofreads by waiting processors. Its writes to the data causeadditional invalidations, and then invalidation misses whenthe waiting processors reread the status of the lock. Ourapproach of always padding locks decreases spatial locality,but eliminates any false sharing caused by lock contention.3.3 Transformation HeuristicsOnce all stages of the static analysis have been performed,we use a number of heuristics to detect which data struc-tures are susceptible to false sharing and which transforma-tions should be applied to eliminate it. The heuristics weredeveloped by comparing the results of the per-process side-e�ect analysis to pro�ling information from simulations thatshowed the number of false sharing misses per data structure.The factors used in the heuristics to make the transforma-tion decisions are the type (read/write, shared/per-process),stride (known/unknown) and frequency of access to the el-ements of a data structure. In order to apply either group& transpose or indirection to a data structure, the patternof writes to the data structure must be per-process and thepattern of reads either per-process or read-shared withoutspatial or processor locality. If the pattern of reads is read-shared with locality, the data structure is transformed onlyif the number of writes dominate the number of reads by

at least an order of magnitude. This is done so that thereduction in false sharing will exceed any performance lossfrom reduced spatial locality. Except for locks, which are al-ways padded, data structures are only padded and aligned oncache block boundaries when both the reads and the writesexhibit sharing without processor or spatial locality.4 Methodology and WorkloadWe perform both simulation and execution-time experimentsto quantify the e�ects of transforming shared data on theprograms in our workload. False sharing reductions andother cache miss metrics were measured using trace-drivensimulation. Each program was traced (both before and af-ter shared data was transformed), using a software tracingtool for parallel programs [EKKL90]. Cache miss rates wereanalyzed with a multiprocessor simulator that emulates asimple, shared memory architecture. The processors are as-sumed to be RISC-like, with a 32 KB �rst level cache and anin�nite second level cache5. We studied block sizes rangingfrom 4 to 256 bytes.Execution times were measured on a 56-processor KendallSquare Research KSR2 [Ken94]. Each processor has a 512KB �rst level cache, divided equally between data and in-structions. The second level cache contains 32 MB, and usesa coherency unit of 128 bytes. The second level cache misslatency is 175 cycles, if it is serviced by a processor on thesame ring, and 600 cycles if the servicing processor is on adi�erent ring.The KSR2 default lock data structure is large (80bytes) and aligned on cache block boundaries. To makeimplementation-independent comparisons with the simula-tions, and to study the e�ect of padding and aligninglocks, we used KSR2 synchronization primitives to providea smaller (1 word), alternate implementation of locks in theuntransformed versions of the programs.Gauging the impact of the static algorithms and transfor-mations on program performance and comparing the com-piler analysis to programmer e�orts to eliminate false shar-ing requires three versions of each program: an unopti-mized version, a compiler-transformed version and a hand-optimized version. The programs we collected had beenhand-optimized for locality to varying degrees. In one group,that included Max
ow [Car88], Pverify [MDWSV87] and5In�nite caches can be used to approximate very large (on theorder of several megabytes) second level caches [Egg91].



Program Description Lines of C VersionsMax
ow Maximum 
ow in a directed graph 810 N CPverify Logical veri�cation 2759 N C PTopopt Topological optimization 2206 N C PFmm Fast multipole method (n-body) 4395 N C PRadiosity Equilibrium distribution of light 10908 N C PRaytrace Rendering of 3-dimensional scene 12391 N C PLocusRoute VLSI standard cell router 6709 C PMp3d Rare�ed 
uid 
ow 1653 C PPthor Circuit simulator 9420 C PWater N-body molecular dynamics 1451 C PTable 1: Benchmarks used in our study. Version refers to (N)ot optimized, (C)ompiler optimized, or (P)rogrammer optimized.Topopt [DN87], no e�ort had been made to improve locality.For Pverify and Topopt, in particular, the programmers hadconstructed data structures to match their \natural" wayof thinking about the semantics of the program algorithms,rather than for better memory system performance. To pro-vide hand-optimized versions of these programs (Pverify andTopopt), we manually transformed them [EJ91].In another group that comprised the original SPLASHbenchmark suite [SWG91] (LocusRoute, Mp3d, Pthor, Wa-ter) and the SPLASH2 benchmarks (Fmm [SHHG93], Ra-diosity and Raytrace [SGL94]), programs had been highlyoptimized for locality, including eliminating false sharing.The SPLASH2 programs contained several easily identi�-able data structures whose elements had been organizedby processor (in our terminology, grouped and transposed),and padded. We undid these transformations to produceunoptimized versions of the programs, but made no otherchanges. In addition to providing a general comparison be-tween the compiler-directed and hand-tuned optimizations,these hand-unoptimized programs enabled us to gauge thecompiler's ability to detect and transform data structuresthe programmer had chosen. The programmer e�orts to im-prove locality in the original SPLASH benchmarks were notas obvious. Therefore we left them as is.5 ResultsWe present two sets of results to describe the impact of ouranalysis and transformations on the benchmarks. The �rstdemonstrates their overall e�ectiveness in eliminating falsesharing and the relative contribution of the di�erent trans-formations, all via simulation. The second measures theimpact of eliminating false sharing on execution time andprogram scalability and compares the compiler approach tothat of programmer hand-tuning.Simulation Results: Figure 3 and Table 2 show the re-sults of applying the algorithms and transformations to theunoptimized programs in our workload. In the �gure, thewhite portion of each bar is the miss rate due to false shar-ing; the black portion represents the remaining misses. Italso indicates what the total minimum miss rate for thatblock size would be if false sharing were eliminated withoutany e�ects on spatial locality.The compiler-directed shared data restructuring reducedfalse sharing in all programs for all block sizes, regardless ofthe size of the original false sharing miss rate. (False shar-ing is greater with larger block sizes; and in our programs

the amount of false sharing, of course, varied.) The greatestreductions occurred for Fmm, Pverify and Radiosity, whereon average more than 90% of all false sharing misses wereeliminated. False sharing miss rates in Max
ow, Raytraceand Topopt, were also signi�cantly reduced, although not tothe same extent. In Max
ow and Raytrace, the remain-ing false sharing is mostly caused by a few busy, write-shared scalars that were allocated to the same cache block.They did not appear as candidates for restructuring, becausethe static pro�ling underestimated their dynamic access fre-quency. The remaining false sharing misses in Topopt occurmostly in a write-shared array that is dynamically parti-tioned across the processes in a revolving manner. Falsesharing misses occur in the cache blocks that contain ele-ments from more than one partition. Since the partitioningof the array is dynamic and revolving, the static analysiscannot detect the per-process accesses. Nor does the arrayappear to the compiler to have poor spatial locality, becausethe writes to the elements in a processor's partition occurwith unit stride.Although, overall, the transformations were very success-ful in eliminating false sharing misses, no single transforma-tion was responsible for the reductions for all programs, oreven for a single program. Group & transpose and paddinglocks were most applicable, used in 5 out of 6 programs.However, the majority of false sharing misses were elimi-nated by group & transpose and indirection. Unlike padding,these transformations are harder to apply using simulationpro�les; static analysis can more easily ensure that only datathat are accessed by the same process are grouped together.Our compiler-driven transformations provide this.One transformation (group & transpose) improves spatiallocality, while others (indirection and pad & align) decreaseit. Since both sets of transformations were applied to all butone program, our results re
ect both e�ects. For most pro-grams the change in spatial locality (as re
ected by the blackportion of the bars in Figure 3) was modest, since the e�ectsof the transformations canceled one another. The increasein misses other than those attributable to false sharing wassigni�cant only for Max
ow (it almost doubled at 128 bytecache blocks), which is restructured with two transforma-tions, both of which increase the shared data size. However,for all programs and at all block sizes (data not shown) thereduction in false sharing more than compensated for anydecrease in spatial locality, and the total miss rate fell.Execution Time Results: Eliminating false sharing af-fected two aspects of overall program performance: execu-tion time and program scalability. The di�erence in execu-
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Fmm Maxflow Pverify Radiosity Raytrace TopoptFigure 3: Total cache miss rates for unoptimized (left) and compiler-transformed (right) versions of programs for 16 and 128byte cache blocks. (Recall that the KSR2 has a 128 byte block.) The portion of the miss rate that is due to false sharing isthe white portion of each bar. Each program was run on 12 processors, except for Topopt which was run on 9.tion time between the unoptimized and compiler-optimizedversions of the programs, over the range of processors wherethe unoptimized version still scaled (i.e., where an increasein the number of processors produced a drop in execu-tion time), progressively increased. Maximum improvementswere modest for Fmm (3%), Radiosity (6%) and Raytrace(2%), all programs in which we undid only the easily identi-�able programmer transformations to produce unoptimizedversions. Reductions were better for the programs with nohand-tuning, Max
ow (50%), Pverify (58%) and Topopt(20%). Situations where the transformations had minimalperformance impact occurred primarily when (1) there werefew processors accessing the shared data, and either (2) theabsolute miss rate value was small (Radiosity), or (3) the re-duction in false sharing misses, although large, was a smallproportion of total misses and therefore had little e�ect onthe total miss rate (Fmm, Raytrace).As the number of processors grew, so did the inter-processor contention for data structures that are falselyshared. At some threshold number of processors, whichvaries across the programs, the memory contention createdby false sharing had such a severe impact that it reversed thespeedup trend of the unoptimized versions of the programs.However, the performance of the transformed versions con-tinued to improve, reaching maximum scalability at a greaternumber of processors (representative programs appear inFigure 4). (The only exception was Pverify, for which the un-optimized and compiler-optimized versions both scaled to 16processors.) Thus, compiler-transformed versions of the pro-
grams not only run faster, but, since they scale better withthe number of processors, the maximum performance theycan achieve is often much higher (Table 3, columns 2 and 3).This maximum performance di�erence is particularly strik-ing for Fmm, Pverify, Radiosity and Max
ow, where thetransformed versions exceed the maximum speedup of theoriginal by factors of 2:1, 2:4, 2:7 and 3:1, respectively.Despite being based on algorithms and heuristics thatcan only approximate dynamic per-processor accesses andprocessor interaction, the compiler-directed transformationsalways outperformed programmer e�orts, sometimes morethan doubling the maximum obtainable speedup. The com-piler was able to eliminate more false sharing misses in allprograms. In some cases, it was simply more exhaustive inits coverage. For example, the programmer missed oppor-tunities to apply group & transpose in Pthor, Pverify andTopopt; indirection in Pverify and Topopt; and pad & alignin Radiosity and Pthor. In others, it made a better trade-o� between spatial and processor locality. For example, theprogrammer padded and aligned an array in Raytrace thatthe static analysis had concluded was not predominantly ac-cessed on a per-process basis. Finally, the programmer some-times left locks unpadded or associated them with the datathey protected; Radiosity, LocusRoute and MP3D su�eredfrom both.



Total reduction Fraction of reduction by transformationProgram in false sharing Group & Transpose Indirection Pad & Align LocksMax
ow 56.5% 49.2% 7.3%Pverify 91.2% 6.4% 81.6% 3.1%Topopt 79.9% 61.3% 18.6%Fmm 90.8% 84.8% 6.0%Radiosity 93.5% 85.6% 1.0% 6.8%Raytrace 78.3% 70.4% 3.3% 4.6%Table 2: The false sharing miss rate reduction broken down by transformation. Numbers are averages over 8-256 byte cacheblocks.
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Figure 4: The scalability (speedup vs. number of processors) of unoptimized, compiler-optimized and programmer-optimizedversions for 3 representative programs. Raytrace is typical of programs where the compiler and programmer approaches werecomparable, Fmm, of those where programmer e�orts brought little gain and Pverify, which falls in between. All data pointsare speedups relative to the uniprocessor execution of the unoptimized version. Note the di�erent scales on the vertical axis.6 Related WorkThe research that is most closely related to ours is Torrellaset al. [TLH94], who reduced false sharing using a somewhatdi�erent set of transformations that were applied manually.Like us, they pad and align records and busy scalars; how-ever, they did not use group & transpose or indirection, andthey co-allocated locks with the scalars they protect ratherthan placing them in separate cache blocks. In addition,they used detailed, trace-driven simulation pro�les, ratherthan static analysis, to determine which data structures suf-fered from false sharing and to guide the application of thetransformations. On average, for 64 byte cache blocks, theyreduced the number of shared misses by 10% and 13%, for 16and 32 processor simulations, respectively. In contrast, on aslightly di�erent workload, our transformations reduced thetotal miss rate by an average of 49% (on the unoptimizedprograms, also for 64 byte blocks, but with 12 processors).Dubois et al. [DSR+93] reduced false sharing with hard-ware, either by delaying invalidations (at the sender, receiveror both) until special acquire or release instructions were ex-ecuted, or by performing invalidations on a word basis. De-laying invalidations both at the sender and the receiver andinvalidating cache subblocks consistently perform well. Theformer reduced false sharing misses by 85% to 100%; the lat-ter totally eliminated them. These reductions were achievedat the cost of increased memory tra�c and additional hard-ware complexity. The �rst approach requires a change inthe instruction set architecture, as well as hardware to im-
plement invalidation bu�ers at each processor node. Thesecond requires an invalid bit per word in the cache block,and causes more invalidations when the writes exhibit spa-tial locality.Several compiler approaches reorganize control structuresrather than data. One group used workloads that consistedof either loops or library routines that have �ne-grain paral-lelism [JD91, GP91, PC89]. Their studies recorded perfor-mance improvements only for the code fragments that weretransformed. Therefore the results are overly optimistic withregard to the expected performance of executing entire pro-grams. Ju and Dietz [JD91] restructured a program frag-ment of several loops accessing array elements. Their re-structuring algorithm applies loop transformations (such asloop distribution) and data layout transformations (access-ing arrays in row or column major order), according to acoherency cost function. The restructuring provided a 25%improvement in execution time of the loops for a 64 KBcache. Gupta and Padua [GP91] also examined sequentialprograms that were automatically parallelized at the looplevel. They strip-mined the loops to the size of the cacheblock and assigned each strip to a di�erent processor. Thedecline in miss ratios ranged from 4% to almost 60%, asblock size was increased to 128 bytes. No execution timeswere reported. Peir and Cytron [PC89] partitioned loopsto minimize inter-processor communication when process-ing recurrences. Their mechanism for partitioning utilizesloop unrolling and dependence vectors. Partitions are thenscheduled on di�erent processors.



Maximum Speedup and Scalability (# of processors)Program Original Compiler ProgrammerMax
ow 1.4 ( 8) 4.3 (16)Pverify 2.5 (16) 5.9 (16) 3.5 ( 8)Topopt 9.2 (44) 10.3 (28) 10.2 (28)Fmm 16.4 (20) 33.6 (48+) 16.4 (20)Radiosity 7.0 ( 8) 19.2 (28) 7.4 ( 8)Raytrace 7.0 ( 8) 9.6 (12) 9.2 (12)LocusRoute 12.3 (20) 12.0 (20)Mp3d 2.9 (28) 1.3 ( 4)Pthor 2.8 ( 4) 2.2 ( 4)Water 9.9 (40) 4.6 (12)Table 3: Maximum speedups for original, compiler-optimized and programmer-optimized versions and the number of processorsat which they occur. Note, for LocusRoute, Mp3d, Pthor and Water only programmer- and compiler-optimized versions wereavailable, while for Max
ow, no programmer-optimized version was available.Wolf and Lam [WL91] and Kennedy and McKinley[KM92] do similar work, but on complete programs. Theyreorganize control to improve locality in the inner loops.They also detect a parallel loop, put it in the outermostlegal position and tile (i.e., strip mine and interchange) itif it contains spatial locality. Their transformations removefalse sharing by improving processor locality.Two studies focused on reducing false sharing in pagesrather than cache blocks. Bolosky et al. [BFS89] eliminatedfalse sharing by coalescing objects into a larger object orpadding individual objects to page boundaries, all manually.However, they do not quantify the e�ect of eliminating falsesharing. Granston [Gra93] presented a theory to identify andeliminate page-level sharing between processors that occurin parallel do-loops. The transformations select blocking andalignment factors that cause minimal overlap between setsof pages accessed by di�erent processors.7 ConclusionIn this paper we have analyzed the e�ectiveness of compile-time analysis and shared data transformations in reducingfalse sharing in explicitly parallel programs. Our results in-dicate that the static analysis successfully identi�es the datastructures that cause most false sharing and restructuresthem to eliminate it, while keeping the negative impact onspatial locality under control. No single transformation isresponsible for the false sharing reductions, even within asingle program: all are important contributors to improvedperformance.The reduction in false sharing misses brought di�erentperformance bene�ts in di�erent regions of the speedupcurves. As long as the unoptimized programs experiencedspeedups with increasing numbers of processors, the trans-formed versions improved execution time by modest (assmall as 2%) or more substantial (up to 58%) amounts. Af-ter the point at which the unoptimized programs no longerscaled, most compiler-transformed programs still continuedto scale, resulting in more than a doubling of the overallmaximum speedups, on average.With the trend toward larger caches, larger coherenceunits, and longer memory latencies, false sharing will have anincreasingly large, negative performance impact. Regainingthe performance will necessitate either a signi�cant program-ming e�ort to improve locality or the use of a compile-timesystem like ours. This paper argues for the latter, on three
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