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Abstract—The use of gateway proxies is one important approach to facilitating adaptation across wireless and mobile environments.

Importantly, augmented service entities deployed within the gateway proxy residing on the wired network can be composed and

deployed to shield mobile clients from the effects of poor network characteristics. The usual approach to the static composition of

service entities on the gateway proxy is to have these service entities interact with each other by explicitly invoking procedures on the

named interface, but such a tight coupling of interfaces inhibits the flexible composition and adaptation of the service entities to the

dynamic operating characteristics of wireless networks. In this paper, we present a Mobile GATEway for the Active deployment of

Transport Entities or, for short, MobiGATE (pronounced Mobi-Gate). MobiGATE is a mobile middleware framework that supports the

robust and flexible composition of transport entities, known as streamlets. The flow of data traffic is subjected to processing by a chain

of streamlets. Each streamlet encapsulates a service entity that adapts the flow of traffic across the wireless network. To facilitate the

dynamic reconfiguration of the streamlets, we advocate applying the concept of coordination as the unifying approach to composing

these transport service entities. Importantly, MobiGATE delineates a clear separation of interdependent parts from the service-specific

computational codes of those service entities. It does this by using a separate coordination language, called MobiGATE Coordination

Language (MCL), to describe the coordination among streamlet service entities. The complete design, implementation, and evaluation

of the MobiGATE system are presented in this paper. Initial experimental results validate the flexibility of the coordination approach in

promoting separation-of-concern in the reconfiguration of services, while achieving low computation and delay overheads.

Index Terms—Mobile computing, coordination languages, adaptive middleware, dynamic reconfiguration, infrastructural proxies.
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1 INTRODUCTION

UBIQUITOUS access to data is becoming a reality due to the
large-scale deployment of wireless communication

services and advances in mobile computing devices.
However, mobile computing environments exhibit operat-
ing conditions that differ greatly from their wired counter-
parts. In particular, applications must be able to tolerate the
highly dynamic channel conditions that arise as users move
about an environment. Moreover, computing devices often
vary in terms of display characteristics, processor speed,
memory size, and battery lifetimes. For mobile applications
to operate effectively and optimally in such environments,
the communication-related software must be able to adapt
to dynamic conditions at runtime [6].

One way to meet these challenges is by using a proxy-
based gateway approach to adaptation in which augmented
network services placed between mobile clients and gate-
way servers perform aggressive computation and storage
on behalf of clients [7]. With such architectures, applications
are built from some interconnected building blocks and
deployed at proxy stations. Each building block, or service
entity, specializes in a specific task in processing the flow of
data. For example, the task could involve the scaling/

dithering of images in a particular format or conversion
between specific data formats or even suitable caching to
minimize the transiting of traffic across a wireless network.
The development of mobile applications may extend
beyond the end-host process to include the composition of
service entities to adapt to variations in networks and client
resources.

A common approach to implementing the adaptation of
services at the gateway proxy is to have the service entities
interact statically with each other by explicitly invoking
procedures on a named interface. The result is that the
system integration code will become mixed up with the
application-specific codes. Any replacement or modification
of a service entity requires the updating not only of the code
for the new service entity to be integrated to the system, but
also of the code of those entities that have a direct relation
with the old service entity. The tight coupling of service
entities in terms of the strong coordination dependency
translates into the need for manual modifications when the
transport service entities are deployed into a new environ-
ment. In a wireless network, which exhibits highly dynamic
network conditions, the adaptation of service entities in the
form of dynamic composition and reconfiguration is
considered the norm rather than the exception.

In this paper, we present the architecture of a Mobile
GATEway for the Active deployment of Transport Entities
or, for short, MobiGATE (pronounced Mobi-Gate). Mobi-
GATE is a mobile middleware framework that supports the
robust and flexible composition of transport entities, known
as streamlets. The flow of data traffic is subjected to
processing by a chain of streamlets. Each streamlet
encapsulates a service entity that adapts the flow of traffic
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across the wireless network. To facilitate the dynamic
reconfiguration of the streamlets, we advocate the applica-
tion of the concept of coordination [13] as the unifying
approach to composing these transport service entities. It is
important to note that MobiGATE delineates a clear
separation of interdependent parts from the service-specific
computational codes of those service entities by using a
separate coordination language to describe the coordination
among streamlet service entities. To this end, we have
defined a compositional language called MobiGATE Co-

ordination Language (MCL) that provides rich constructs to
support the definition of compositions, with constrained
type validation and checking. In describing the coordina-
tion, each service entity is regarded as a black box with
well-defined interfaces. MCL enables the core functional
pieces of an application to be clearly separated from its
application-specific patterns of interdependencies. MCL
does this by supporting two distinct language elements:
streamlets, for representing core functional service entities,
and channels, for representing relationships of interconnec-
tion among streamlets. Each implementation-level entity is
represented in MCL as optional attributes of streamlets and
channels. This approach has a number of advantages,
ranging from the ability to reuse common communication
service entities, to offering flexible dynamic reconfiguration
where transport entities can be inserted, removed, and
reordered at runtime without recompilation or redefinition.

The MobiGATE middleware system directly supports
composition using MCL and addresses the design and
implementation of middleware services for dynamic,
heterogeneous environments. A major goal of the Mobi-
GATE architecture is to provide such an environment,
where programmers can develop new mobile applications
by combining some active service entities (streamlets),
while the configuration structure of the application is
completely separated from the computational activities of
individual entities. The advantages of the architecture are
that it supports ease of dynamic reconfiguration through
the runtime reflective configuration of MCL and promotes
the reusability of service entities across applications. The
MobiGATE execution environment is comprised of a
coordination plane for controlling MCL coordination activ-
ities and an execution plane for managing the execution of
various computational service-specific processes, including
streamlets.

The remainder of the paper is organized as follows: In
Section 2, we describe background knowledge on adapta-
tion using gateway proxies in mobile computing and
provide an introduction to the area of coordination, soft-
ware architecture, and mobile middleware. Section 3 details
the architecture of MobiGATE, with an emphasis on some
of the core modules driving the system. Section 4 focuses on
the design of the coordination language, MCL, including its
type system, language constructs, and some refinement
works. Section 5 describes the design and development of
the MobiGATE system. Section 6 presents the results of a
series of experimental studies on an emulated wireless
environment. Finally, Section 7 offers a discussion of future
work and some relevant issues.

2 BACKGROUND AND RELATED WORK

This section begins with an introduction to gateway proxies,
which represent an important architecture for introducing
augmented services across a mobile and wireless environ-
ment. This is followed by a review of related work on
coordination models and coordination languages to enable
“plug-and-play” in the composition and evolution of
services. Finally, we briefly introduce several architecture
description languages and mobile middleware, which relate
to the design of MobiGATE.

2.1 Gateway Proxy Services

Today’s Internet clients vary widely with respect to both
hardware and software properties. These variations are
difficult to hide at the network level, making application-
level techniques necessary. On-the-fly adaptation using
transformational proxies is a widely applicable, cost-
effective, and flexible technique for addressing all of these
types of variations. Fig. 1 shows the infrastructure of the
proxy adaptation system. It mainly consists of the following
two network components residing between the wireless
end-points: 1) a wired-side gateway called the server proxy
that is commonly deployed at the edge of a wired network
and 2) a peer client-side proxy called the client proxy that is
deployed within the mobile host (MH).

The architecture supports augmented wireless network
services by allowing adaptation-based service entities to be
deployed at both the server and client proxies to shield
clients from all kinds of variances. Importantly, the
architecture inherits the principle of interoperability in
which innovative and exciting services can be rapidly
deployed within the existing networking environment
without causing changes to the infrastructure. The kinds
of service entities that may be applied to adapt the flow of
data include transformation (filtering, format conversion,
etc.), aggregation (collecting and collating data from various
sources), caching (both original and transformed content),
and customization (maintenance of a per-user preferences
database). Studies in this area have focused primarily on
applying fixed specific service entities to the gateway proxy
to introduce specific adaptation to data flowing across the
wireless environment. In [7], a service entity based on
image transcoding was applied to convert images on-the-fly
so that the bandwidth requirement could be reduced and
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the images displayed on a display-constrained device such
as a PDA. Similarly, experiments have been conducted on
text-compression, XML streaming, and caching service
entities, which are deployed based on the architecture of
the gateway proxy. The central motivation behind our work
is to address more generally the complex challenges related
to the design, implementation, and deployment of service
entities that are highly composable and reconfigurable and
that promote service adaptations that react to the dynamic
operating conditions of wireless and mobile networking.

2.2 Coordination Models and Coordination
Languages

Coordination models are a class of model that has recently
been developed to describe concurrent and distributed
computations. In the area of programming languages,
coordination is defined as the process of building programs
by gluing together active pieces. Thus, a coordination
model can be regarded as the glue that binds separate
activities into an ensemble [21]. A coordination language is
the linguistic form of a coordination model. Coordination
languages offer facilities for controlling the synchroniza-
tion, communication, creation, and termination of computa-
tional activities.

The most prominent advantage of the coordination
model is that we have a complete separation of coordination
from computational concerns. This separation is usually
achieved by defining a new coordination language to
describe the architecture of the composition. With recent
advances in this field, a number of such coordination
languages have become available, such as PCL [23], Conic
[11], Durra [5], and Manifold [4]. These languages share
many characteristics. In particular, the system generally
consists of two kinds of processes: computation and
coordination. Computational processes are treated as black
boxes, while processes communicate with their environ-
ment by means of clearly defined interfaces, usually
referred to as input or output ports. Producer-consumer
relationships are formed by setting up channel connections
between the output ports of producers and the input ports
of consumers. While these languages support primitive
constructs to enable a connection to be established between
coordinating processes in the form of a high-level archi-
tectural description, they lack the linguistic support to
capture the input and output types associated with the
ports. As a result, interconnected processes must be
manually established to ensure compatibility of type as
messages are exchanged between the respective input and
output ports.

This paper presents the MCL language that supports the
composition and reconfiguration of flexible streamlets in
MobiGATE. In addition to all common properties shared by
existing coordination languages, this newly designed
language possesses its own type system, a compatibility
check function, and the ability of recursively organizing
streamlets. MCL employs Multipurpose Internet Mail Exten-
sions (MIME) [8] specifications to model streamlet interfaces
and message types. This is reasonable given the fact that
MobiGATE is mainly used to facilitate mobile communica-
tions in wireless networks. MIME is an official Internet
standard that specifies how messages are formatted and

interpreted across e-mail systems. Since its inception, MIME
has been extended and applied to diverse applications,
including the adoption of the standard to the World Wide
Web. In particular, MIME possesses a flexible and exten-
sible format that easily accommodates well-known message
types, such as text, images, video, sound, or other
application-specific data. Based on the MIME type system,
MCL allows type compatibility checks in the composition
activities. Another effective property of MCL is the support
of the notion of recursive composition in that streamlets and
their compositions are absolutely indistinguishable from
the point of view of other objects. In other words, a
composition of streamlets can itself be organized as a
composite streamlet. The recursive structuring of streamlet
compositions can be nested to an arbitrary level to promote
modularization and reusability.

Table 1 offers a comparison between existing coordina-
tion languages and MCL along seven dimensions: Co-
ordination Unit is the basic unit in terms of which the
configuration is performed; Computational Language is the
name of the language supported by the coordination
language to program individual computational entities;
Message Passing in these coordination models can be
synchronous, asynchronous, or both, depending on the
underlying communication channels; Dynamic Reconfigura-
tion describes the ability to dynamically change the
composition structure and to create/destroy coordinated
object instances at runtime; Compatibility Checking and
Recursive Composition are as described in the above para-
graph; the Application Domain refers to the application of the
language in a domain for which it is designed.

It is important to note that Manifold, which is described
as a typed language, does not have an actual type system to
model the processed data information. By typed it is meant
that Manifold only recognizes types of language elements,
such as processes, ports, events, and streams [4]. Similarly,
Conic cannot be regarded as a language with the full
support of compatibility checking as it only employs some
simple data types, such as integers, floats, and strings, to
define data ports and cannot conduct the compatibility
check that is supported by MCL based on the MIME type
system. The reason that PCL and Conic only partially
support dynamic reconfiguration is that the number of
process and channel instances in these two languages is
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fixed at the time the system is created [21], while the
languages Durra, Manifold, and MCL do not have that
restriction.

2.3 Software Architecture and Mobile Middleware

Our research on MobiGATE is also closely related to the
fields of software architecture and mobile middleware. This
section briefly introduces some relevant concepts applied to
various systems and their impact on MobiGATE’s design.

2.3.1 Software Architecture

The art of organizing software into various levels of
abstractions has evolved since the inception of computing.
From the perspective of programming languages, intuitive
data structures and abstractions have been recognized as
effective mechanisms to simplify programming efforts and
organize program flows. On another plane, the increasing
complexity of software programs has motivated software
architects and researchers to investigate advanced techni-
ques to organizing complex software. The advance from the
functional to the object-oriented programming paradigm
has most definitely driven the formulation of new
languages such as C++, SmallTalk, and Java to promote
the principles of encapsulation, information hiding, poly-
morphism, among other benefits of object-oriented pro-
gramming. As software systems continue to grow in
complexity, their design and specification in terms of
coarse-grain building blocks become a necessity. The field
of software architecture addresses this issue and provides
high-level abstractions for representing the structure,
behavior, and key properties of a software system. In this
connection, software architecture represents an important
framework for the MCL language that specifically focuses
on dynamic service compositions in the MobiGATE system.

To date, many architecture description languages (ADLs)
have been developed to aid architecture-based develop-
ment. Examples of ADLs include Darwin [12], ACME [9],
Rapide [10], Wright [2], and C2 [15]. Darwin is an
architectural description language that describes a compo-
nent type by an interface consisting of a collection of
services that are either provided or required. In particular,
Darwin provides a set of semantics for its structural aspects
through the �-calculus. However, Darwin does not provide
appropriate means of describing the core functions and
connection capabilities of either a component or its services.
ACME is intended to serve as a least-common-denominator
interchange language for architectural descriptions. ACME
is consistent with the ability to describe software architec-
ture, but it does not, in itself, provide a sufficient basis. It is
only through mappings to other languages that ACME
descriptions can be interpreted. Rapide is an architectural
description language based on modeling computations and
interactions as partially ordered event sets. It is limited by
its lack of an explicit means of introducing interaction types
and not supporting symmetric interaction patterns. Wright
provides not only a concise language to capture the
architectural specification of software composition and
interactions, it also facilitates automated checking of
architectural properties to assert the architectural consis-
tency and completeness of the system. However, Wright
limits both the architectures that can be directly expressed

(they must be static and asynchronous) and the properties
that can be attributed to those architectures (only control
and event ordering properties are naturally captured).
Finally, C2 is a language designed specifically to support
architecture-based evolution. Different from MCL, the
component of C2 are specified as first-order expressions
via invariants and operation pre and postconditions, which
are generated as comments in an implementation and
cannot be checked at system execution time.

2.3.2 Mobile Middleware

The infiltration of mobile computing has motivated the
development of mobile middleware systems that support
agile software architecture which reacts rapidly to varying
operating environments. A software system dealing with
agile components requires software architecture that is
highly robust and composable to deal with potentially
adverse operating conditions. Therefore, it is not surprising
that the design of MobiGATE adopts and rides on the
concepts of software architecture to promote a principled
and systematic approach to organizing and managing
adaptive software composition. Significantly, the under-
lying coordination language based on MCL provides
syntactic expressions to enable component services to be
composed and checked for consistency in a highly dynamic
environment. In the remaining section, we describe several
representative middleware technologies and present a
comparison of these technologies with MobiGATE.

ArchJava [1] is an extension to Java that unifies software
architecture with implementation, ensuring that the im-
plementation conforms to architectural constraints. Arch-
Java currently has several limitations that would likely limit
its applicability in the MobiGATE setting: Communication
between ArchJava components is achieved solely via
method calls, it is currently limited to Java, and its
efficiency has not yet been assessed. Lime [18] is a Java-
based middleware that provides a coordination layer that
can be exploited for designing applications which exhibit
either logical or physical mobility, or both. Lime is
specifically targeted at the complexities of ad hoc mobile
environments. XMIDDLE [14] is a data-sharing middleware
for mobile computing. XMIDDLE allows applications to
share data that are encoded as XML with other hosts, to
have complete access to the shared data when disconnected
from the network, and, when possible, to reconcile any
changes made with all the hosts sharing the data.
XMIDDLE also allows applications to influence the recon-
ciliation process. Aura [24] is an architectural style and
supporting middleware for ubiquitous computing applica-
tions with a special focus on user mobility, context
awareness, and context switching. Aura is thus only
applicable to certain classes of applications in the Mobi-
GATE setting. The other well-known systems also include
TranSend [7], Odyssey [20], and RAPIDware [16].

Compared with the existing middleware systems intro-
duced above, the advantage of the MobiGATE system is in
its flexible and dynamic composition of services based on
the principles of coordination and separation-of-concerns.
MobiGATE supports various forms of service compositions,
linear or branching, and can be configured at runtime
without recompilation or redefinition. More importantly, as
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introduced above, the system supports the automatic

compatibility check in the composition activities. All these

desirable properties come from the application of the

coordination principle advocated in this paper.

3 AN OVERVIEW OF THE MOBIGATE
ARCHITECTURE

The MobiGATE system consists of two parts: MobiGATE

server and MobiGATE client. The MobiGATE server, where

adaptations of data flows are composed, resides in the

intermediate proxy between the data sender and receiver.

The MobiGATE client, in most cases, stands in the position

of data receiver, responsible for processing received

messages reversely.
There exists in the MobiGATE server a clear distinction

between the activities of coordination and computation.

Fig. 2 shows the architecture of MobiGATE, which is

organized into two executing planes. The Streamlet

Execution Plane is responsible for scheduling streamlet

instances for computation, while the Stream Coordina-

tion Plane is responsible for maintaining the interaction

and relationship between the coordinated streamlets. The

Coordination Manager maintains a configuration table

for each instance of streamlet composition. The configura-

tion table serves to contain meta-information on the initial

composition of streamlets and reconfiguration actions in

response to different events. All this information comes

from the compilation of the corresponding MCL script that

enforces those high level policies. Based on the derived

table, the Coordination Manager is responsible for

initializing and reconfiguring related applications appro-

priately.
On another plane, the Streamlet Manager controls the

execution of instances of a streamlet. During the setup

process, the manager is required to locate the classes of

streamlets and allocate necessary computational resources

for execution. The Event Manager is responsible for

generating system events in reaction to different environ-

mental and context conditions. Finally, there is also a

Streamlet Directory, where the streamlet providers

can advertise their services. This directory provides code-

level implementations of streamlets at runtime. We discuss

in detail various components of the MobiGATE architecture

below.

Coordination Manager. The Coordination Manager

controls the generation of stubs and channel objects and
facilitates the exchange of messages among the streamlets.
It maintains a configuration table for each running
coordination stream, defining the specific message flow
route in these streams. From the perspective of networking,
the role of the Coordination Manager is somewhat
similar to that of a router, while the configuration table acts
as the routing table. Another important function of the
Coordination Manager is to filter events coming from
the Event Manager and broadcast them among coordina-
tion streams, which may invoke dynamic reconfiguration
actions if necessary.

Stream Coordination Plane. The Stream Coordina-

tion Plane is the layer where coordination activities take
place. In this plane, a stream object is modeled as streamlet
stubs connected by channels, with the composition struc-
ture defined by the configuration table held by the
Coordination Manager. Stubs do not contain any service
logic. Instead, they implement whatever operations are
necessary to forward the request to streamlet instances and
receive the result. The exchange of data among the stubs is
currently conducted through channels. The channels trans-
port data using a frequently used method called carrier
resource, where a repository or carrier resource, accessible to
both producer and user stubs, is created. Producer stubs
write the data to the shared carrier. User stubs read the data
from the shared carrier. The carrier resources can be read
only after they have been written.

Streamlet Manager. The Streamlet Manager manages
the execution of various streamlets. It intercepts service
requests from the Stream Coordination Plane, passes
the incoming message to the corresponding streamlet
instance for processing, and, finally, returns the result
message. If the requested streamlet has not yet been
initiated, the manager will create an instance for it from
the Streamlet Directory; otherwise, the manager will
directly deliver the message to the Streamlet Execution
Plane.

Streamlet Execution Plane. All of the computation
activities take place in the Streamlet Execution Plane.
In this plane, individual streamlets run independently of
the others and focus on imposing services on the incoming
messages. We distinguish two kinds of streamlets, Stateless
and Stateful, depending on whether or not they keep state
information for the requesting coordinator processes.

One of the fundamental benefits of using the MobiGATE
architecture is that it is able to handle a heavy workload
while maintaining a high level of performance. There is a
relationship between the number of streams and the
number of streamlets that are required to service them. As
the stream population increases, that is, as the number of
applications increases, the number of streamlets required
increases correspondingly. At a certain threshold, the
increase in the number of streamlets will have a direct
impact on performance and may, as a result, lower the
throughput. MobiGATE explicitly supports a mechanism
called streamlet pooling that makes it easier to manage large
numbers of streamlets in the Streamlet Execution

Plane.
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The concept of pooling resources is not new. A
commonly used technique is to pool database connections
so that the business objects in the system can share access to
the database. This mechanism reduces the number of
database connections that are needed, as well as the
consumption of resources and increases throughput. The
MobiGATE Streamlet Execution Plane also applies
resource pooling to streamlets; this technique is called
streamlet pooling. Streamlet pooling reduces the number of
instances of streamlet and, therefore, the resources needed
to service requests from the Stream Coordination

Plane. It is also less expensive to reuse pooled streamlet
instances than to frequently create and destroy instances.

Streamlet pooling is applicable to streamlets that are
considered stateless. In other words, since stateless stream-
lets are never associated with a specific stream, there is no
fundamental reason to keep a separate copy of each
streamlet for each instance of a stream. Thus, the system
can keep a much smaller number of streamlets, reusing each
instance of streamlet to service different requests. By this
means, it greatly reduces the resources actually needed to
satisfy all of the requests for the service.

Event Manager. The Event Manager is responsible for
generating system events in reaction to different conditions
and forwarding them to the Coordination Manager to be
distributed to appropriate receivers. These events may be
caused by client requests, changes to the system environ-
ment, or by exceptions in executions of streamlets. Co-
ordinating the publication of events is fundamental to the
realization of adaptive processing in a mobile middleware
system such as MobiGATE.

MCL Complier. The MCL Compiler controls the
compilation of the MCL coordination script and generates
the necessary configuration tables to define the message
flow routes in coordination streams. It is also responsible
for any compile-time validation work such as compatibility
checks. In case there are any incompatible connections in
the script, the compiler should return with a detailed error
message.

Streamlet Directory. The Streamlet Directory

serves as the repository where streamlet providers, which
may be application developers themselves or some external
streamlet developers, can advertise their services. In
addition, it serves as a central storage for streamlet codes,
in which the Streamlet Manager may locate the relevant
streamlets and create instances for execution. Note that it is
possible for a streamlet itself to be represented as an MCL
coordination script, which defines a recursive composition
of other native streamlets.

In contrast to the server, the MobiGATE client system
has no concept of channel or coordination. All the
composition information is already recorded in the incom-
ing message header. The system at the client side needs,
simply, to read the message header and distribute the
message to corresponding client streamlets for reverse
processing. To support this function, each streamlet on the
sending side of a connection adds a header field peerST to
the messages before writing them to its output port. The
field identifies the peer streamlet needed at the receiver.
Given a streamlet that performs some processing on an

outgoing message, its peer streamlet performs the reverse
processing on incoming messages. When a message arrives
at the receiving side, it is first distributed to a message
distributor, where the peerST of the streamlet is checked. If
the distributor can find a streamlet whose identification
matches the peerST contained in the incoming message, then
the distributor will deliver the message to the streamlet.
Once a message has been processed by all necessary peer
streamlets, it is delivered to the overlaying application.

4 MOBIGATE COORDINATION LANGUAGE

The MobiGATE Coordination Language (MCL) provides a
declarative specification of the composition and coordina-
tion of streamlets through various construct abstractions.
The language is not concerned with the operational logic of
the streamlet, but seeks to capture the streamlet’s high-level
abstract characteristics, such as interfaces, through the
abstraction of input-output ports and the types of data
associated with the messages. The coordination and
relationship between the streamlets are captured through
the abstraction of channels.

4.1 Message and Port Typing

Typing in programming languages defines the type of data
and structural representation of information to be pro-
cessed. The typed information represents the characteristics
of the data intended by the developer of the program and is
accordingly treated as such during compilation and execu-
tion. In MobiGATE, we view the typing of messages
exchanged between streamlets and the definition of port
types as fundamental to enabling the flexible and robust
composition of service entities. Importantly, it allows the
developer to concisely capture the intended types of
messages that are bound to the ports of streamlets. Runtime
checking in the form of matching the types of messages to
the streamlet ports can be exercised to ensure consistency
during the operation. In MobiGATE, we propose the
adoption of the Multipurpose Internet Mail Extensions, or
MIME 1.0 Internet standard as the underlying type
definition to represent messages and declarations of port
type. As such, messages exchanged in the system are
formatted based on Multipurpose Internet Mail Extensions,
or MIME 1.0. This assumption is reasonable and valid
considering the fact that MIME has evolved to become the
de facto formatting standard for many network services,
including e-mail, news, and the World Wide Web.

Fig. 3 shows a graphical representation of the type
system. A fundamental property of the type system is that,
for a given type, there can be multiple associated direct
subtypes or supertypes. This is useful in facilitating the
process of checking for compatibility of type in activities to
compose the architecture. Another interesting property of
the type system we defined comes from the extensible
nature of the MIME type media system, meaning that it is
not difficult to introduce a new type of message into the
system.

Based on the MIME type system, the BNF (Backus
Normal Form) notation of a type declaration in MCL can be
defined as shown in Fig. 4. Note that this definition is
generated from a simplification of a standard MIME
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Content-Type header field definition with some of our own

modifications.

4.2 Language Elements

The MCL language is an underlying declarative language

for describing dynamically changing networks of active

concurrent processes. It is comprised of several important

abstractions including streamlets, channels, and streams.

Collectively, the abstractions, labeled constructs, con-

strained typing, and definitions form the building blocks

for describing the composition of the streamlets and their

architectural description. The following section describes

the important elements representing the core abstractions.

4.2.1 Streamlet

Streamlets represent the main functional pieces of an

application. They own a set of ports, through which they

interconnect with the rest of the system. Interconnections

among streamlets are explicitly represented as separate

language elements, called channels. Streamlets must always

connect to one another through channels. As a consequence,

every streamlet port must be connected to a compatible

channel port based on the definition of MIME type.
Within the context of a streamlet, ports play the role of

placeholder, which means they will not be affected by the

computation of the streamlet. Streamlets read/write

messages from/to their associated input/output ports by

using read/write primitives, without the explicit need to

know the real source/destination of messages. The separa-

tion and externalization of the interconnections of the

streamlets promote the independence of streamlets from

their environment and their reusability. In MCL, we use

the notation p:i to refer to port i of a streamlet instance p.
Streamlets are defined as sets of ports and attributes that

describe their core functions and their capabilities to

interconnect with the rest of the system, as shown in

Fig. 5. As part of the declaration of ports, it is necessary to

establish the type of input/output port. Notice that each

streamlet may have more than one input/output port, each

of which is identified with the name of a port. The attribute

part specifies three important attributes: 1) Type. Type

describes whether the streamlet needs to keep information

on states for the corresponding application. Based on this

attribute, streamlets are distinguished as STATELESS or

STATEFUL. 2) Library. The library connects streamlets with

code-level components that implement their intended

functionality. Examples of code-level components include

executable programs and source code models. In particular,

the library may refer to an MCL description file that defines

another stream application in case of recursive composi-

tions. This is illustrated by an example in Section 4.4.2.

3) Description. Description provides some general descrip-

tive information about streamlets.
Furthermore, we distinguish between the descriptions of

streamlets and their instances in MCL. In our terminology, a

streamlet is an instance and a streamlet definition is its

description. Streamlets (or streamlet instances) can be

created from a definition using the new-streamlet primitive

or destroyed using the remove-streamlet primitive.

4.2.2 Channel

Channels describe relationships of interconnection and

constraints among streamlets. Traditional programming

languages do not support a distinct abstraction for represent-

ing such relationships and implicitly encode support for

component interconnections inside their abstractions for

components. In contrast, MCL requires that all interconnec-

tions among streamlets be explicitly represented using

channels. Like streamlets, channels own ports. Channel ports

must be connected to compatible streamlet ports.
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A channel represents a reliable, directed, and perhaps
buffered flow of information in time. Reliable means that
the messages placed into a channel are guaranteed to flow
through without loss, error, or duplication, with their order
preserved. Directed means that there are always two
identifiable ends in a channel: an in and an out. Once a
channel is established between two streamlets, it operates
autonomously and transfers the message from its input to
its output port. Fig. 6 shows the formal definition of the
channel. Like the streamlet, it is also defined by port
declarations and some important attributes: 11) Type. We
distinguish two types of channels: synchronous and
asynchronous. Synchronous channels are zero-length buf-
fers and can receive a value only if they can be delivered
immediately, while asynchronous channels are unbounded
FIFO buffers. 2) Buffer. Buffer specifies the size of the buffer
in the channel in units of Kbytes. Ideally, an asynchronous
channel should have an unbounded buffer, as introduced
above. However, in the real world, we generally choose a
large buffer size to simulate this property.

As with streamlets, we also differentiate between
channels and channel definitions in MCL. Channels (or
channel instances) can be created from a definition using
the new-channel primitive or destroyed using the remove-
channel primitive.

4.2.3 Stream

A stream is purely a composition script, also known as a
coordination script, running on the coordinator side. It is
within a stream that different streamlet and channel
instances are created, network topologies are constructed,
and actions in response to different events are specified. On
the one hand, streams can be viewed as streamlets
connected by channels with the ability to perform adapta-
tions. On the other hand, a stream can also be viewed as a
“streamlet” with input/output ports, which come from the
stream’s inner streamlet ports that are not concerned with
any inner connections. Fig. 7 is the formal definition of a
stream object.

In addition to the new-streamlet, remove-streamlet, new-
channel, and remove-channel primitives introduced above, we
also have connect, disconnect, and disconnectall primitives to
set up/break down connections in descriptions of stream.
For example, we write connect ðp:o; q:i; cÞ to set up a

connection between port o of streamlet p and port i of
streamlet q, using channel c. For simplicity, we can also just
use connect ðp:o; q:iÞ, whereby the system will automatically
create a channel instance of an asynchronous type with
100 Kbytes of buffer to connect between the ports. The port
types of the created channel are based on the types of
streamlet ports being connected by this default channel.

Dynamic reconfiguration is another important task that
needs to be addressed in the description of a stream. In
MCL, the interaction model is event-driven. That is, a
coordinator process waits on an occurrence of some specific
events that trigger it to enter a predefined state and perform
some actions. These actions typically consist of setting up or
breaking off connections of ports and channels. The
coordinator then remains in that state until it observes the
occurrence of some other related events.

System events are generated by the Event Manager, an
important component in the MobiGATE environment that
facilitates the adaptation of the streamlets. In MCL, we have
predefined several types of events that represent external
events that can be subscribed to initiate the adaptation
through the reconfiguration of the composition of the
streamlets. The selection of the types of event include
LOW_ENERGY (client devices running out of power),
LOW_BANDWIDTH (poor network bandwidth), LOW_
GRAYS (client devices supporting only shallow grayscale),
and END (end of application). Note that, unlike other
coordination languages featuring events, MCL events are
not parameterized and cannot be used to carry data—they
are used purely for triggering the evolution of the
coordinated streamlets.

In descriptions of a stream, we have an important
primitive, when (event) {...actions...}, for identifying reactions
to different events. In principle, the coordinator can pick up
any broadcast event; in practice, however, usually only a
subset of the potential receivers is relevant to an event as
they specify actions in the corresponding when sections.

4.3 Case Example

In this section, we present a pragmatic example of the
composition of service entities based on MCL to illustrate and
highlight the robustness of the language in regulating
complex adaptations in response to evolving wireless and
mobile operating environments. We make use of the
Datatype-Specific Distillation application that was deployed
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at the University of California, Berkeley [7], together with
some of our own modifications, as an example for
illustration. The service entities used in this example are
listed below.

1. Switch: Dividing the incoming message based on the
semantic type of the data;

2. Image down sampling: Lossy compression of an image
by reducing the sample rate;

3. Map to 16 grays: Reducing images to 16 grays to
support shallow grayscale displays;

4. PostScript-to-text: Discarding some information on
format and converting documents to rich-text
supported by most devices;

5. Text compress: A generic text compressor;
6. Merge: Integrating different types of information into

a whole body;
7. Power Saving: A power-saving mechanism as dis-

cussed in [3].

Fig. 8 is the composition model of this application. In the
figure, rectangle boxes represent the service entities mod-
eled as streamlets associated with input ports (black points)
and output ports (white points). Lines between different
ports embody intermediate channel objects. Note that the
dashed parts are optional, which means they will be
included in the architecture only when certain specific
events take place. For example, the power-saving entity is
invoked on the condition that the system subscribes to and
correspondingly receives the LOW_ENERGY signal from
the hardware abstraction driver. Containing the composi-
tion of the streamlets is the abstraction of the stream
application streamApp, which exercises recursive composi-
tion. The composite streamApp streamlet has its own input/
output ports that are derived from those internal ports that
are not satisfied by any internal connections. Therefore,
from the outside, the streamApp can also be regarded as a
streamlet object and can be graphically represented in the
form of an encapsulated box and ports to be reused in other
stream applications.

Fig. 9 is a description of individual streamlets in MCL.
Considering the large size of image data, we specifically
created a channel with a buffer of 1,024 Kbytes to connect
image-related streamlets, while others use the default
100 Kbyte-sized channel.

Based on these streamlet descriptions, the final composi-
tion script for the stream streamApp is written as shown in
Fig. 10.

As shown in Fig. 10, the occurrence of LOW_ENERGY
triggers the reconfiguration of the stream by introducing
the streamlet powerSaving. Similarly, the occurrence of

LOW_ GRAYS triggers the insertion of a new streamlet

map_ to_16_grays to provide transcoding of color images to

gray scale images.

4.4 Design Issues

The design of MCL is greatly influenced by a set of core

design issues. These issues, in a way, differentiate MCL
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from existing and general coordination languages, with the
specific focus on facilitating robust composition and
support for dynamic reconfiguration in a mobile and
wireless environment.

4.4.1 Checking Compatibility

In a manner analogous to the checking of type in program-
ming languages, it is desirable to be able to perform limited
static checking of compatibility when connecting or trans-
forming the composition of service entities. Such controls
facilitate the construction of correct and consistent architec-
tures, while helping designers focus their attention on more
complex issues. MCL provides such a mechanism, based on
the matching of streamlet port types.

MCL imposes several semantic restrictions and con-
straints on the ability of streamlets to connect to each other.
The two most important restrictions are: 1) Streamlet ports
can only be connected to channel ports (and vice versa) and
2) sink ports can only connect to source ports that are equal
to or are a specialization of the sink ports.

It is desirable to encode such restrictions and constraints
so that a number of compatibility tests can be automatically
performed by the language at the time of compilation. Since
all MCL connections are between ports, it is desirable to be
able to perform compatibility checks at the port level.

The first restriction is relatively easy to validate by
language. Before establishing a connection, MCL checks the
source of two ports. If both of them come from streamlets,
or channels, the connection is considered illegal. For the
second restriction, MCL bases its checking of compatibility
on types of port. As introduced above, multiple associated
direct subtypes or supertypes can be assigned to a port
type. These subtype/supertype relations are used to specify
the second restriction on compatibility. To establish a
connection, MCL performs a match of port types: If the
type of source port is equal to or a subtype of a type of sink
port, the connection is considered legal. In the application
shown in Fig. 8, the connection between the PostScript-to-
text output port and the Text compress input port is valid
since the source port type text/richtext is a subtype of the
sink port type text.

4.4.2 Recursive Composition

As mentioned above, the stream and streamlet processes
are indistinguishable in terms of their abstraction as boxes
with associated input/output ports. Thus, a stream object
can logically be regarded as a streamlet written in native
MCL composition languages and reused in another stream
application. This is known as recursive composition. In
addition, we include a keyword main to indicate the highest
level stream object in a coordination script. As such, the
system can start to execute an MCL application by locating
a stream object that is labeled main in the coordination
script.

To support this recursive composition, we need to
compose a separate description of the streamlets associated
with each stream object. Based on these descriptions, the
system instantiates instances of streamlets and sets up
connections to each streamlet, just as it does for common
streamlets. For example, we can reuse the example stream
discussed above, as shown in Fig. 11.

As shown in Fig. 11, the composite stream is oblivious in

the internal structure of the stream streamApp, which is

defined in Fig. 10. From the view point of the composite

stream, this stream object is just a common streamlet that is

implemented in MCL. In a similar manner, this composite

stream can also be reused in another higher level stream

object as a common streamlet object.
The support of the recursive composition model corre-

sponds to the spirit of coordination theory in facilitating

organized composition. As MobiGATE evolves, coupled

with the proliferation of streamlets, we envisage a need to

provide a coordinated and structured organization of

streamlets to promote ease of use and management. This

is reflected in MCL through the support of the hierarchical

modeling of streamlet composition based on recursive

coordination.

4.4.3 Streamlet Sharing

Another important contribution of our work is the concept

of streamlet sharing. As each streamlet is only concerned

with imposing its computation on incoming messages and

producing response messages, it is oblivious to the source

or destination of the messages. The complete decoupling of

coordination from computation makes it possible to share

instances of streamlets between different streams.
The question is, how can messages be distributed to their

corresponding streams when the messages are generated on

the output ports of the shared instances of streamlets? In

other words, how can we differentiate between messages

belonging to different instances of a stream?
As introduced previously, streamlets exchange messages

based on MIME. In MIME message format, there exists a

header called the MIME-extension-field for applications to

define their own application-specific headers. Taking

advantage of this feature, we define a new field in the

message header to identify messages from different

streams.

session ::¼ 00Content-Session00 00:00 session-id:

Before executing a coordination stream, the system will

automatically generate a unique session ID for each instance

of a stream. Subsequently, all of the messages belonging to

this stream will be labeled with the assigned session ID in

their “Content-Session” field. By this means, the system can

easily differentiate messages from different streams.
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5 DEVELOPMENT OF THE MOBIGATE SYSTEM

This section describes the design and development of the
MobiGATE system that supports the necessary framework
for streamlets to be easily composed, inserted, and
removed. This system forms the underlying runtime layer
where streamlets are deployed and executed on the proxies
residing between the two ends of the wireless link. The
MobiGATE runtime model is implemented on a Java
platform in which common runtime operating system
elements are abstracted as either residing in the coordina-
tion or computing sublayers. Importantly, the runtime
system is designed to promote the maximum reusability
of system services while minimizing overheads incurred
due to streamlets operations. The aim is to provide a
general and flexible system that supports the rapid
development and deployment of streamlet applications
without dictating how the streamlet operation flows.

This section will not discuss the low-level details of the
implementation code. Rather, it will highlight three major
abstract classes that are pervasive in the MobiGATE model.

The Streamlet base class is the core abstraction of a
streamlet that implements and manages the lifecycle
operations associated with a streamlet object, such as pause,
activate, and end.

The MessageQueue abstracts the communication among
all streamlets residing in MobiGATE. Importantly, it
provides a convenient way of separating the communica-
tion parts from the computation codes in a streamlet
application.

The Stream base class is responsible for managing the
insertion, removal, and replacement of streamlets that are
composed within a stream.

Fig. 12 shows the simplified class diagram of the
complete implementation. The following sections briefly
describe the main classes that make up the MobiGATE
infrastructure.

5.1 Streamlet

An excerpt of the Streamlet base class is shown in Fig. 13.
Any streamlet that is to be deployed within the MobiGATE

infrastructure needs to extend this base class. The Streamlet
class extends the Thread class and, thus, is inherently
runnable. The author of a specific streamlet is required to
write the functional code within the processMsg() method,
which will be invoked by the run() method in the Streamlet
class. The Streamlet class contains an In and an Out object,
along with their corresponding standard references to
manipulate the stream connections. A group of methods
(e.g., setIn, setOut, getIn, getOut) is used to establish a
reference to the In and Out objects in the Streamlet code
itself. Several lifecycle methods are also defined in the
Streamlet class, such as pause(), activate(), and end(), to
manage lifecycle operations of the streamlets during
runtime.

The computing model can be used to define general
types of streamlets by providing the developer with the
flexibility to include any application-specific processing
by overriding the streamlet’s processMsg() method. For
example, streamlets can be rapidly developed to provide
important services such as image downsampling, color to
gray conversion, compression, and encryption. Connecting
between streamlets in the Streamlet object is achieved
through the use of the In and Out object abstractions.

5.2 MessageQueue

This class is used to manage the communications among
streamlets on a given stream. In the class, there is a message
vector, msgQueue, accessible to producer and consumer
streamlets and holding references to the passing MIME
messages. The main concern with the vector is how to
synchronize producer and consumer activities. The class
implements methods postMessage() and fetchMessage() and
obtains the synchronization in two ways. First, the two
threads must not simultaneously access the msgQueue. A
Java thread can prevent this from happening by locking an
object. When an object is locked by one thread and another
thread tries to call a synchronized method on the same
object, the second thread will block it until the object is
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unlocked. Second, the producer must have some way of
indicating to the consumer that the message is ready and
the consumer must have some way of indicating that the
value has been retrieved. The Thread class provides a
collection of methods—wait, notify, and notifyAll—to help
the threads wait for a condition and notify other threads of
when that condition changes.

In particular, we have included in the class two
important integer-typed attributes, producer count, pCount,
and consumer count, cCount, which respectively represent
the number of producers and consumers attached to a
queue object. By increasing the corresponding pCount by 1,
the system assumes that a producer streamlet has been
connected to the channel. If the value of the pCount is 0, the
system assumes that the channel does not, at the moment,
have a producer attached. For the variable cCount, the
representation is similar. The code segment shown in Fig. 14
is excerpted from the MessageQueue class.

5.3 Stream

The Stream class is the base class that serves to manage
stream applications in the MobiGATE infrastructure. Unlike
the Streamlet class, Stream is responsible for managing the
stream of composed streamlets. Its concern is not the
operations of the streamlets, but how the streamlets are
composed and their interactions with one another. The
three primary tasks of the Stream class are initializing the
connection setup, reconfiguring the system in response to
different events, and defining composition primitives. The
initialize connection setup method provides an opportunity
for developers to allocate and initialize stream-specific
parameters in preparation for the stream to be deployed. To
support the reconfiguration setup, several methods are
abstracted to allow developers to override and react to
external contextual events. The composition primitives are
fundamental to the Stream class in that they provide method
calls to support dynamic streamlet composition. In parti-
cular, the class implements methods for inserting and
removing streamlets from the stream, as well as methods
for creating new streamlet instances in the stream. All of
these defined primitives are used in the composition of
specific stream applications. Fig. 15 is excerpted from the
class Stream.

In expressing a stream for an application, the developer
is required to capture the streamlets’ composition in MCL,
which essentially captures the initial connection topology
and reconfiguration schemes. Upon deploying the stream

application within the MobiGATE infrastructure, the
system will automatically create the corresponding stream
instances from these descriptions by extending the base
class Stream and overriding the related methods (e.g.,
initConfig(), on_xxx_changed(), where xxx represents the
contextual event). Importantly, the composition model
greatly relieves programmers of complex and low-level
streamlet programming and system activities, such as event
listening or resources recollection. In short, the clear
separation of concerns in terms of the computation and
composition enhances the modularity and flexibility of the
system, while facilitating ease of service reconfiguration
through dynamic stream composition.

6 PERFORMANCE EVALUATION

In order to study the operation and performance of the
MobiGATE system, we conducted a set of experiments on
an emulated and controlled wireless environment. Impor-
tantly, these experiments provide us with a unique
opportunity to measure the potential computation over-
heads that may be incurred by the MobiGATE system in
providing active transport services and allow us to collect
empirical data on the performance of the system. By
analyzing the results, we hope to gain further insights into
the characteristics of MobiGATE. We also hope to thor-
oughly exercise the interactions between the software
components with the ultimate aim of validating the
functionality of the system in terms of its core operations
in providing stream compositions and to verify its
performance gain against the potential overheads incurred
from using MobiGATE.

6.1 Testing Environment

As shown in Fig. 16, the setup includes the use of three PCs:
one (Pentium 4 CPU 2.60GHz 512M DDR RAM PC with
WinXP) acts as the MobiGATE server residing on the wired
departmental LAN (100M Ethernet), a second (Pentium 3
CPU 650MHz 256M SDRAM PC with WinXP) acts as the
mobile node, and the third (Celeron PC with Linux) is
configured to act as a wireless router for emulating a
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wireless operating environment. The MobiGATE server and
the Linux router are located on the same fixed LAN
(158.132.11) within the campus network. Any requests to
hosts outside the campus have to go through the transpar-
ent campus proxy server. The mobile node is connected to
the second network interface of the Linux router using a
different network identification (10.0.0).

This experimental system is necessary to enable us to
validate the operations of MobiGATE in a real network
environment. The Linux router is installed with the NIST
NET network emulator [19] that acts as a general purpose
tool for emulating performance dynamics in wireless
networks. Importantly, NIST supports options for the user
to select and monitor specific traffic streams passing
through the router and to apply selected effects on the
IP packets of those streams. The setup of a single server and
single client is to simplify the experimental scenario, while
still retaining the end-to-end semantics of the experiments.

6.2 Experimental Results

The experiments in this section focus on exercising some
common operations in MobiGATE, such as message
passing between streamlets and the reconfiguration of
streamlet compositions, and evaluating the overheads that
may subsequently be incurred. These operations form the
core mechanisms that drive the streamlets and are inherent
in all applications running in the MobiGATE system. Based
on these basic measurements, a representative application
consisting of all the evaluated operations can then be
deployed and evaluated in the experiments. This gives us a
realistic platform to evaluate the effectiveness of the
complete MobiGATE system and its impact on the
application’s performance over a wireless environment.

Specifically, we started by testing the MobiGATE
streamlet in isolation, measuring the overhead brought
by each streamlet when serving incoming messages. After
that, we conducted a set of experiments on the
reconfiguration time, which indicates the level of respon-
siveness of MobiGATE to the changing transmission
bandwidth. These experiments allowed us to validate
the effectiveness of MobiGATE in facilitating context-
aware computing through the reconfiguration of stream-
lets and to collect empirical results on overheads incurred
during reconfiguration. Finally, a case example with a

particular application reacting to changing bandwidth was
studied to demonstrate the use of MobiGATE while
verifying the insignificant overheads incurred in runtime
processing compared with the performance gained in
service deployment and reconfiguration.

6.2.1 Streamlet Overhead Analysis

In this experiment, we have designed a special streamlet,
named the redirector, whose primary logic is to read and
parse incoming messages from its input port, encapsulating
the necessary headers and sending the messages to its
relevant output port. Importantly, the redirector streamlet
contains core service codes that can be evaluated for its
overheads incurred in maintenance and execution over the
MobiGATE runtime. Delay times can easily be captured by
measuring the time needed for a size-specific message to
pass through a configured number of streamlet redirectors.
Considering the fact that the primary overheads incurred
by the redirector streamlet are inherent in any streamlet for
processing incoming messages, we argue that the setup of
the experiment is reasonable and realistic. The experimental
results are shown in Fig. 17.

From the above, we observed that the delay overhead
increases linearly with the increase in the number of
streamlets the messages passed through. On average, the
overhead is about 12 ms per streamlet. This is acceptable
compared with the potentially long transmission delay
incurred in wireless transmissions. For a specific streamlet,
ignoring the service processing time, the overheads
incurred primarily come from the added work to parse
and unparse incoming messages and the additional over-
head in transmitting messages to and from other streamlets.
We aim to investigate techniques, such as improving the
configuration of the hardware and reducing the number of
necessary streamlets, to improve the system performance.

6.2.2 Passing by Reference versus Passing by Value

The MobiGATE system maintains all incoming messages by
storing them in a message pool and passes the messages
between different streamlets by their associated message
identifier. In other words, the system employs passing by
reference instead of value. Fig. 18 shows the experimental
results when the buffer management of MobiGATE is
implemented based on reference passing versus value
passing. In this experiment, we prepared several messages
of different sizes and had them successively pass through a
number of streamlet redirectors (30 in our experiment).

As expected, the experiment clearly indicates an increase
in processing overheads with a progressive increase in the
message size. The rate of increase is more prominent as the
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message size increases beyond 200K bytes. Across different
message sizes, the processing latency is significantly lower
for messages that are passed by reference compared to
messages that are passed by value. In the former case, new
incoming messages are copied into the message buffer pool
once, while message headers and identifiers are treated as
meta-data and references to be passed between streamlets.
While the message header size may increase as more
streamlets are chained in the stream, the size is still
significantly lower than that of the actual message data.
Avoiding the copying of actual message data across
streamlets also significantly reduced the amount of memory
required by MobiGATE. This has the benefit of keeping
messages stored and cached on fast memory, avoiding the
need to swap between resident memory and secondary
storage.

6.2.3 Reconfiguration Time

Dynamic reconfiguration in MobiGATE aims to maximize
the performance of wireless access under a vigorously
changing environment. However, the reconfiguration pro-
cess of service composition brings a certain number of
performance penalties that are unavoidable. The reconfi-
guration time is the time taken for the MobiGATE system to
adapt to changes in the wireless environment. In other
words, reconfiguration time is the amount of time during
which a user will find the MobiGATE system inactive due
to reconfiguration.

Before going into the details of the experiment, we would
like to use the addition of a new streamlet as an example to
illustrate a complete reconfiguration process. Fig. 19 shows
the steps of this process in detail:

1. Three streamlets: A, B, and C. A and B are initially
connected by a channel m. Assume the need to insert
C between A and B.

2. Suspend streamlet A.
3. Detach A from channel m.
4. Attach C to channel m.
5. Create a new channel n between A and C.
6. Activate streamlet A and the reconfiguration is

finished!

From the above illustration, it is not difficult to derive the
reconfiguration time, which involves the following factors:

.
Pk

i¼1 Si—Suspension of k streamlets;
. nc—Creation (or Deletion for removal operation) of

n channels;
.

Pk
i¼1 ai—Activation of suspended streamlets.

Thus, the reconfiguration time (T) can be represented as:

T ¼
Xk

i¼1

Si þ ncþ
Xk

i¼1

ai:

To evaluate the time required to reconfigure using the
MobiGATE system, we experimented with several reconfi-
guration actions. Specifically, we designed a stream applica-
tion ReconfigExp that reacts to the LOW_BANDWIDTH event
by inserting a number of streamlets redirectors. As shown in
Fig. 20, we record the time Ts at the beginning of the
method once and then, after a series of actions, record the
time Te again as the ending time of the reconfiguration. By
varying the number of streamlets inserted (the variable
InsertCount in Fig. 20), we can measure different numbers of
reconfigurations and Te� Ts will be the resultant time cost.
Fig. 21 shows the result of the experiment.

Notice that, when the number of added streamlets is less
than 10, the reconfiguration time is less than 20 ms. Even
when the number of additional streamlets reaches 100, the
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reconfiguration overhead is still less than 100 ms. This is a
noteworthy and promising result considering the fact that
the reconfiguration rate is likely to be comparatively low
(typically in terms of tens of seconds to minutes, depending
on the contextual changes of the wireless environment) and
the reconfiguration time is insignificant. The good reconfi-
guration performance is the result of extensive use of
multithreading and object code sharing across streamlets
and of the separation of coordination from computation to
accelerate and support ease of reconfiguration.

6.2.4 MobiGATE End-to-End Performance

After evaluating the overheads of key MobiGATE mechan-
isms, this section describes the overall system performance of
MobiGATE from an end-to-end perspective. In particular, we
aim to fully exercise the system components of MobiGATE by
setting up a realistic test bed in the form of a streamlet
application operating over an emulated wireless network. In
this section, we aim to verify the benefits of the MobiGATE
system by asserting that the operations overhead is small
compared to the improvement in performance that comes
from using this system in a wireless environment.

For this purpose, we have prepared a case study of an
application that reacts to changes in bandwidth. The
application speeds up Web surfing over slow links by
including the following streamlets:

1. Switch: Dividing the incoming message based on the
semantic type of the data.

2. Gif2Jpeg: Converting incoming image messages into
Jpeg format.

3. Image Down Sampling: Lossy compression of an
image by reducing the sample rate.

4. Communicator: Sending messages onto the network.
5. Text Compressor: A generic text compressor. This

streamlet has the potential to reduce the data size by
up to 75 percent. Importantly, this streamlet is
activated only if the bandwidth of the wireless link
falls below 100 kbps. This setup will provide us with
the opportunity both to test the responsiveness of
MobiGATE to context changes and to exercise the
reconfiguration mechanisms.

In the application, a certain amount of image and text
messages are continuously generated and transferred across
the wireless link between the MobiGATE server and client
via TCP socket connections. As for image messages, they
are processed by the streamlet Switch, Gif2Jpeg, Image Down
Sampling, and Communicator successively from the start to
the end, while the situation is different for text messages.
Under normal conditions (bandwidth >100 kbps), the text
messages only pass through the streamlet Switch and
Communicator. But, when the bandwidth falls below
100 kbps, the third streamlet, Text Compressor, will be
inserted between the above two streamlets to adapt to the
poor bandwidth. After recording the sending and receiving
time of each message, we can get the time cost to transmit
each message and finally calculate the overall system
throughput.

In the experiment, we measured the system throughput
under bandwidths of 20kbps, 50kbps, 100kbps, 200kbps,
500kbps, 750kbps, 1Mbps, and 2Mbps successively. For

each bandwidth setup, we adjusted three different trans-
mission delays, <1ms, 50ms, and 100ms, to evaluate the
performance of the system. The final results are shown in

Fig. 22.
From the above results, we can see a noticeable

improvement in system throughput using the MobiGATE

system as compared to a setup using the direct transfer of
messages across the wireless link. The throughput gain

extends as bandwidth is decreased. This is expected since
the effect of applying streamlet services to reduce the

amount of bandwidth required begins to take prominence.
A fall in the bandwidth below 100 kbps invoked a special

reconfiguration mechanism in which the compress text
streamlet was inserted into the stream. The results indicate
that the system throughput improved greatly (from 1KB/s

to 4-7KB/s). The experiments clearly suggest the advan-
tages of the MobiGATE system and its ability to offset

processing overheads that may be incurred in deploying the
streamlet application. This is particularly true if MobiGATE

is deployed in an environment where resources are
dynamic and scarce.

7 CONCLUSION

This paper presents a novel coordination language called
MCL that captures the description of the composition of
proxy services in a wireless environment. The services

offered in MobiGATE are composed of streamlets that are
chained together in the form of a stream that adapts to the

flow of data traffic to alleviate the poor characteristics of a
wireless environment. The dynamic changing characteris-

tics of a mobile and wireless environment mean that
MobiGATE needs to support the dynamic reconfiguration

of services through the evolutionary composition of a mix
of streamlets. This is achieved by separating the interactions
among streamlets from their computation through the

abstraction of a coordination plane. In particular, the
complexity of directly coding the flow of interactions

among streamlets is captured via the abstraction of a new
coordination flow language called MCL. The novel features

of MCL include the modeling of service interfaces based on
a MIME media type system, support for a check on the

compatibility of the compositions, support for recursive
compositions, and the concept of streamlet sharing. The

complete implementation of the MobiGATE framework
has, along with the experimental results, provided us with
deep insights into the system. The results have verified the

advantages of applying composable streamlet services to
mitigate the effects of dynamically changing wireless

conditions.
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Fig. 22. The effectiveness of the MobiGATE system.



To date, we have completed the definition of the MCL
coordination language and the supporting MobiGATE
architecture. A prototype infrastructure of this architecture
has been implemented on a Java execution platform, which
supports a highly portable system for operating across
heterogeneous environments. We plan to port the Java
implementation of the MobiGATE client proxy so that it can
operate on resource-constrained devices such as PDAs and
mobile phones executing on a J2ME platform. The complete
setup of the experimental platform will provide us with the
unique opportunity to truly exercise and validate the
operations of MobiGATE and to collect empirical results
on the performance of the system. Initial experiments
conducted with the system have produced promising
results and will be the subject of our future publications.
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